

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	3625
Number of Logic Elements/Cells	29000
Total RAM Bits	396288
Number of I/O	363
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-30e-5f484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edge Clock Sources

Edge clock resources can be driven from a variety of sources at the same edge. Edge clock resources can be driven from adjacent edge clock PIOs, primary clock PIOs, PLLs and clock dividers as shown in Figure 2-8.

Figure 2-8. Edge Clock Sources

Note: This diagram shows sources for the XP2-17 device. Smaller LatticeXP2 devices have two GPLLs.

Figure 2-12. Secondary Clock Selection

Slice Clock Selection

Figure 2-13 shows the clock selections and Figure 2-14 shows the control selections for Slice0 through Slice2. All the primary clocks and the four secondary clocks are routed to this clock selection mux. Other signals, via routing, can be used as clock inputs to the slices. Slice controls are generated from the secondary clocks or other signals connected via routing.

If none of the signals are selected for both clock and control, then the default value of the mux output is 1. Slice 3 does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-13. Slice0 through Slice2 Clock Selection

- In the 'Signed/Unsigned' options the operands can be switched between signed and unsigned on every cycle.
- In the 'Add/Sub' option the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.

MULT sysDSP Element

This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, A and B, are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. Figure 2-20 shows the MULT sysDSP element.

Figure 2-20. MULT sysDSP Element

register. Similarly, CE and RST are selected from their four respective sources (CE0, CE1, CE2, CE3 and RST0, RST1, RST2, RST3) at each input register, pipeline register and output register.

Signed and Unsigned with Different Widths

The DSP block supports other widths, in addition to x9, x18 and x36 widths, of signed and unsigned multipliers. For unsigned operands, unused upper data bits should be filled to create a valid x9, x18 or x36 operand. For signed two's complement operands, sign extension of the most significant bit should be performed until x9, x18 or x36 width is reached. Table 2-7 provides an example of this.

Table 2-7. Sign Extension Example

Number	Unsigned	Unsigned 9-bit	Unsigned 18-bit	Signed	Two's Complement Signed 9 Bits	Two's Complement Signed 18 Bits
+5	0101	000000101	00000000000000101	0101	00000101	00000000000000101
-6	N/A	N/A	N/A	1010	111111010	1111111111111111010

OVERFLOW Flag from MAC

The sysDSP block provides an overflow output to indicate that the accumulator has overflowed. "Roll-over" occurs and an overflow signal is indicated when any of the following is true: two unsigned numbers are added and the result is a smaller number than the accumulator, two positive numbers are added with a negative sum or two negative numbers are added with a positive sum. Note that when overflow occurs the overflow flag is present for only one cycle. By counting these overflow pulses in FPGA logic, larger accumulators can be constructed. The conditions for the overflow signal for signed and unsigned operands are listed in Figure 2-24.

Figure 2-24. Accumulator Overflow/Underflow

Programmable I/O Cells (PIC)

Each PIC contains two PIOs connected to their respective sysIO buffers as shown in Figure 2-25. The PIO Block supplies the output data (DO) and the tri-state control signal (TO) to the sysIO buffer and receives input from the buffer. Table 2-11 provides the PIO signal list.

Figure 2-25. PIC Diagram

Signals are available on left/right/bottom edges only.
Selected blocks.

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as "T" and "C") as shown in Figure 2-25. The PAD Labels "T" and "C" distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as inputs.

shows the diagram using this gearbox function. For more information on this topic, see TN1138, <u>LatticeXP2 High</u> <u>Speed I/O Interface</u>.

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-27 shows the Tristate Register Block with the Output Block

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as Dtype or latch. In DDR mode, ONEG1 and OPOS1 are fed into registers on the positive edge of the clock. Then in the next clock the registered OPOS1 is latched. A multiplexer running off the same clock cycle selects the correct register for feeding to the output (D0).

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock signal is selected from general purpose routing, ECLK1, ECLK2 or a DQS signal (from the programmable DQS pin) and is provided to the input register block. The clock can optionally be inverted.

DDR Memory Support

PICs have additional circuitry to allow implementation of high speed source synchronous and DDR memory interfaces.

