E.J. Lattice Semiconductor Corporation - <u>LFXP2-17E-7FN484C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2125
Number of Logic Elements/Cells	17000
Total RAM Bits	282624
Number of I/O	358
Number of Gates	
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-17e-7fn484c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

LatticeXP2 devices combine a Look-up Table (LUT) based FPGA fabric with non-volatile Flash cells in an architecture referred to as flexiFLASH.

The flexiFLASH approach provides benefits including instant-on, infinite reconfigurability, on chip storage with FlashBAK embedded block memory and Serial TAG memory and design security. The parts also support Live Update technology with TransFR, 128-bit AES Encryption and Dual-boot technologies.

The LatticeXP2 FPGA fabric was optimized for the new technology from the outset with high performance and low cost in mind. LatticeXP2 devices include LUT-based logic, distributed and embedded memory, Phase Locked Loops (PLLs), pre-engineered source synchronous I/O support and enhanced sysDSP blocks.

Lattice Diamond[®] design software allows large and complex designs to be efficiently implemented using the LatticeXP2 family of FPGA devices. Synthesis library support for LatticeXP2 is available for popular logic synthesis tools. The Diamond software uses the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeXP2 device. The Diamond tool extracts the timing from the routing and back-annotates it into the design for timing verification.

Lattice provides many pre-designed Intellectual Property (IP) LatticeCORE[™] modules for the LatticeXP2 family. By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

Routing

There are many resources provided in the LatticeXP2 devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) or x6 (spans seven PFU) connections. The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. The x2 and x6 resources are buffered to allow both short and long connections routing between PFUs.

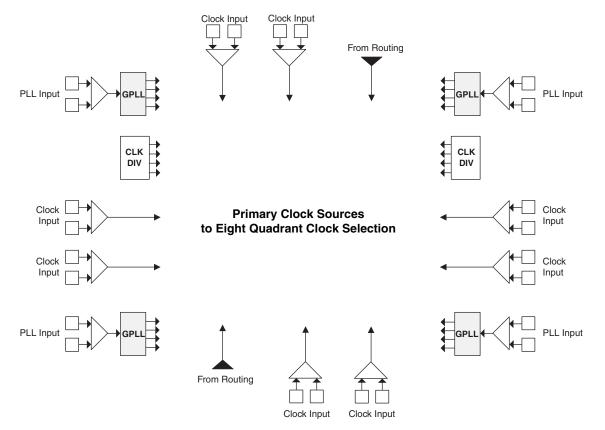
The LatticeXP2 family has an enhanced routing architecture to produce a compact design. The Diamond design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

sysCLOCK Phase Locked Loops (PLL)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The LatticeXP2 family supports between two and four full featured General Purpose PLLs (GPLL). The architecture of the GPLL is shown in Figure 2-4.

CLKI, the PLL reference frequency, is provided either from the pin or from routing; it feeds into the Input Clock Divider block. CLKFB, the feedback signal, is generated from CLKOP (the primary clock output) or from a user clock pin/logic. CLKFB feeds into the Feedback Divider and is used to multiply the reference frequency.

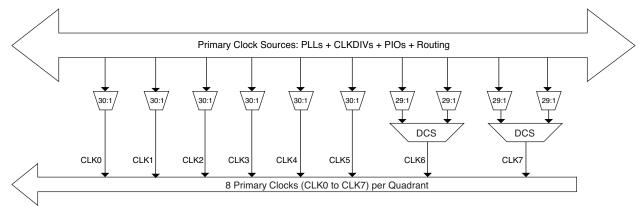
Both the input path and feedback signals enter the Voltage Controlled Oscillator (VCO) block. The phase and frequency of the VCO are determined from the input path and feedback signals. A LOCK signal is generated by the VCO to indicate that the VCO is locked with the input clock signal.


The output of the VCO feeds into the CLKOP Divider, a post-scalar divider. The duty cycle of the CLKOP Divider output can be fine tuned using the Duty Trim block, which creates the CLKOP signal. By allowing the VCO to operate at higher frequencies than CLKOP, the frequency range of the GPLL is expanded. The output of the CLKOP Divider is passed through the CLKOK Divider, a secondary clock divider, to generate lower frequencies for the CLKOK output. For applications that require even lower frequencies, the CLKOP signal is passed through a divide-by-three divider to produce the CLKOK2 output. The CLKOK2 output is provided for applications that use source synchronous logic. The Phase/Duty Cycle/Duty Trim block is used to adjust the phase and duty cycle of the CLKOP Divider output to generate the CLKOS signal. The phase/duty cycle setting can be pre-programmed or dynamically adjusted.

The clock outputs from the GPLL; CLKOP, CLKOK, CLKOK2 and CLKOS, are fed to the clock distribution network.

