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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Edge Clock Sources
Edge clock resources can be driven from a variety of sources at the same edge. Edge clock resources can be 
driven from adjacent edge clock PIOs, primary clock PIOs, PLLs and clock dividers as shown in Figure 2-8.

Figure 2-8. Edge Clock Sources
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Note: This diagram shows sources for the XP2-17 device. Smaller LatticeXP2 devices have two GPLLs.
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Figure 2-12. Secondary Clock Selection

Slice Clock Selection
Figure 2-13 shows the clock selections and Figure 2-14 shows the control selections for Slice0 through Slice2. All 
the primary clocks and the four secondary clocks are routed to this clock selection mux. Other signals, via routing, 
can be used as clock inputs to the slices. Slice controls are generated from the secondary clocks or other signals 
connected via routing.

If none of the signals are selected for both clock and control, then the default value of the mux output is 1. Slice 3 
does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-13. Slice0 through Slice2 Clock Selection
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• In the ‘Signed/Unsigned’ options the operands can be switched between signed and unsigned on every cycle.

• In the ‘Add/Sub’ option the Accumulator can be switched between addition and subtraction on every cycle.

• The loading of operands can switch between parallel and serial operations. 

MULT sysDSP Element 
This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, A and B, 
are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. 
Figure 2-20 shows the MULT sysDSP element. 

Figure 2-20. MULT sysDSP Element
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register. Similarly, CE and RST are selected from their four respective sources (CE0, CE1, CE2, CE3 and RST0, 
RST1, RST2, RST3) at each input register, pipeline register and output register. 

Signed and Unsigned with Different Widths 
The DSP block supports other widths, in addition to x9, x18 and x36 widths, of signed and unsigned multipliers. For 
unsigned operands, unused upper data bits should be filled to create a valid x9, x18 or x36 operand. For signed 
two’s complement operands, sign extension of the most significant bit should be performed until x9, x18 or x36 
width is reached. Table 2-7 provides an example of this. 

Table 2-7. Sign Extension Example

OVERFLOW Flag from MAC 
The sysDSP block provides an overflow output to indicate that the accumulator has overflowed. “Roll-over” occurs 
and an overflow signal is indicated when any of the following is true: two unsigned numbers are added and the 
result is a smaller number than the accumulator, two positive numbers are added with a negative sum or two nega-
tive numbers are added with a positive sum. Note that when overflow occurs the overflow flag is present for only 
one cycle. By counting these overflow pulses in FPGA logic, larger accumulators can be constructed. The condi-
tions for the overflow signal for signed and unsigned operands are listed in Figure 2-24. 

Figure 2-24. Accumulator Overflow/Underflow 
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Programmable I/O Cells (PIC) 
Each PIC contains two PIOs connected to their respective sysIO buffers as shown in Figure 2-25. The PIO Block 
supplies the output data (DO) and the tri-state control signal (TO) to the sysIO buffer and receives input from the 
buffer. Table 2-11 provides the PIO signal list.

Figure 2-25. PIC Diagram

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as “T” and “C”) as shown in Figure 2-25. 
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edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as inputs. 
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shows the diagram using this gearbox function. For more information on this topic, see TN1138, LatticeXP2 High 
Speed I/O Interface.

Figure 2-27. Output and Tristate Block
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Tristate Register Block 
The tristate register block provides the ability to register tri-state control signals from the core of the device before 
they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for 
DDR operation. Figure 2-27 shows the Tristate Register Block with the Output Block 

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as D-
type or latch. In DDR mode, ONEG1 and OPOS1 are fed into registers on the positive edge of the clock. Then in 
the next clock the registered OPOS1 is latched. A multiplexer running off the same clock cycle selects the correct 
register for feeding to the output (D0).

Control Logic Block 
The control logic block allows the selection and modification of control signals for use in the PIO block. A clock sig-
nal is selected from general purpose routing, ECLK1, ECLK2 or a DQS signal (from the programmable DQS pin) 
and is provided to the input register block. The clock can optionally be inverted. 

DDR Memory Support 
PICs have additional circuitry to allow implementation of high speed source synchronous and DDR memory inter-
faces. 

PICs have registered elements that support DDR memory interfaces. Interfaces on the left and right edges are 
designed for DDR memories that support 16 bits of data, whereas interfaces on the top and bottom are designed 
for memories that support 18 bits of data. One of every 16 PIOs on the left and right and one of every 18 PIOs on 
the top and bottom contain delay elements to facilitate the generation of DQS signals. The DQS signals feed the 
DQS buses which span the set of 16 or 18 PIOs. Figure 2-28 and Figure 2-29 show the DQS pin assignments in 
each set of PIOs.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Addi-
tional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR 
data from the memory into input register blocks. For additional information on using DDR memory support please 
see TN1138, LatticeXP2 High Speed I/O Interface.

www.latticesemi.com/dynamic/view_document.cfm?document_id=23977
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Table 2-13. Supported Output Standards 

Hot Socketing
LatticeXP2 devices have been carefully designed to ensure predictable behavior during power-up and power-
down. Power supplies can be sequenced in any order. During power-up and power-down sequences, the I/Os 
remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage 
into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. 
These capabilities make the LatticeXP2 ideal for many multiple power supply and hot-swap applications. 