PICs have registered elements that support DDR memory interfaces. Interfaces on the left and right edges are designed for DDR memories that support 16 bits of data, whereas interfaces on the top and bottom are designed for memories that support 18 bits of data. One of every 16 PIOs on the left and right and one of every 18 PIOs on the top and bottom contain delay elements to facilitate the generation of DQS signals. The DQS signals feed the DQS buses which span the set of 16 or 18 PIOs. Figure 2-28 and Figure 2-29 show the DQS pin assignments in each set of PIOs.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Additional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. For additional information on using DDR memory support please see TN1138, <u>LatticeXP2 High Speed I/O Interface</u>.

Table 2-13. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Nom.)		
Single-ended Interfaces				
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3		
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3		
LVCMOS25	4mA, 8mA, 12mA, 16mA, 20mA	2.5		
LVCMOS18	4mA, 8mA, 12mA, 16mA	1.8		
LVCMOS15	4mA, 8mA	1.5		
LVCMOS12	2mA, 6mA	1.2		
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—		
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA			
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA			
LVCMOS15, Open Drain	4mA, 8mA	_		
LVCMOS12, Open Drain	2mA, 6mA	_		
PCI33	N/A	3.3		
HSTL18 Class I, II	N/A	1.8		
HSTL15 Class I	N/A	1.5		
SSTL33 Class I, II	N/A	3.3		
SSTL25 Class I, II	N/A	2.5		
SSTL18 Class I, II	N/A	1.8		
Differential Interfaces				
Differential SSTL33, Class I, II	N/A	3.3		
Differential SSTL25, Class I, II	N/A	2.5		
Differential SSTL18, Class I, II	N/A	1.8		
Differential HSTL18, Class I, II	N/A	1.8		
Differential HSTL15, Class I	N/A	1.5		
LVDS ^{1, 2}	N/A	2.5		
MLVDS ¹	N/A	2.5		
BLVDS ¹	N/A	2.5		
LVPECL ¹	N/A	3.3		
RSDS ¹	N/A	2.5		
LVCMOS33D ¹	4mA, 8mA, 12mA, 16mA, 20mA	3.3		

1. Emulated with external resistors.

2. On the left and right edges, LVDS outputs are supported with a dedicated differential output driver on 50% of the I/Os. This solution does not require external resistors at the driver.

Hot Socketing

LatticeXP2 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the LatticeXP2 ideal for many multiple power supply and hot-swap applications.

IEEE 1149.1-Compliant Boundary Scan Testability

All LatticeXP2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access Port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in

original backup configuration and try again. This all can be done without power cycling the system. For more information please see TN1220, <u>LatticeXP2 Dual Boot Feature</u>.

For more information on device configuration, please see TN1141, LatticeXP2 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support

LatticeXP2 devices have dedicated logic to perform Cyclic Redundancy Code (CRC) checks. During configuration, the configuration data bitstream can be checked with the CRC logic block. In addition, LatticeXP2 devices can be programmed for checking soft errors in SRAM. SED can be run on a programmed device when the user logic is not active. In the event a soft error occurs, the device can be programmed to either reload from a known good boot image (from internal Flash or external SPI memory) or generate an error signal.

For further information on SED support, please see TN1130, LatticeXP2 Soft Error Detection (SED) Usage Guide.

On-Chip Oscillator

Every LatticeXP2 device has an internal CMOS oscillator that is used to derive a Master Clock (CCLK) for configuration. The oscillator and CCLK run continuously and are available to user logic after configuration is complete. The available CCLK frequencies are listed in Table 2-14. When a different CCLK frequency is selected during the design process, the following sequence takes place:

- 1. Device powers up with the default CCLK frequency.
- 2. During configuration, users select a different CCLK frequency.
- 3. CCLK frequency changes to the selected frequency after clock configuration bits are received.

This internal CMOS oscillator is available to the user by routing it as an input clock to the clock tree. For further information on the use of this oscillator for configuration or user mode, please see TN1141, <u>LatticeXP2 sysCON-FIG Usage Guide</u>.