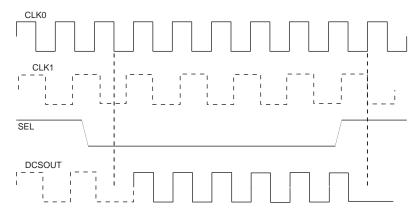
For further information on the GPLL please see TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide.

Figure 2-6. Primary Clock Sources for XP2-17


Note: This diagram shows sources for the XP2-17 device. Smaller LatticeXP2 devices have two GPLLs.

Primary Clock Routing

The clock routing structure in LatticeXP2 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The primary clocks of each quadrant are generated from muxes located in the center of the device. All the clock sources are connected to these muxes. Figure 2-9 shows the clock routing for one quadrant. Each quadrant mux is identical. If desired, any clock can be routed globally.



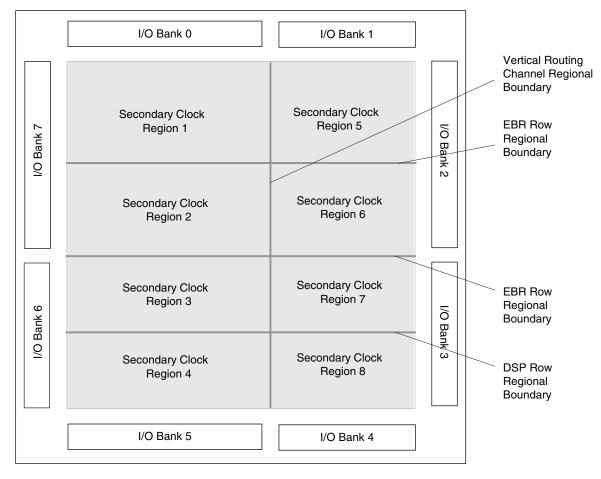
Dynamic Clock Select (DCS)

The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent input clock sources without any glitches or runt pulses. This is achieved irrespective of when the select signal is toggled. There are two DCS blocks per quadrant; in total, eight DCS blocks per device. The inputs to the DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 (see Figure 2-9).

Figure 2-10 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information on the DCS, please see TN1126, <u>LatticeXP2 sysCLOCK PLL Design and</u> <u>Usage Guide</u>.

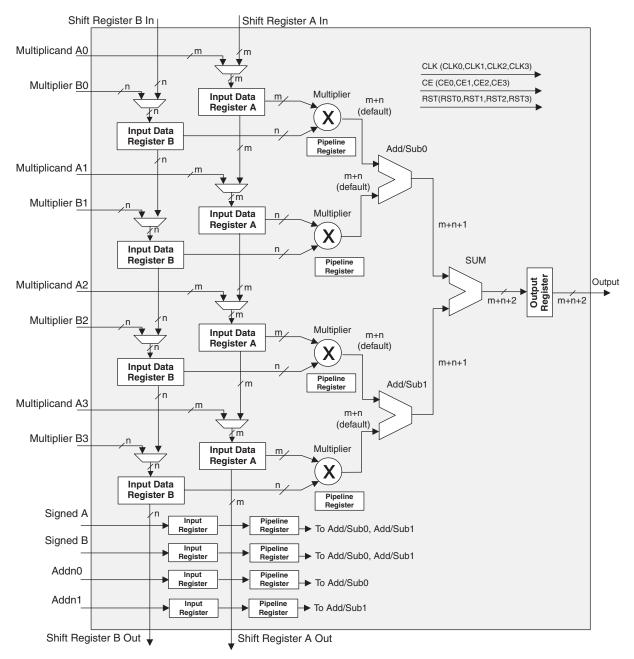
Figure 2-10. DCS Waveforms

Secondary Clock/Control Routing


Secondary clocks in the LatticeXP2 devices are region-based resources. The benefit of region-based resources is the relatively low injection delay and skew within the region, as compared to primary clocks. EBR rows, DSP rows and a special vertical routing channel bound the secondary clock regions. This special vertical routing channel aligns with either the left edge of the center DSP block in the DSP row or the center of the DSP row. Figure 2-11 shows this special vertical routing channel and the eight secondary clock regions for the LatticeXP2-40.

LatticeXP2-30 and smaller devices have six secondary clock regions. All devices in the LatticeXP2 family have four secondary clocks (SC0 to SC3) which are distributed to every region.

The secondary clock muxes are located in the center of the device. Figure 2-12 shows the mux structure of the secondary clock routing. Secondary clocks SC0 to SC3 are used for clock and control and SC4 to SC7 are used for high fan-out signals.



MULTADDSUBSUM sysDSP Element

In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and B1. Additionally the operands A2 and B2 are multiplied and the result is added/ subtracted with the result of the multiplier operation of operands A3 and B3. The result of both addition/subtraction are added in a summation block. The user can enable the input, output and pipeline registers. Figure 2-23 shows the MULTADDSUBSUM sysDSP element.

