

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2125
Number of Logic Elements/Cells	17000
Total RAM Bits	282624
Number of I/O	201
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-17e-6ftn256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeXP2 Family Data Sheet Introduction

February 2012

Features

- flexiFLASH[™] Architecture
 - Instant-on
 - Infinitely reconfigurable
 - Single chip
 - FlashBAK[™] technology
 - Serial TAG memory
 - Design security

Live Update Technology

- TransFR[™] technology
- Secure updates with 128 bit AES encryption
- Dual-boot with external SPI

■ sysDSP[™] Block

- Three to eight blocks for high performance Multiply and Accumulate
- 12 to 32 18x18 multipliers
- Each block supports one 36x36 multiplier or four 18x18 or eight 9x9 multipliers

Embedded and Distributed Memory

- Up to 885 Kbits sysMEM[™] EBR
- Up to 83 Kbits Distributed RAM

■ sysCLOCK[™] PLLs

- Up to four analog PLLs per device
- Clock multiply, divide and phase shifting

Flexible I/O Buffer

- sysIO[™] buffer supports:
 - LVCMOS 33/25/18/15/12; LVTTL
 - SSTL 33/25/18 class I, II
 - HSTL15 class I; HSTL18 class I, II
 - PCI
 - LVDS, Bus-LVDS, MLVDS, LVPECL, RSDS
- Pre-engineered Source Synchronous Interfaces
 - DDR / DDR2 interfaces up to 200 MHz
 - 7:1 LVDS interfaces support display applications
 - XGMII
- Density And Package Options
 - 5k to 40k LUT4s, 86 to 540 I/Os
 - csBGA, TQFP, PQFP, ftBGA and fpBGA packages
 - Density migration supported
- Flexible Device Configuration
 - SPI (master and slave) Boot Flash Interface
 - Dual Boot Image supported
 - Soft Error Detect (SED) macro embedded

System Level Support

- IEEE 1149.1 and IEEE 1532 Compliant
- · On-chip oscillator for initialization & general use
- Devices operate with 1.2V power supply

Device	XP2-5	XP2-8	XP2-17	XP2-30	XP2-40
LUTs (K)	5	8	17	29	40
Distributed RAM (KBits)	10	18	35	56	83
EBR SRAM (KBits)	166	221	276	387	885
EBR SRAM Blocks	9	12	15	21	48
sysDSP Blocks	3	4	5	7	8
18 x 18 Multipliers	12	16	20	28	32
V _{CC} Voltage	1.2	1.2	1.2	1.2	1.2
GPLL	2	2	4	4	4
Max Available I/O	172	201	358	472	540
Packages and I/O Combinations					•
132-Ball csBGA (8 x 8 mm)	86	86			
144-Pin TQFP (20 x 20 mm)	100	100			
208-Pin PQFP (28 x 28 mm)	146	146	146		
256-Ball ftBGA (17 x17 mm)	172	201	201	201	
484-Ball fpBGA (23 x 23 mm)			358	363	363
672-Ball fpBGA (27 x 27 mm)				472	540

Table 1-1. LatticeXP2 Family Selection Guide

Data Sheet DS1009

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LatticeXP2 Family Data Sheet Architecture

August 2014

Data Sheet DS1009

Architecture Overview

Each LatticeXP2 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and a row of sys-DSP[™] Digital Signal Processing blocks as shown in Figure 2-1.

On the left and right sides of the Programmable Functional Unit (PFU) array, there are Non-volatile Memory Blocks. In configuration mode the nonvolatile memory is programmed via the IEEE 1149.1 TAP port or the sysCONFIG[™] peripheral port. On power up, the configuration data is transferred from the Non-volatile Memory Blocks to the configuration SRAM. With this technology, expensive external configuration memory is not required, and designs are secured from unauthorized read-back. This transfer of data from non-volatile memory to configuration SRAM via wide busses happens in microseconds, providing an "instant-on" capability that allows easy interfacing in many applications. LatticeXP2 devices can also transfer data from the sysMEM EBR blocks to the Non-volatile Memory Blocks at user request.