Table 2-14. Selectable	CCLKs and Oscillato	r Freauencies Durina	Configuration and	User Mode

CCLK/Oscillator (MHz)							
2.5 ¹							
3.1 ²							
4.3							
5.4							
6.9							
8.1							
9.2							
10							
13							
15							
20							
26							
32							
40							
54							
80 ³							
163 ³							
1 Software default oscillator frequency							

1. Software default oscillator frequency.

2. Software default CCLK frequency.

3. Frequency not valid for CCLK.

Density Shifting

The LatticeXP2 family is designed to ensure that different density devices in the same family and in the same package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Hot Socketing Specifications^{1, 2, 3, 4}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{DK}	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX.)	_	_	+/-1	mA

1. Insensitive to sequence of V_{CC} , V_{CCAUX} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} , V_{CCAUX} and V_{CCIO} .

2. $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX) or $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).

3. I_{DK} is additive to I_{PU} , I_{PW} or I_{BH} .

4. LVCMOS and LVTTL only.

ESD Performance

Please refer to the <u>LatticeXP2 Product Family Qualification Summary</u> for complete qualification data, including ESD performance.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I., I., ¹		$0 \le V_{IN} \le V_{CCIO}$	—		10	μΑ
ıL, ıH	input of i/O Low Leakage	$V_{CCIO} \le V_{IN} \le V_{IH}$ (MAX)	—	—	150	μΑ
I _{PU}	I/O Active Pull-up Current	$0 \le V_{IN} \le 0.7 \ V_{CCIO}$	-30	—	-150	μΑ
I _{PD}	I/O Active Pull-down Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{CCIO}$	30		210	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL}$ (MAX)	30	—	—	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCIO}$	-30	—	—	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	—		210	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	—	—	-150	μΑ
V _{BHT}	Bus Hold Trip Points		V_{IL} (MAX)	_	V _{IH} (MIN)	V
C1	I/O Capacitance ²	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = 1.2V, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	—	8	—	pf
C2	Dedicated Input Capacitance	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = 1.2V, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	—	6	—	pf

Over Recommended Operating Conditions

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25°C, f = 1.0 MHz.

Programming and Erase Flash Supply Current^{1, 2, 3, 4, 5}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typical (25°C, Max. Supply) ⁶	Units
		XP2-5	17	mA
		XP2-8	21	mA
I _{CC}	Core Power Supply Current	XP2-17	28	mA
		XP2-30	36	mA
		XP2-40	50	mA
		XP2-5	64	mA
		XP2-8	66	mA
I _{CCAUX}	Auxiliary Power Supply Current ⁷	XP2-17	83	mA
		XP2-30	87	mA
		XP2-40	88	mA
I _{CCPLL}	PLL Power Supply Current (per PLL)		0.1	mA
I _{CCIO}	Bank Power Supply Current (per Bank)		5	mA
I _{CCJ}	V _{CCJ} Power Supply Current ⁸		14	mA

1. For further information on supply current, please see TN1139, Power Estimation and Management for LatticeXP2 Devices.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

3. Frequency 0 MHz (excludes dynamic power from FPGA operation).

4. A specific configuration pattern is used that scales with the size of the device; consists of 75% PFU utilization, 50% EBR, and 25% I/O configuration.

5. Bypass or decoupling capacitor across the supply.

6. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

 In fpBGA and ftBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual auxiliary supply current is the sum of I_{CCAUX} and I_{CCPLL}. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the auxiliary power supply.

8. When programming via JTAG.

Register-to-Register Performance (Continued)

Function	-7 Timing	Units
DSP IP Functions		
16-Tap Fully-Parallel FIR Filter	198	MHz
1024-pt FFT	221	MHz
8X8 Matrix Multiplication	196	MHz

1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with device, design and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Derating Timing Tables

Logic timing provided in the following sections of this data sheet and the Diamond design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much better than the values given in the tables. The Diamond design tool can provide logic timing numbers at a particular temperature and voltage.