Figure 2-23. MULTADDSUBSUM

Clock, Clock Enable and Reset Resources

Global Clock, Clock Enable (CE) and Reset (RST) signals from routing are available to every DSP block. From four clock sources (CLK0, CLK1, CLK2, CLK3) one clock is selected for each input register, pipeline register and output

IPexpress[™]

The user can access the sysDSP block via the Lattice IPexpress tool, which provides the option to configure each DSP module (or group of modules), or by direct HDL instantiation. In addition, Lattice has partnered with The Math-Works[®] to support instantiation in the Simulink[®] tool, a graphical simulation environment. Simulink works with Diamond to dramatically shorten the DSP design cycle in Lattice FPGAs.

Optimized DSP Functions

Lattice provides a library of optimized DSP IP functions. Some of the IP cores planned for the LatticeXP2 DSP include the Bit Correlator, FFT functions, FIR Filter, Reed-Solomon Encoder/Decoder, Turbo Encoder/Decoder and Convolutional Encoder/Decoder. Please contact Lattice to obtain the latest list of available DSP IP cores.

Resources Available in the LatticeXP2 Family

Table 2-8 shows the maximum number of multipliers for each member of the LatticeXP2 family. Table 2-9 shows the maximum available EBR RAM Blocks and Serial TAG Memory bits in each LatticeXP2 device. EBR blocks, together with Distributed RAM can be used to store variables locally for fast DSP operations.

Device	DSP Block	9x9 Multiplier	18x18 Multiplier	36x36 Multiplier
XP2-5	3	24	12	3
XP2-8	4	32	16	4
XP2-17	5	40	20	5
XP2-30	7	56	28	7
XP2-40	8	64	32	8

Table 2-8. Maximum Number of DSP Blocks in the LatticeXP2 Family

Device	EBR SRAM Block	Total EBR SRAM (Kbits)	TAG Memory (Bits)
XP2-5	9	166	632
XP2-8	12	221	768
XP2-17	15	276	2184
XP2-30	21	387	2640
XP2-40	48	885	3384

LatticeXP2 DSP Performance

Table 2-10 lists the maximum performance in Millions of MAC (MMAC) operations per second for each member of the LatticeXP2 family.

Table 2-10. DSP Performance

Device	DSP Block	DSP Performance MMAC
XP2-5	3	3,900
XP2-8	4	5,200
XP2-17	5	6,500
XP2-30	7	9,100
XP2-40	8	10,400

For further information on the sysDSP block, please see TN1140, <u>LatticeXP2 sysDSP Usage Guide</u>.

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-27 shows the Tristate Register Block with the Output Block

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as Dtype or latch. In DDR mode, ONEG1 and OPOS1 are fed into registers on the positive edge of the clock. Then in the next clock the registered OPOS1 is latched. A multiplexer running off the same clock cycle selects the correct register for feeding to the output (D0).

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock signal is selected from general purpose routing, ECLK1, ECLK2 or a DQS signal (from the programmable DQS pin) and is provided to the input register block. The clock can optionally be inverted.

DDR Memory Support

PICs have additional circuitry to allow implementation of high speed source synchronous and DDR memory interfaces.

PICs have registered elements that support DDR memory interfaces. Interfaces on the left and right edges are designed for DDR memories that support 16 bits of data, whereas interfaces on the top and bottom are designed for memories that support 18 bits of data. One of every 16 PIOs on the left and right and one of every 18 PIOs on the top and bottom contain delay elements to facilitate the generation of DQS signals. The DQS signals feed the DQS buses which span the set of 16 or 18 PIOs. Figure 2-28 and Figure 2-29 show the DQS pin assignments in each set of PIOs.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Additional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. For additional information on using DDR memory support please see TN1138, <u>LatticeXP2 High Speed I/O Interface</u>.

DLL Calibrated DQS Delay Block

Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment. However, in DDR memories the clock, referred to as DQS, is not free-running, and this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The DQS signal (selected PIOs only, as shown in Figure 2-30) feeds from the PAD through a DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds polarity control logic which controls the polarity of the clock to the sync registers in the input register blocks. Figure 2-30 and Figure 2-31 show how the DQS transition signals are routed to the PIOs.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of 6-bit bus calibration signals from two dedicated DLLs (DDR_DLL) on opposite sides of the device. Each DLL compensates DQS delays in its half of the device as shown in Figure 2-30. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