There are two kinds of logic blocks, the PFU and the PFU without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row.

LatticeXP2 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large dedicated 18Kbit memory blocks. Each sysMEM block can be configured in a variety of depths and widths of RAM or ROM. In addition, LatticeXP2 devices contain up to two rows of DSP Blocks. Each DSP block has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO buffers. The sysIO buffers of the LatticeXP2 devices are arranged into eight banks, allowing the implementation of a wide variety of I/O standards. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as 7:1 LVDS interfaces, found in many display applications, and memory interfaces including DDR and DDR2.

The LatticeXP2 registers in PFU and sysI/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

Other blocks provided include PLLs and configuration functions. The LatticeXP2 architecture provides up to four General Purpose PLLs (GPLL) per device. The GPLL blocks are located in the corners of the device.

The configuration block that supports features such as configuration bit-stream de-encryption, transparent updates and dual boot support is located between banks two and three. Every device in the LatticeXP2 family supports a sysCONFIG port, muxed with bank seven I/Os, which supports serial device configuration. A JTAG port is provided between banks two and three.

This family also provides an on-chip oscillator. LatticeXP2 devices use 1.2V as their core voltage.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

PFU Blocks

The core of the LatticeXP2 device is made up of logic blocks in two forms, PFUs and PFFs. PFUs can be programmed to perform logic, arithmetic, distributed RAM and distributed ROM functions. PFF blocks can be programmed to perform logic, arithmetic and ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices, numbered Slice 0 through Slice 3, as shown in Figure 2-2. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs associated with each PFU block.

Figure 2-4. General Purpose PLL (GPLL) Diagram

Table 2-4 provides a description of the signals in the GPLL blocks.

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock (PIN or logic)
RST	I	"1" to reset PLL counters, VCO, charge pumps and M-dividers
RSTK	I	"1" to reset K-divider
DPHASE [3:0]	I	DPA Phase Adjust input
DDDUTY [3:0]	I	DPA Duty Cycle Select input
WRDEL	I	DPA Fine Delay Adjust input
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (no phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
CLKOK2	0	PLL output to clock tree (CLKOP divided by 3)
LOCK	0	"1" indicates PLL LOCK to CLKI

Clock Dividers

LatticeXP2 devices have two clock dividers, one on the left side and one on the right side of the device. These are intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or ÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock based on the release of its reset signal. The clock dividers can be fed from the CLKOP output from the GPLLs or from the Edge Clocks (ECLK). The clock divider outputs serve as primary clock sources and feed into the clock distribution network. The Reset (RST) control signal resets the input and forces all outputs to low. The RELEASE signal releases outputs to the input clock. For further information on clock dividers, please see TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide. Figure 2-5 shows the clock divider connections.

Secondary Clock/Control Sources

LatticeXP2 devices derive secondary clocks (SC0 through SC7) from eight dedicated clock input pads and the rest from routing. Figure 2-7 shows the secondary clock sources.

Figure 2-7. Secondary Clock Sources

Figure 2-12. Secondary Clock Selection

Slice Clock Selection

Figure 2-13 shows the clock selections and Figure 2-14 shows the control selections for Slice0 through Slice2. All the primary clocks and the four secondary clocks are routed to this clock selection mux. Other signals, via routing, can be used as clock inputs to the slices. Slice controls are generated from the secondary clocks or other signals connected via routing.

If none of the signals are selected for both clock and control, then the default value of the mux output is 1. Slice 3 does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-13. Slice0 through Slice2 Clock Selection

sysMEM Memory

LatticeXP2 devices contains a number of sysMEM Embedded Block RAM (EBR). The EBR consists of 18 Kbit RAM with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-5. FIFOs can be implemented in sysMEM EBR blocks by using support logic with PFUs. The EBR block supports an optional parity bit for each data byte to facilitate parity checking. EBR blocks provide byte-enable support for configurations with18-bit and 36-bit data widths.

Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36
True Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18
Pseudo Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

FlashBAK EBR Content Storage

All the EBR memory in the LatticeXP2 is shadowed by Flash memory. Optionally, initialization values for the memory blocks can be defined using the Lattice Diamond design tools. The initialization values are loaded into the Flash memory during device programming and into the SRAM at power up or whenever the device is reconfigured. This feature is ideal for the storage of a variety of information such as look-up tables and microprocessor code. It is also possible to write the current contents of the EBR memory back to Flash memory. This capability is useful for the storage of data such as error codes and calibration information. For additional information on the FlashBAK capability see TN1137, LatticeXP2 Memory Usage Guide.

register. Similarly, CE and RST are selected from their four respective sources (CE0, CE1, CE2, CE3 and RST0, RST1, RST2, RST3) at each input register, pipeline register and output register.

Signed and Unsigned with Different Widths

The DSP block supports other widths, in addition to x9, x18 and x36 widths, of signed and unsigned multipliers. For unsigned operands, unused upper data bits should be filled to create a valid x9, x18 or x36 operand. For signed two's complement operands, sign extension of the most significant bit should be performed until x9, x18 or x36 width is reached. Table 2-7 provides an example of this.

Table 2-7. Sign Extension Example

Number	Unsigned	Unsigned 9-bit	Unsigned 18-bit	Signed	Two's Complement Signed 9 Bits	Two's Complement Signed 18 Bits
+5	0101	000000101	00000000000000101	0101	00000101	00000000000000101
-6	N/A	N/A	N/A	1010	111111010	1111111111111111010

OVERFLOW Flag from MAC

The sysDSP block provides an overflow output to indicate that the accumulator has overflowed. "Roll-over" occurs and an overflow signal is indicated when any of the following is true: two unsigned numbers are added and the result is a smaller number than the accumulator, two positive numbers are added with a negative sum or two negative numbers are added with a positive sum. Note that when overflow occurs the overflow flag is present for only one cycle. By counting these overflow pulses in FPGA logic, larger accumulators can be constructed. The conditions for the overflow signal for signed and unsigned operands are listed in Figure 2-24.

Figure 2-24. Accumulator Overflow/Underflow

Programmable I/O Cells (PIC)

Each PIC contains two PIOs connected to their respective sysIO buffers as shown in Figure 2-25. The PIO Block supplies the output data (DO) and the tri-state control signal (TO) to the sysIO buffer and receives input from the buffer. Table 2-11 provides the PIO signal list.

Figure 2-25. PIC Diagram

Signals are available on left/right/bottom edges only.
 Selected blocks.

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as "T" and "C") as shown in Figure 2-25. The PAD Labels "T" and "C" distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as inputs.

Figure 2-28. DQS Input Routing (Left and Right)

	PIO A		PADA "T"
	PIO B		PADB "C"
	PIO A		PADA "T"
	PIO B	· · · · ·	PADB "C"
	PIO A		PADA "T"
	PIO B	↓+	PADB "C"
	PIO A		PADA "T"
	PIO B	┃┣	PADB "C"
DOG	PIO A	sysIO Buffer	
 ■ DQ5 		Delay	LVDS Pair
+ DQS	PIO B	Delay	LVDS Pair
↓ DQS	PIO B PIO A		PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
	→ PIO B → PIO A → PIO B		PADA "1" LVDS Pair PADB "C" PADA "T" LVDS Pair LVDS Pair PADA "C"
	→ PIO B → PIO A → PIO B → PIO A		PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
			PADA T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair LVDS Pair PADB "C"
			PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"

Figure 2-29. DQS Input Routing (Top and Bottom)