LatticeXP2 External Switching Characteristics

			-	7	-	6	-	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
General I/O Pir	n Parameters (using Primary Clo	ck without F	PLL)1						
		XP2-5		3.80	_	4.20	_	4.60	ns
		XP2-8		3.80		4.20		4.60	ns
t _{CO}	Register	XP2-17		3.80	_	4.20	_	4.60	ns
Parameter General I/O Pi t _{CO} t _{SU} t _{SU} t _H t _H t _H t _H t _H t _H t _{SU_DEL}		XP2-30		4.00	_	4.40	_	4.90	ns
		XP2-40		4.00	_	4.40		4.90	ns
		XP2-5	0.00		0.00	—	0.00		ns
		XP2-8	0.00	_	0.00	—	0.00	_	ns
t _{SU}	Register	XP2-17	0.00	_	0.00	—	0.00	_	ns
		XP2-30	0.00	_	0.00	—	0.00	_	ns
		XP2-40	0.00		0.00	—	0.00		ns
		XP2-5	1.40	_	1.70	—	1.90	_	ns
		XP2-8	1.40	_	1.70	—	1.90	_	ns
t _H	Register	XP2-17	1.40	_	1.70	—	1.90	_	ns
		XP2-30	1.40		1.70	—	1.90		ns
		XP2-40	1.40	_	1.70	—	1.90	_	ns
	Clock to Data Setup - PIO Input Register with Data Input Delay	XP2-5	1.40	_	1.70	—	1.90	_	ns
		XP2-8	1.40	_	1.70	—	1.90	_	ns
t _{SU_DEL}		XP2-17	1.40	_	1.70	—	1.90	_	ns
		XP2-30	1.40		1.70	_	1.90		ns
		XP2-40	1.40	_	1.70	—	1.90	_	ns
		XP2-5	0.00	_	0.00	—	0.00	_	ns
		XP2-8	0.00	_	0.00	—	0.00	_	ns
t _{H_DEL}	Register with Input Data Delay	XP2-17	0.00	_	0.00	—	0.00	_	ns
		XP2-30	0.00		0.00	—	0.00		ns
		XP2-40	0.00		0.00	—	0.00		ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	XP2	_	420	_	357	_	311	MHz
General I/O Pir	n Parameters (using Edge Clock	without PLL	.) ¹						
		XP2-5	_	3.20	—	3.60	—	3.90	ns
		XP2-8		3.20	_	3.60	_	3.90	ns
t _{COE}	Clock to Output - PIO Output Register	XP2-17		3.20		3.60		3.90	ns
		XP2-30		3.20	_	3.60		3.90	ns
		XP2-40		3.20	_	3.60	_	3.90	ns
		XP2-5	0.00	_	0.00	—	0.00	_	ns
		XP2-8	0.00		0.00	_	0.00		ns
t _{SUE}	Register	XP2-17	0.00	—	0.00	—	0.00	—	ns
		XP2-30	0.00		0.00	—	0.00		ns
		XP2-40	0.00		0.00		0.00		ns