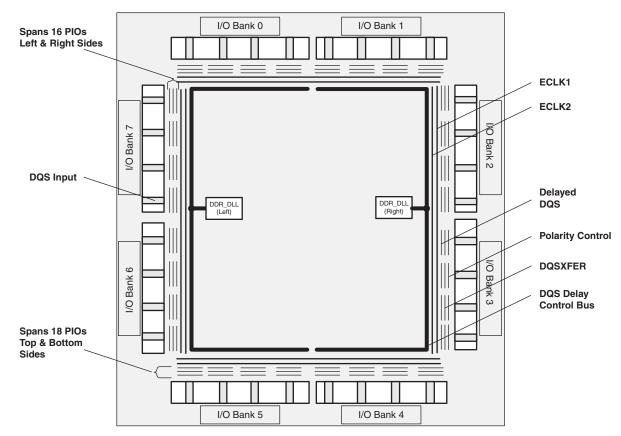


Figure 2-30. Edge Clock, DLL Calibration and DQS Local Bus Distribution

Density Shifting

The LatticeXP2 family is designed to ensure that different density devices in the same family and in the same package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Hot Socketing Specifications^{1, 2, 3, 4}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{DK}	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX.)	_	_	+/-1	mA

1. Insensitive to sequence of V_{CC} , V_{CCAUX} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} , V_{CCAUX} and V_{CCIO} .

2. $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX) or $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).

3. I_{DK} is additive to I_{PU} , I_{PW} or I_{BH} .

4. LVCMOS and LVTTL only.

ESD Performance

Please refer to the <u>LatticeXP2 Product Family Qualification Summary</u> for complete qualification data, including ESD performance.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL} , I _{IH} 1	Input or I/O Low Leakage	$0 \le V_{IN} \le V_{CCIO}$	—		10	μA
'IL', 'IH	Input of 1/O Low Leakage	$V_{CCIO} \le V_{IN} \le V_{IH}$ (MAX)	—	_	150	μΑ
I _{PU}	I/O Active Pull-up Current	$0 \le V_{IN} \le 0.7 V_{CCIO}$	-30	_	-150	μΑ
I _{PD}	I/O Active Pull-down Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{CCIO}$	30		210	μA
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL}$ (MAX)	30	_	—	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCIO}$	-30	_	—	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	—	_	210	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	—	_	-150	μΑ
V _{BHT}	Bus Hold Trip Points		V_{IL} (MAX)	_	V _{IH} (MIN)	V
C1	I/O Capacitance ²	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = 1.2V, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	_	8	_	pf
C2	Dedicated Input Capacitance	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = 1.2V, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	—	6	—	pf

Over Recommended Operating Conditions

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25°C, f = 1.0 MHz.

Programming and Erase Flash Supply Current^{1, 2, 3, 4, 5}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typical (25°C, Max. Supply) ⁶	Units
		XP2-5	17	mA
		XP2-8	21	mA
I _{CC}	Core Power Supply Current	XP2-17	28	mA
		XP2-30	36	mA
		XP2-40	50	mA
		XP2-5	64	mA
		XP2-8	66	mA
ICCAUX	Auxiliary Power Supply Current ⁷	XP2-17	83	mA
		XP2-30	87	mA
		XP2-40	88	mA
ICCPLL	PLL Power Supply Current (per PLL)		0.1	mA
I _{CCIO}	Bank Power Supply Current (per Bank)		5	mA
ICCJ	V _{CCJ} Power Supply Current ⁸		14	mA

1. For further information on supply current, please see TN1139, Power Estimation and Management for LatticeXP2 Devices.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

3. Frequency 0 MHz (excludes dynamic power from FPGA operation).

4. A specific configuration pattern is used that scales with the size of the device; consists of 75% PFU utilization, 50% EBR, and 25% I/O configuration.

5. Bypass or decoupling capacitor across the supply.

6. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

 In fpBGA and ftBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual auxiliary supply current is the sum of I_{CCAUX} and I_{CCPLL}. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the auxiliary power supply.

8. When programming via JTAG.

sysIO Recommended Operating Conditions

		V _{CCIO}		V _{REF} (V)			
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.	
LVCMOS33 ²	3.135	3.3	3.465	—	—	—	
LVCMOS25 ²	2.375	2.5	2.625	—	—	—	
LVCMOS18	1.71	1.8	1.89	—	—	—	
LVCMOS15	1.425	1.5	1.575	—	—	—	
LVCMOS12 ²	1.14	1.2	1.26	—	—	—	
LVTTL33 ²	3.135	3.3	3.465	—	—	—	
PCI33	3.135	3.3	3.465	—	—	—	
SSTL18_I ² , SSTL18_II ²	1.71	1.8	1.89	0.833	0.9	0.969	
SSTL25_I ² , SSTL25_II ²	2.375	2.5	2.625	1.15	1.25	1.35	
SSTL33_I ² , SSTL33_II ²	3.135	3.3	3.465	1.3	1.5	1.7	
HSTL15_I ²	1.425	1.5	1.575	0.68	0.75	0.9	
HSTL18_I ² , HSTL18_II ²	1.71	1.8	1.89	0.816	0.9	1.08	
LVDS25 ²	2.375	2.5	2.625		—	—	
MLVDS251	2.375	2.5	2.625		—	—	
LVPECL33 ^{1, 2}	3.135	3.3	3.465		—	—	
BLVDS25 ^{1, 2}	2.375	2.5	2.625		—	—	
RSDS ^{1, 2}	2.375	2.5	2.625		—	—	
SSTL18D_I ² , SSTL18D_II ²	1.71	1.8	1.89	_	_	_	
SSTL25D_ I ² , SSTL25D_II ²	2.375	2.5	2.625	_	_	_	
SSTL33D_ I ² , SSTL33D_ II ²	3.135	3.3	3.465	—	—	—	
HSTL15D_ I ²	1.425	1.5	1.575		—	—	
HSTL18D_ I², HSTL18D_ II²	1.71	1.8	1.89	—	_	—	