	PIO A		PADA "T"
	PIO B	+	PADB "C"
	PIO A		PADA "T"
	PIO B	· · · · ·	PADB "C"
—	PIO A		PADA "T" LVDS Pair
	PIO B	→	PADB "C"
	PIO A		PADA "T"
<u> </u>	PIO B	→	PADB "C"
	PIO A	syslO Buffer	·
DQS		Palay	
•		Delay	LVDS Pair
	PIO B		LVDS Pair I I PADB "C" I
	PIO B PIO A		LVDS Pair I PADB "C"
	→ PIO B → PIO A → PIO B		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"
	→ PIO B → PIO A → PIO B → PIO A		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
	→ PIO B → PIO A → PIO B → PIO A → PIO B		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair I PADA "T" PADA "C"
	→ PIO B → PIO A → PIO A → PIO A → PIO A → PIO B → PIO A		LVDS Pair PADA "T" LVDS Pair PADA "T" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "T" LVDS Pair
			LVDS Pair PADA "T" LVDS Pair PADA "T" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"
			LVDS Pair PADA "T" LVDS Pair PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "T" LVDS Pair

Figure 2-31. DQS Local Bus

*DQSXFERDEL shifts ECLK1 by 90% and is not associated with a particular PIO.

Polarity Control Logic

In a typical DDR memory interface design, the phase relationship between the incoming delayed DQS strobe and the internal system clock (during the READ cycle) is unknown. The LatticeXP2 family contains dedicated circuits to transfer data between these domains. To prevent set-up and hold violations, at the domain transfer between DQS (delayed) and the system clock, a clock polarity selector is used. This changes the edge on which the data is registered in the synchronizing registers in the input register block and requires evaluation at the start of each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories, DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to control the polarity of the clock to the synchronizing registers.

LatticeXP2 devices contain two types of sysIO buffer pairs.

1. Top and Bottom (Banks 0, 1, 4 and 5) sysIO Buffer Pairs (Single-Ended Outputs Only)

The sysIO buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have programmable PCI clamps.

2. Left and Right (Banks 2, 3, 6 and 7) sysIO Buffer Pairs (50% Differential and 100% Single-Ended Outputs) The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the referenced input buffers can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp pad is associated with the negative side of the differential I/O.

LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

Typical sysIO I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when $V_{CC, V} C_{CCONFIG} (V_{CCIO7})$ and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. During power up and before the FPGA core logic becomes active, all user I/Os will be high-impedance with weak pull-up. Please refer to TN1136, <u>LatticeXP2 sysIO</u> Usage Guide for additional information.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported sysIO Standards

The LatticeXP2 sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2V, 1.5V, 1.8V, 2.5V and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, MLVDS, BLVDS, LVPECL, RSDS, differential SSTL and differential HSTL. Tables 2-12 and 2-13 show the I/O standards (together with their supply and reference voltages) supported by LatticeXP2 devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1136, LatticeXP2 sysIO Usage Guide.

Table 2-12. Supported Input Standards

Input Standard	V _{REF} (Nom.)	V _{CCIO} ¹ (Nom.)
Single Ended Interfaces		
LVTTL	_	—
LVCMOS33	_	_
LVCMOS25	_	_
LVCMOS18	_	1.8
LVCMOS15	_	1.5
LVCMOS12	_	_
PCI33	_	_
HSTL18 Class I, II	0.9	_
HSTL15 Class I	0.75	_
SSTL33 Class I, II	1.5	_
SSTL25 Class I, II	1.25	_
SSTL18 Class I, II	0.9	_
Differential Interfaces		
Differential SSTL18 Class I, II	_	_
Differential SSTL25 Class I, II		—
Differential SSTL33 Class I, II		—
Differential HSTL15 Class I	_	—
Differential HSTL18 Class I, II		—
LVDS, MLVDS, LVPECL, BLVDS, RSDS	_	—