Over Recommended Operating Conditions

LatticeXP2 Internal Switching Characteristics¹

		-7		-6		-5		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Logi	c Mode Timing				I			I
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)	_	0.216	_	0.238	_	0.260	ns
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)	—	0.304		0.399		0.494	ns
t _{LSR_PFU}	Set/Reset to output of PFU (Asyn- chronous)	—	0.720		0.769		0.818	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.154	_	0.151	_	0.148	_	ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.061	—	-0.057	—	-0.053	—	ns
t _{SUD_PFU}	Clock to D input setup time	0.061	—	0.077	—	0.093	—	ns
t _{HD_PFU}	Clock to D input hold time	0.002	—	0.003	—	0.003	—	ns
t _{CK2Q_PFU}	Clock to Q delay, (D-type Register Configuration)	—	0.342	—	0.363	—	0.383	ns
t _{RSTREC_PFU}	Asynchronous reset recovery time for PFU Logic	—	0.520		0.634		0.748	ns
t _{RST_PFU}	Asynchronous reset time for PFU Logic	_	0.720	—	0.769	—	0.818	ns
PFU Dual Por	t Memory Mode Timing							
t _{CORAM_PFU}	Clock to Output (F Port)	—	1.082	—	1.267	—	1.452	ns
t _{SUDATA_PFU}	Data Setup Time	-0.206	—	-0.240	_	-0.274	—	ns
t _{HDATA_PFU}	Data Hold Time	0.239	—	0.275	_	0.312	—	ns
t _{SUADDR_PFU}	Address Setup Time	-0.294	—	-0.333	_	-0.371	—	ns
t _{HADDR_PFU}	Address Hold Time	0.295	—	0.333	_	0.371	—	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.146	—	-0.169	_	-0.193	—	ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.158	_	0.182	_	0.207	—	ns
PIO Input/Out	put Buffer Timing							
t _{IN_PIO}	Input Buffer Delay (LVCMOS25)	_	0.858	—	0.766	—	0.674	ns
t _{OUT_PIO}	Output Buffer Delay (LVCMOS25)	_	1.561	—	1.403	—	1.246	ns
IOLOGIC Inpu	t/Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	0.583	_	0.893	_	1.201	_	ns
t _{HI_PIO}	Input Register Hold Time (Data after Clock)	0.062	_	0.322	_	0.482	_	ns
t _{COO_PIO}	Output Register Clock to Output Delay	—	0.608	_	0.661	_	0.715	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	0.032	_	0.037	_	0.041	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	-0.022	_	-0.025	—	-0.028	_	ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.184	—	0.201	—	0.217	—	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.080	—	-0.086	—	-0.093	—	ns
t _{RSTREC_PIO}	Asynchronous reset recovery time for IO Logic	0.228	_	0.247	_	0.266	_	ns

Over Recommended Operating Conditions

LatticeXP2 Internal Switching Characteristics¹ (Continued)

		-	7	-6		-5		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{RST_PIO}	Asynchronous reset time for PFU Logic	—	0.386	—	0.419	—	0.452	ns
t _{DEL}	Dynamic Delay Step Size	0.035	0.035	0.035	0.035	0.035	0.035	ns
EBR Timing	· · · · · ·							
t _{CO_EBR}	Clock (Read) to Output from Address or Data	_	2.774	_	3.142	_	3.510	ns
t _{COO_EBR}	Clock (Write) to Output from EBR Output Register	_	0.360	_	0.408	—	0.456	ns
^t SUDATA_EBR	Setup Data to EBR Memory (Write Clk)	-0.167	—	-0.198	_	-0.229	—	ns
t _{HDATA_EBR}	Hold Data to EBR Memory (Write Clk)	0.194	—	0.231	_	0.267	_	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory (Write Clk)	-0.117	—	-0.137	_	-0.157	—	ns
t _{HADDR_EBR}	Hold Address to EBR Memory (Write Clk)	0.157	_	0.182	_	0.207	_	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory (Write/Read Clk)	-0.135	_	-0.159	_	-0.182	_	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory (Write/Read Clk)	0.158	—	0.186	_	0.214	_	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register (Read Clk)	0.144	—	0.160	_	0.176	_	ns
t _{HCE_EBR}	Clock Enable Hold Time to EBR Output Register (Read Clk)	-0.097	—	-0.113	_	-0.129	_	ns
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Register (Asynchro- nous)	_	1.156	_	1.341	_	1.526	ns
t _{SUBE_EBR}	Byte Enable Set-Up Time to EBR Output Register	-0.117	—	-0.137	_	-0.157	_	ns
t _{HBE_EBR}	Byte Enable Hold Time to EBR Output Register Dynamic Delay on Each PIO	0.157	_	0.182	_	0.207	_	ns
t _{RSTREC_EBR}	Asynchronous reset recovery time for EBR	0.233	—	0.291		0.347	—	ns
t _{RST_EBR}	Asynchronous reset time for EBR	—	1.156	—	1.341	_	1.526	ns
PLL Paramete	ers							
t _{RSTKREC_PLL}	After RSTK De-assert, Recovery Time Before Next Clock Edge Can Toggle K-divider Counter	1.000	_	1.000	_	1.000	_	ns
t _{RSTREC_PLL}	After RST De-assert, Recovery Time Before Next Clock Edge Can Toggle M-divider Counter (Applies to M-Divider Portion of RST Only ²)	1.000	_	1.000		1.000	_	ns
DSP Block Tir	ning							
t _{SUI_DSP}	Input Register Setup Time	0.135		0.151		0.166		ns
t _{HI_DSP}	Input Register Hold Time	0.021	—	-0.006	—	-0.031		ns
t _{SUP_DSP}	Pipeline Register Setup Time	2.505	—	2.784	—	3.064	—	ns