Over Recommended Operating Conditions

1. Inputs on chip. Outputs are implemented with the addition of external resistors. 2. Input on this standard does not depend on the value of V_{CCIO} .

LatticeXP2 External Switching Characteristics (Continued)

			-7		-6		-5		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		XP2-5	1.00	—	1.30	—	1.60	—	ns
	Clock to Data Hold - PIO Input Register	XP2-8	1.00	—	1.30	—	1.60	—	ns
		XP2-17	1.00		1.30	—	1.60	—	ns
		XP2-30	1.20	—	1.60	—	1.90	—	ns
		XP2-40	1.20	—	1.60	—	1.90	—	ns
		XP2-5	1.00		1.30	—	1.60	—	ns
		XP2-8	1.00	—	1.30	—	1.60	—	ns
t _{SU_DELE}	Clock to Data Setup - PIO Input Register with Data Input Delay	XP2-17	1.00	—	1.30	—	1.60	—	ns
	Tiegister with Data input Delay	XP2-30	1.20	—	1.60	—	1.90	—	ns
		XP2-40	1.20		1.60	—	1.90	—	ns
		XP2-5	0.00		0.00	—	0.00	—	ns
		XP2-8	0.00		0.00	—	0.00	—	ns
^t H_DELE	Clock to Data Hold - PIO Input Register with Input Data Delay	XP2-17	0.00		0.00	—	0.00	—	ns
_	riegister with input Data Delay	XP2-30	0.00		0.00	—	0.00	—	ns
		XP2-40	0.00		0.00	_	0.00	—	ns
f _{MAX_IOE}	Clock Frequency of I/O and PFU Register	XP2	—	420	_	357	—	311	MHz
General I/O Pi	in Parameters (using Primary Clo	ck with PLL	.)1						
		XP2-5	—	3.00	—	3.30	—	3.70	ns
		XP2-8	—	3.00		3.30	—	3.70	ns
t _{COPLL}	Clock to Output - PIO Output Register	XP2-17	—	3.00	—	3.30	—	3.70	ns
		XP2-30	—	3.00	—	3.30	—	3.70	ns
		XP2-40	—	3.00	—	3.30	—	3.70	ns
		XP2-5	1.00		1.20	—	1.40	—	ns
		XP2-8	1.00		1.20	—	1.40	—	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	XP2-17	1.00		1.20	—	1.40	—	ns
		XP2-30	1.00	—	1.20	—	1.40	—	ns
		XP2-40	1.00		1.20	—	1.40	—	ns
		XP2-5	0.90	—	1.10	—	1.30	—	ns
		XP2-8	0.90	—	1.10	—	1.30	—	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	XP2-17	0.90	—	1.10	—	1.30	—	ns
		XP2-30	1.00		1.20	—	1.40	—	ns
		XP2-40	1.00		1.20	—	1.40	—	ns
		XP2-5	1.90		2.10	—	2.30	—	ns
		XP2-8	1.90		2.10		2.30	_	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Register with Data Input Delay	XP2-17	1.90		2.10	—	2.30	—	ns
-		XP2-30	2.00		2.20	—	2.40	—	ns
		XP2-40	2.00		2.20	_	2.40	_	ns