1. When not specified, V_{CCIO} can be set anywhere in the valid operating range (page 3-1).

Density Shifting

The LatticeXP2 family is designed to ensure that different density devices in the same family and in the same package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

sysIO Differential Electrical Characteristics LVDS

Parameter	Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP} , V _{INM}	Input Voltage		0	_	2.4	V
V _{CM}	Input Common Mode Voltage	Half the Sum of the Two Inputs	0.05	_	2.35	V
V _{THD}	Differential Input Threshold	Difference Between the Two Inputs	+/-100	_	—	mV
I _{IN}	Input Current	Power On or Power Off			+/-10	μA
V _{OH}	Output High Voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	_	1.38	1.60	V
V _{OL}	Output Low Voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.9V	1.03	—	V
V _{OD}	Output Voltage Differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV _{OD}	Change in V _{OD} Between High and Low		_	_	50	mV
V _{OS}	Output Voltage Offset	(V _{OP} + V _{OM})/2, R _T = 100 Ohm	1.125	1.20	1.375	V
ΔV_{OS}	Change in V _{OS} Between H and L			_	50	mV
I _{SA}	Output Short Circuit Current	V _{OD} = 0V Driver Outputs Shorted to Ground	_	_	24	mA
I _{SAB}	Output Short Circuit Current	V _{OD} = 0V Driver Outputs Shorted to Each Other	_	_	12	mA

Over Recommended Operating Conditions

Differential HSTL and SSTL

Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

For further information on LVPECL, RSDS, MLVDS, BLVDS and other differential interfaces please see details in additional technical notes listed at the end of this data sheet.

LVDS25E

The top and bottom sides of LatticeXP2 devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one possible solution for point-to-point signals.

LatticeXP2 External Switching Characteristics (Continued)

			-	7	-	-6		-5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		XP2-5	1.00		1.30	_	1.60		ns
		XP2-8	1.00	_	1.30	_	1.60	_	ns
t _{HE}	Clock to Data Hold - PIO Input Register	XP2-17	1.00		1.30	_	1.60		ns
		XP2-30	1.20		1.60	_	1.90		ns
		XP2-40	1.20		1.60		1.90		ns
		XP2-5	1.00		1.30	_	1.60		ns
	Clock to Data Saturi - PIO Input	XP2-8	1.00		1.30	_	1.60		ns
^t su_dele	Clock to Data Setup - PIO Input Begister with Data Input Delay	XP2-17	1.00		1.30	_	1.60		ns
		XP2-30	1.20		1.60		1.90		ns
		XP2-40	1.20		1.60		1.90		ns
		XP2-5	0.00		0.00		0.00		ns
t _{H_DELE} R		XP2-8	0.00	—	0.00	—	0.00	—	ns
	Clock to Data Hold - PIO Input Begister with Input Data Delay	XP2-17	0.00	—	0.00	—	0.00	—	ns
		XP2-30	P2-17 0.00 — 0.00 — 0.00 — P2-30 0.00 — 0.00 — 0.00 — P2-40 0.00 — 0.00 — 0.00 —	ns					
		XP2-40	0.00		0.00		0.00		ns
f _{MAX_IOE}	Clock Frequency of I/O and PFU Register	XP2	_	420	_	357	_	311	MHz
General I/O Pir	Parameters (using Primary Clo	ck with PLL)1	1	1	1	1	1	
		XP2-5	—	3.00	—	3.30	—	3.70	ns
		XP2-8		3.00		3.30		3.70	ns
t _{COPLL}	Clock to Output - PIO Output	XP2-17		3.00		3.30		3.70	ns
		XP2-30	_	3.00		3.30		3.70	ns
		XP2-40		3.00		3.30		3.70	ns
		XP2-5	1.00		1.20		1.40		ns
		XP2-8	1.00		1.20		1.40		ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	XP2-17	1.00		1.20		1.40		ns
		XP2-30	1.00		1.20		1.40		ns
		XP2-40	1.00		1.20	_	1.40		ns
		XP2-5	0.90		1.10		1.30		ns
		XP2-8	0.90		1.10		1.30		ns
t _{HPLL}	Clock to Data Hold - PIO Input	XP2-17	0.90		1.10		1.30		ns
		XP2-30	1.00	—	1.20	—	1.40	—	ns
		XP2-40	1.00	—	1.20	—	1.40	—	ns
		XP2-5	1.90	—	2.10	—	2.30	—	ns
		XP2-8	1.90		2.10	—	2.30	_	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Begister with Data Input Delay	XP2-17	1.90	—	2.10	—	2.30	—	ns
	lingibion with Data input Delay	XP2-30	2.00	—	2.20	—	2.40	—	ns
		XP2-40	2.00	—	2.20	—	2.40	—	ns