Over Recommended Operating Conditions

EBR Timing Diagrams

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

Figure 3-7. Read/Write Mode with Input and Output Registers

LatticeXP2 Family Timing Adders^{1, 2, 3, 4} (Continued)

Over Recommended Operating Conditions

Buffer Type	Description	-7	-6	-5	Units
LVCMOS25_4mA	LVCMOS 2.5 4mA drive, slow slew rate	1.05	1.43	1.81	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive, slow slew rate	0.78	1.15	1.52	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive, slow slew rate	0.59	0.96	1.33	ns
LVCMOS25_16mA	LVCMOS 2.5 16mA drive, slow slew rate	0.81	1.18	1.55	ns
LVCMOS25_20mA	LVCMOS 2.5 20mA drive, slow slew rate	0.61	0.98	1.35	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive, slow slew rate	1.01	1.38	1.75	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive, slow slew rate	0.72	1.08	1.45	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive, slow slew rate	0.53	0.90	1.26	ns
LVCMOS18_16mA	LVCMOS 1.8 16mA drive, slow slew rate	0.74	1.11	1.48	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive, slow slew rate	0.96	1.33	1.71	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive, slow slew rate	-0.53	-0.26	0.00	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive, slow slew rate	0.90	1.27	1.65	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive, slow slew rate	-0.55	-0.29	-0.02	ns
PCI33	3.3V PCI	-0.29	-0.01	0.26	ns

1. Timing Adders are characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. The base parameters used with these timing adders to calculate timing are listed in the LatticeXP2 Internal Switching Characteristics table under PIO Input/Output Timing.

5. These timing adders are measured with the recommended resistor values.

On-Chip Oscillator and Configuration Master Clock Characteristics

Parameter	Min.	Max.	Units
Master Clock Frequency	Selected value -30%	Selected value +30%	MHz
Duty Cycle	40	60	%

Over Recommended Operating Conditions

Figure 3-9. Master SPI Configuration Waveforms

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO Within PIC	DDR Strobe (DQS) and Data (DQ) Pins					
For Left and Right Edges of the Device							
D[Edgo] [n 4]	А	DQ					
P[Edge] [n-4]	В	DQ					
D[Edga] [n 2]	А	DQ					
r[Euge] [II-3]	В	DQ					
D[Edgo] [n 2]	А	DQ					
	В	DQ					
P[Edge] [n-1]	А	DQ					
	В	DQ					
P[Edge] [n]	А	[Edge]DQSn					
	В	DQ					
P[Edge] [n+1]	А	DQ					
	В	DQ					
P[Edge] [n+2]	А	DQ					
	В	DQ					
P[Edge] [n+3]	А	DQ					
	В	DQ					
For Top and Bottom Edge	es of the Device						
P[Edge] [n-4]	А	DQ					
	В	DQ					
P[Edge] [n-3]	A	DQ					
	В	DQ					
P[Edge] [n-2]	A	DQ					
. [=090] [=]	В	DQ					
P[Edge] [n-1]	A	DQ					
. [=090][]	В	DQ					
P[Edge] [n]	A	[Edge]DQSn					
. [====================================	В	DQ					
P[Edge] [n+1]	A	DQ					
. [=a90][]	В	DQ					
P[Edge] [n+2]	A	DQ					
. [=390] [5]	В	DQ					
P[Edge] [n+3]	A	DQ					
	В	DQ					
P[Edge] [n+4]	A	DQ					
. [=390][]	В	DQ					

Notes:

1. "n" is a row PIC number.

^{2.} The DDR interface is designed for memories that support one DQS strobe up to 16 bits of data for the left and right edges and up to 18 bits of data for the top and bottom edges. In some packages, all the potential DDR data (DQ) pins may not be available. PIC numbering definitions are provided in the "Signal Names" column of the Signal Descriptions table.