Over Recommended Operating Conditions

LatticeXP2 Family Timing Adders^{1, 2, 3, 4}

Buffer Type	Description	-7	-6	-5	Units
Input Adjusters					
LVDS25	LVDS	-0.26	-0.11	0.04	ns
BLVDS25	BLVDS	-0.26	-0.11	0.04	ns
MLVDS	LVDS	-0.26	-0.11	0.04	ns
RSDS	RSDS	-0.26	-0.11	0.04	ns
LVPECL33	LVPECL	-0.26	-0.11	0.04	ns
HSTL18_I	HSTL_18 class I	-0.23	-0.08	0.07	ns
HSTL18_II	HSTL_18 class II	-0.23	-0.08	0.07	ns
HSTL18D_I	Differential HSTL 18 class I	-0.28	-0.13	0.02	ns
HSTL18D_II	Differential HSTL 18 class II	-0.28	-0.13	0.02	ns
HSTL15_I	HSTL_15 class I	-0.23	-0.09	0.06	ns
HSTL15D_I	Differential HSTL 15 class I	-0.28	-0.13	0.01	ns
SSTL33_I	SSTL_3 class I	-0.20	-0.04	0.12	ns
SSTL33_II	SSTL_3 class II	-0.20	-0.04	0.12	ns
SSTL33D_I	Differential SSTL_3 class I	-0.27	-0.11	0.04	ns
SSTL33D_II	Differential SSTL_3 class II	-0.27	-0.11	0.04	ns
SSTL25_I	SSTL_2 class I	-0.21	-0.06	0.10	ns
SSTL25_II	SSTL_2 class II	-0.21	-0.06	0.10	ns
SSTL25D_I	Differential SSTL_2 class I	-0.27	-0.12	0.03	ns
SSTL25D_II	Differential SSTL_2 class II	-0.27	-0.12	0.03	ns
SSTL18_I	SSTL_18 class I	-0.23	-0.08	0.07	ns
SSTL18_II	SSTL_18 class II	-0.23	-0.08	0.07	ns
SSTL18D_I	Differential SSTL_18 class I	-0.28	-0.13	0.02	ns
SSTL18D_II	Differential SSTL_18 class II	-0.28	-0.13	0.02	ns
LVTTL33	LVTTL	-0.09	0.05	0.18	ns
LVCMOS33	LVCMOS 3.3	-0.09	0.05	0.18	ns
LVCMOS25	LVCMOS 2.5	0.00	0.00	0.00	ns
LVCMOS18	LVCMOS 1.8	-0.23	-0.07	0.09	ns
LVCMOS15	LVCMOS 1.5	-0.20	-0.02	0.16	ns
LVCMOS12	LVCMOS 1.2	-0.35	-0.20	-0.04	ns
PCI33	3.3V PCI	-0.09	0.05	0.18	ns
Output Adjusters					
LVDS25E	LVDS 2.5 E⁵	-0.25	0.02	0.30	ns
LVDS25	LVDS 2.5	-0.25	0.02	0.30	ns
BLVDS25	BLVDS 2.5	-0.28	0.00	0.28	ns
MLVDS	MLVDS 2.5 ⁵	-0.28	0.00	0.28	ns
RSDS	RSDS 2.5 ⁵	-0.25	0.02	0.30	ns
LVPECL33	LVPECL 3.3 ⁵	-0.37	-0.10	0.18	ns
HSTL18_I	HSTL_18 class I 8mA drive	-0.17	0.13	0.43	ns
HSTL18_II	HSTL_18 class II	-0.29	0.00	0.29	ns
HSTL18D_I	Differential HSTL 18 class I 8mA drive	-0.17	0.13	0.43	ns
HSTL18D_II	Differential HSTL 18 class II	-0.29	0.00	0.29	ns

Over Recommended Operating Conditions

LatticeXP2 sysCONFIG Port Timing Specifications

Parameter	Description	Min	Max	Units
sysCONFIG PC	R, Initialization and Wake Up		<u> </u>	
t _{ICFG}	Minimum Vcc to INITN High		50	ms
t _{VMC}	Time from t _{ICFG} to valid Master CCLK	_	2	μs
t _{PRGMRJ}	PROGRAMN Pin Pulse Rejection	—	12	ns
t _{PRGM}	PROGRAMN Low Time to Start Configuration	50	—	ns
t _{DINIT} 1	PROGRAMN High to INITN High Delay		1	ms
t _{DPPINIT}	Delay Time from PROGRAMN Low to INITN Low		50	ns
t _{DPPDONE}	Delay Time from PROGRAMN Low to DONE Low	—	50	ns
t _{IODISS}	User I/O Disable from PROGRAMN Low		35	ns
t _{IOENSS}	User I/O Enabled Time from CCLK Edge During Wake-up Sequence		25	ns
t _{MWC}	Additional Wake Master Clock Signals after DONE Pin High	0	—	Cycles
sysCONFIG SP	I Port (Master)		•	
t _{CFGX}	INITN High to CCLK Low	—	1	μs
t _{CSSPI}	INITN High to CSSPIN Low	_	2	μs
t _{CSCCLK}	CCLK Low before CSSPIN Low	0	—	ns
t _{SOCDO}	CCLK Low to Output Valid	_	15	ns
t _{CSPID}	CSSPIN[0:1] Low to First CCLK Edge Setup Time	2cyc	600+6cyc	ns
f _{MAXSPI}	Max CCLK Frequency	_	20	MHz
t _{SUSPI}	SOSPI Data Setup Time Before CCLK	7	—	ns
t _{HSPI}	SOSPI Data Hold Time After CCLK	10	—	ns
sysCONFIG SP	I Port (Slave)		•	
f _{MAXSPIS}	Slave CCLK Frequency	—	25	MHz
t _{RF}	Rise and Fall Time	50	—	mV/ns
t _{stco}	Falling Edge of CCLK to SOSPI Active	—	20	ns
t _{STOZ}	Falling Edge of CCLK to SOSPI Disable		20	ns
t _{STSU}	Data Setup Time (SISPI)	8	—	ns
t _{STH}	Data Hold Time (SISPI)	10	—	ns
t _{STCKH}	CCLK Clock Pulse Width, High	0.02	200	μs
t _{STCKL}	CCLK Clock Pulse Width, Low	0.02	200	μs
t _{STVO}	Falling Edge of CCLK to Valid SOSPI Output	_	20	ns
t _{SCS}	CSSPISN High Time	25	—	ns
t _{SCSS}	CSSPISN Setup Time	25	-	ns
t _{SCSH}	CSSPISN Hold Time	25	—	ns