Over Recommended Operating Conditions

LatticeXP2 Internal Switching Characteristics¹

		-	7	-6		-5		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Logi	c Mode Timing				I			I
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)	_	0.216	_	0.238	_	0.260	ns
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)	—	0.304		0.399		0.494	ns
t _{LSR_PFU}	Set/Reset to output of PFU (Asyn- chronous)	—	0.720		0.769		0.818	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.154	_	0.151	_	0.148	_	ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.061	—	-0.057	—	-0.053	—	ns
t _{SUD_PFU}	Clock to D input setup time	0.061	—	0.077	—	0.093	—	ns
t _{HD_PFU}	Clock to D input hold time	0.002	—	0.003	—	0.003	—	ns
t _{CK2Q_PFU}	Clock to Q delay, (D-type Register Configuration)	—	0.342	—	0.363	—	0.383	ns
t _{RSTREC_PFU}	Asynchronous reset recovery time for PFU Logic	—	0.520		0.634		0.748	ns
t _{RST_PFU}	Asynchronous reset time for PFU Logic	_	0.720	—	0.769	—	0.818	ns
PFU Dual Por	t Memory Mode Timing							
t _{CORAM_PFU}	Clock to Output (F Port)	—	1.082	—	1.267	—	1.452	ns
t _{SUDATA_PFU}	Data Setup Time	-0.206	—	-0.240	_	-0.274	—	ns
t _{HDATA_PFU}	Data Hold Time	0.239	—	0.275	_	0.312	—	ns
t _{SUADDR_PFU}	Address Setup Time	-0.294	—	-0.333	_	-0.371	—	ns
t _{HADDR_PFU}	Address Hold Time	0.295	—	0.333	_	0.371	—	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.146	—	-0.169	_	-0.193	—	ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.158	—	0.182	_	0.207	—	ns
PIO Input/Out	put Buffer Timing							
t _{IN_PIO}	Input Buffer Delay (LVCMOS25)	_	0.858	—	0.766	—	0.674	ns
t _{OUT_PIO}	Output Buffer Delay (LVCMOS25)	_	1.561	—	1.403	—	1.246	ns
IOLOGIC Inpu	t/Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	0.583	_	0.893	_	1.201	_	ns
t _{HI_PIO}	Input Register Hold Time (Data after Clock)	0.062	_	0.322	_	0.482	_	ns
t _{COO_PIO}	Output Register Clock to Output Delay	_	0.608	_	0.661	_	0.715	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	0.032	_	0.037	_	0.041	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	-0.022	_	-0.025	—	-0.028	_	ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.184	—	0.201	—	0.217	—	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.080	—	-0.086	—	-0.093	—	ns
t _{RSTREC_PIO}	Asynchronous reset recovery time for IO Logic	0.228	_	0.247	_	0.266	_	ns

Over Recommended Operating Conditions

LatticeXP2 Family Timing Adders^{1, 2, 3, 4} (Continued)