Over Recommended Operating Conditions

1. Re-toggling the PROGRAMN pin is not permitted until the INITN pin is high. Avoid consecutive toggling of PROGRAMN.



On-Chip Oscillator and Configuration Master Clock Characteristics

Parameter	Min.	Max.	Units			
Master Clock Frequency	Selected value -30%	Selected value +30%	MHz			
Duty Cycle	40	60	%			

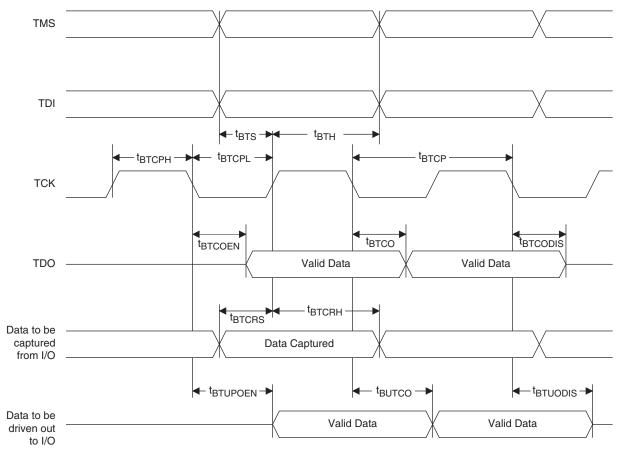

Over Recommended Operating Conditions

Figure 3-9. Master SPI Configuration Waveforms

Pin Information Summary

 XP2-5				XP2-8				XP2-17			XP2-30			XP2-40			
Pin Ty	pe	132 csBGA	144 TQFP	208 PQFP	256 ftBGA	132 csBGA	144 TQFP	208 PQFP	256 ftBGA	208 PQFP	256 ftBGA	484 fpBGA	256 ftBGA	484 fpBGA	672	484 fpBGA	672
Single Ended Use		86	100	146	172	86	100	146	201	146	201	358	201	363	472	363	540
Differential Pair User I/O	Normal	35	39	57	66	35	39	57	77	57	77	135	77	137	180	137	204
	Highspeed	8	11	16	20	8	11	16	23	16	23	44	23	44	56	44	66
Configuration	TAP	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	Muxed	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
	Dedicated	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Non Configura-	Muxed	5	5	7	7	7	7	9	9	11	11	21	7	11	13	11	13
tion	Dedicated	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Vcc		6	4	9	6	6	4	9	6	9	6	16	6	16	20	16	20
Vccaux		4	4	4	4	4	4	4	4	4	4	8	4	8	8	8	8
VCCPLL		2	2	2	-	2	2	2	-	4	-	-	-	-	-	-	-
	Bank0	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
	Bank1	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
	Bank2	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
VCCIO	Bank3	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
VOOIO	Bank4	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
	Bank5	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
	Bank6	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
	Bank7	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
GND, GND0-GNI	77	15	15	20	20	15	15	22	20	22	20	56	20	56	64	56	64
NC	•	-	-	4	31	-	-	2	2	-	2	7	2	2	69	2	1
	Bank0	18/9	20/10	20/10	26/13	18/9	20/10	20/10	28/14	20/10	28/14	52/26	28/14	52/26	70/35	52/26	70/35
	Bank1	4/2	6/3	18/9	18/9	4/2	6/3	18/9	22/11	18/9	22/11	36/18	22/11	36/18	54/27	36/18	70/35
	Bank2	16/8	18/9	18/9	22/11	16/8	18/9	18/9	26/13	18/9	26/13	46/23	26/13	46/23	56/28	46/23	64/32
Single Ended/ Differential I/O	Bank3	4/2	4/2	16/8	20/10	4/2	4/2	16/8	24/12	16/8	24/12	44/22	24/12	46/23	56/28	46/23	66/33
per Bank	Bank4	8/4	8/4	18/9	18/9	8/4	8/4	18/9	26/13	18/9	26/13	36/18	26/13	38/19	54/27	38/19	70/35
	Bank5	14/7	18/9	20/10	24/12	14/7	18/9	20/10	24/12	20/10	24/12	52/26	24/12	53/26	70/35	53/26	70/35
	Bank6	6/3	8/4	18/9	22/11	6/3	8/4	18/9	27/13	18/9	27/13	46/23	27/13	46/23	56/28	46/23	66/33
	Bank7	16/8	18/9	18/9	22/11	16/8	18/9	18/9	24/12	18/9	24/12	46/23	24/12	46/23	56/28	46/23	64/32
	Bank0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TURODI	Bank2	3	4	4	5	3	4	4	6	4	6	11	6	11	14	11	16
True LVDS Pairs Bonding Out per	Bank3	1	1	4	5	1	1	4	6	4	6	11	6	11	14	11	17
Bank	Bank4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DDR Banks Bonding Out per I/O Bank ¹	Bank5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank6	1	2	4	5	1	2	4	6	4	6	11	6	11	14	11	17
	Bank7	3	4	4	5	3	4	4	5	4	5	11	5	11	14	11	16
	Bank0	1	1	1	1	1	1	1	1	1	1	3	1	2	4	2	4
	Bank1	0	0	1	1	0	0	1	1	1	1	2	1	2	3	2	4
	Bank2	1	1	1	1	1	1	1	1	1	1	2	1	3	3	3	4
	Bank3	0	0	1	1	0	0	1	1	1	1	2	1	3	3	3	4
	Bank4	0	0	1	1	0	0	1	1	1	1	2	1	2	3	2	4
	Bank5	1	1	1	1	1	1	1	1	1	1	3	1	2	4	2	4
	Bank6	0	0	1	1	0	0	1	1	1	1	2	1	3	3	3	4
	Bank7	1	1	1	1	1	1	1	1	1	1	2	1	3	3	3	4