Buffer Type	Description	-7	-6	-5	Units
HSTL15_I	HSTL_15 class I 4mA drive	0.32	0.69	1.06	ns
HSTL15D_I	Differential HSTL 15 class I 4mA drive	0.32	0.69	1.06	ns
SSTL33_I	SSTL_3 class I	-0.25	0.05	0.35	ns
SSTL33_II	SSTL_3 class II	-0.31	-0.02	0.27	ns
SSTL33D_I	Differential SSTL_3 class I	-0.25	0.05	0.35	ns
SSTL33D_II	Differential SSTL_3 class II	-0.31	-0.02	0.27	ns
SSTL25_I	SSTL_2 class I 8mA drive	-0.25	0.02	0.30	ns
SSTL25_II	SSTL_2 class II 16mA drive	-0.28	0.00	0.28	ns
SSTL25D_I	Differential SSTL_2 class I 8mA drive	-0.25	0.02	0.30	ns
SSTL25D_II	Differential SSTL_2 class II 16mA drive	-0.28	0.00	0.28	ns
SSTL18_I	SSTL_1.8 class I	-0.17	0.13	0.43	ns
SSTL18_II	SSTL_1.8 class II 8mA drive	-0.18	0.12	0.42	ns
SSTL18D_I	Differential SSTL_1.8 class I	-0.17	0.13	0.43	ns
SSTL18D_II	Differential SSTL_1.8 class II 8mA drive	-0.18	0.12	0.42	ns
LVTTL33_4mA	LVTTL 4mA drive	-0.37	-0.05	0.26	ns
LVTTL33_8mA	LVTTL 8mA drive	-0.45	-0.18	0.10	ns
LVTTL33_12mA	LVTTL 12mA drive	-0.52	-0.24	0.04	ns
LVTTL33_16mA	LVTTL 16mA drive	-0.43	-0.14	0.14	ns
LVTTL33_20mA	LVTTL 20mA drive	-0.46	-0.18	0.09	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive, fast slew rate	-0.37	-0.05	0.26	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive, fast slew rate	-0.45	-0.18	0.10	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive, fast slew rate	-0.52	-0.24	0.04	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive, fast slew rate	-0.43	-0.14	0.14	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive, fast slew rate	-0.46	-0.18	0.09	ns
LVCMOS25_4mA	LVCMOS 2.5 4mA drive, fast slew rate	-0.42	-0.15	0.13	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive, fast slew rate	-0.48	-0.21	0.05	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive, fast slew rate	0.00	0.00	0.00	ns
LVCMOS25_16mA	LVCMOS 2.5 16mA drive, fast slew rate	-0.45	-0.18	0.08	ns
LVCMOS25_20mA	LVCMOS 2.5 20mA drive, fast slew rate	-0.49	-0.22	0.04	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive, fast slew rate	-0.46	-0.18	0.10	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive, fast slew rate	-0.52	-0.25	0.02	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive, fast slew rate	-0.56	-0.30	-0.03	ns
LVCMOS18_16mA	LVCMOS 1.8 16mA drive, fast slew rate	-0.50	-0.24	0.03	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive, fast slew rate	-0.45	-0.17	0.11	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive, fast slew rate	-0.53	-0.26	0.00	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive, fast slew rate	-0.46	-0.19	0.08	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive, fast slew rate	-0.55	-0.29	-0.02	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive, slow slew rate	0.98	1.41	1.84	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive, slow slew rate	0.74	1.16	1.58	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive, slow slew rate	0.56	0.97	1.38	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive, slow slew rate	0.77	1.19	1.61	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive, slow slew rate	0.57	0.98	1.40	ns

Over Recommended Operating Conditions

LatticeXP2 Family Data Sheet Pinout Information

February 2012

Data Sheet DS1009

Signal Descriptions		
Signal Name	I/O	Description
General Purpose		l
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).
P[Edae] [Row/Column Number*] [A/B]	I/O	[Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or B (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
		[A/B] indicates the PIO within the PIC to which the pad is connected. Some of these user-programmable pins are shared with special function pins. These pins, when not used as special purpose pins, can be programmed as I/Os for user logic. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.
GSRN	I	Global RESET signal (active low). Any I/O pin can be GSRN.
NC	—	No connect.
GND		Ground. Dedicated pins.
V _{CC}		Power supply pins for core logic. Dedicated pins.
V _{CCAUX}	_	Auxiliary power supply pin. This dedicated pin powers all the differential and referenced input buffers.
V _{CCPLL}		PLL supply pins. csBGA, PQFP and TQFP packages only.
V _{CCIOx}		Dedicated power supply pins for I/O bank x.
V _{REF1_x} , V _{REF2_x}	_	Reference supply pins for I/O bank x. Pre-determined pins in each bank are assigned as V_{REF} inputs. When not used, they may be used as I/O pins.
PLL and Clock Functions (Used as us	er prog	ammable I/O pins when not in use for PLL or clock pins)
[LOC][num]_V _{CCPLL}		Power supply pin for PLL: LLC, LRC, URC, ULC, num = row from center.
[LOC][num]_GPLL[T, C]_IN_A	I	General Purpose PLL (GPLL) input pads: LLC, LRC, URC, ULC, num = row from center, $T = true$ and $C = complement$, index A,B,Cat each side.
[LOC][num]_GPLL[T, C]_FB_A	I	Optional feedback GPLL input pads: LLC, LRC, URC, ULC, num = row from center, $T =$ true and $C =$ complement, index A,B,Cat each side.
PCLK[T, C]_[n:0]_[3:0]	I	Primary Clock pads, T = true and C = complement, n per side, indexed by bank and $0,1,2,3$ within bank.
[LOC]DQS[num]	I	DQS input pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = ball function number. Any pad can be configured to be output.
Test and Programming (Dedicated Pi	ns)	
TMS	I	Test Mode Select input, used to control the 1149.1 state machine. Pull-up is enabled during configuration.
тск	I	Test Clock input pin, used to clock the 1149.1 state machine. No pull-up enabled.
ТЛ	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

sequence). Pull-up is enabled during configuration.

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5F484C	1.2V	-5	fpBGA	484	COM	40
LFXP2-40E-6F484C	1.2V	-6	fpBGA	484	COM	40
LFXP2-40E-7F484C	1.2V	-7	fpBGA	484	COM	40
LFXP2-40E-5F672C	1.2V	-5	fpBGA	672	COM	40
LFXP2-40E-6F672C	1.2V	-6	fpBGA	672	COM	40
LFXP2-40E-7F672C	1.2V	-7	fpBGA	672	COM	40

Industrial

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-5E-5M132I	1.2V	-5	csBGA	132	IND	5
LFXP2-5E-6M132I	1.2V	-6	csBGA	132	IND	5
LFXP2-5E-6FT256I	1.2V	-6	ftBGA	256	IND	5

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-8E-5M132I	1.2V	-5	csBGA	132	IND	8
LFXP2-8E-6M132I	1.2V	-6	csBGA	132	IND	8
LFXP2-5E-5FT256I	1.2V	-5	ftBGA	256	IND	5
LFXP2-8E-5FT256I	1.2V	-5	ftBGA	256	IND	8
LFXP2-8E-6FT256I	1.2V	-6	ftBGA	256	IND	8

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-17E-5FT256I	1.2V	-5	ftBGA	256	IND	17
LFXP2-17E-6FT256I	1.2V	-6	ftBGA	256	IND	17
LFXP2-17E-5F484I	1.2V	-5	fpBGA	484	IND	17
LFXP2-17E-6F484I	1.2V	-6	fpBGA	484	IND	17

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FT256I	1.2V	-5	ftBGA	256	IND	30
LFXP2-30E-6FT256I	1.2V	-6	ftBGA	256	IND	30
LFXP2-30E-5F484I	1.2V	-5	fpBGA	484	IND	30
LFXP2-30E-6F484I	1.2V	-6	fpBGA	484	IND	30
LFXP2-30E-5F672I	1.2V	-5	fpBGA	672	IND	30
LFXP2-30E-6F672I	1.2V	-6	fpBGA	672	IND	30