Date	Version	Section	Change Summary						
April 2008	01.4	DC and Switching	Updated Flash Download Time (From On-Chip Flash to SRAM) Tab						
(cont.) (cont.)		Characteristics (cont.)	Updated Flash Program Time Table						
			Updated Flash Erase Time Table						
			Updated FlashBAK (from EBR to Flash) Table						
			Updated Hot Socketing Specifications Table footnotes						
		Pinout Information	Updated Signal Descriptions Table						
June 2008	01.5	Architecture	Removed Read-Before-Write sysMEM EBR mode.						
			Clarification of the operation of the secondary clock regions.						
		DC and Switching Characteristics	Removed Read-Before-Write sysMEM EBR mode.						
		Pinout Information	Updated DDR Banks Bonding Out per I/O Bank section of Pin Informa- tion Summary Table.						
August 2008	01.6	—	Data sheet status changed from preliminary to final.						
		Architecture	Clarification of the operation of the secondary clock regions.						
		DC and Switching Characteristics	Removed "8W" specification from Hot Socketing Specifications table.						
			Removed "8W" footnote from DC Electrical Characteristics table.						
			Updated Register-to-Register Performance table.						
		Ordering Information	Removed "8W" option from Part Number Description.						
			Removed XP2-17 "8W" OPNs.						
April 2011	01.7	DC and Switching Characteristics	Recommended Operating Conditions table, added footnote 5.						
			On-Chip Flash Memory Specifications table, added footnote 1.						
			BLVDS DC Conditions, corrected column title to be Z0 = 90 ohms.						
			sysCONFIG Port Timing Specifications table, added footnote 1 for to the table.						
January 2012	01.8	Multiple	Added support for Lattice Diamond design software.						
		Architecture	Corrected information regarding SED support.						
		DC and Switching Characteristics	Added reference to ESD Performance Qualification Summary informa- tion.						
May 2013	01.9	All	Updated document with new corporate logo.						
		Architecture	Architecture Overview – Added information on the state of the register on power up and after configuration.						
			Added information regarding SED support.						
		DC and Switching Characteristics	Removed Input Clock Rise/Fall Time 1ns max from the sysCLOCK PLL Timing table.						
		Ordering Information	Updated topside mark in Ordering Information diagram.						
March 2014	02.0	Architecture	Updated Typical sysIO I/O Behavior During Power-up section. Added information on POR signal deactivation.						
August 2014	02.1	Architecture	Updated Typical sysIO I/O Behavior During Power-up section. Described user I/Os during power up and before FPGA core logic is active.						
September 2014	2.2	DC and Switching Characteristics	Updated Switching Test Conditions section. Re-linked missing figure.						