IEEE 1149.1-Compliant Boundary Scan Testability 
All LatticeXP2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access 
Port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan 
path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in 

Output Standard Drive VCCIO (Nom.) 

Single-ended Interfaces 

LVTTL 4mA, 8mA, 12mA, 16mA, 20mA 3.3 

LVCMOS33  4mA, 8mA, 12mA 16mA, 20mA 3.3 

LVCMOS25 4mA, 8mA, 12mA, 16mA, 20mA 2.5 

LVCMOS18 4mA, 8mA, 12mA, 16mA 1.8 

LVCMOS15 4mA, 8mA 1.5 

LVCMOS12 2mA, 6mA 1.2 

LVCMOS33, Open Drain  4mA, 8mA, 12mA 16mA, 20mA —

LVCMOS25, Open Drain 4mA, 8mA, 12mA 16mA, 20mA —

LVCMOS18, Open Drain 4mA, 8mA, 12mA 16mA —

LVCMOS15, Open Drain 4mA, 8mA —

LVCMOS12, Open Drain 2mA, 6mA —

PCI33 N/A 3.3 

HSTL18 Class I, II N/A 1.8 

HSTL15 Class I N/A 1.5 

SSTL33 Class I, II N/A 3.3 

SSTL25 Class I, II N/A 2.5 

SSTL18 Class I, II N/A  1.8 

Differential Interfaces 

Differential SSTL33, Class I, II N/A 3.3 

Differential SSTL25, Class I, II N/A 2.5 

Differential SSTL18, Class I, II N/A 1.8 

Differential HSTL18, Class I, II N/A 1.8 

Differential HSTL15, Class I N/A 1.5 

LVDS1, 2 N/A 2.5 

MLVDS1 N/A 2.5 

BLVDS1 N/A 2.5 

LVPECL1 N/A 3.3 

RSDS1 N/A 2.5 

LVCMOS33D1 4mA, 8mA, 12mA, 16mA, 20mA 3.3 

1. Emulated with external resistors. 
2. On the left and right edges, LVDS outputs are supported with a dedicated differential output driver on 50% of the I/Os. This 

solution does not require external resistors at the driver.
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original backup configuration and try again. This all can be done without power cycling the system. For more 
information please see TN1220, LatticeXP2 Dual Boot Feature.

For more information on device configuration, please see TN1141, LatticeXP2 sysCONFIG Usage Guide. 

Soft Error Detect (SED) Support
LatticeXP2 devices have dedicated logic to perform Cyclic Redundancy Code (CRC) checks. During configuration, 
the configuration data bitstream can be checked with the CRC logic block. In addition, LatticeXP2 devices can be 
programmed for checking soft errors in SRAM. SED can be run on a programmed device when the user logic is not 
active. In the event a soft error occurs, the device can be programmed to either reload from a known good boot 
image (from internal Flash or external SPI memory) or generate an error signal.

For further information on SED support, please see TN1130, LatticeXP2 Soft Error Detection (SED) Usage Guide.

On-Chip Oscillator 
Every LatticeXP2 device has an internal CMOS oscillator that is used to derive a Master Clock (CCLK) for configu-
ration. The oscillator and CCLK run continuously and are available to user logic after configuration is complete. The 
available CCLK frequencies are listed in Table 2-14. When a different CCLK frequency is selected during the 
design process, the following sequence takes place: 

1. Device powers up with the default CCLK frequency.

2. During configuration, users select a different CCLK frequency.

3. CCLK frequency changes to the selected frequency after clock configuration bits are received.

This internal CMOS oscillator is available to the user by routing it as an input clock to the clock tree. For further 
information on the use of this oscillator for configuration or user mode, please see TN1141, LatticeXP2 sysCON-
FIG Usage Guide. 

Table 2-14. Selectable CCLKs and Oscillator Frequencies During Configuration and User Mode

CCLK/Oscillator (MHz) 

2.51

3.12

4.3

5.4

6.9

8.1

9.2

10

13

15

20

26

32

40

54

803

1633

1. Software default oscillator frequency.
2. Software default CCLK frequency.
3. Frequency not valid for CCLK.

www.latticesemi.com/dynamic/view_document.cfm?document_id=39452
www.latticesemi.com/dynamic/view_document.cfm?document_id=24560
www.latticesemi.com/dynamic/view_document.cfm?document_id=24550
www.latticesemi.com/dynamic/view_document.cfm?document_id=24560
www.latticesemi.com/dynamic/view_document.cfm?document_id=24560
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Density Shifting 
The LatticeXP2 family is designed to ensure that different density devices in the same family and in the same pack-
age have the same pinout. Furthermore, the architecture ensures a high success rate when performing design 
migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower uti-
lization design targeted for a high-density device to a lower density device. However, the exact details of the final 
resource utilization will impact the likely success in each case. 
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Hot Socketing Specifications1, 2, 3, 4

ESD Performance
Please refer to the LatticeXP2 Product Family Qualification Summary for complete qualification data, including 
ESD performance.

DC Electrical Characteristics
Over Recommended Operating Conditions

Symbol Parameter Condition Min. Typ. Max. Units

IDK Input or I/O Leakage Current 0  VIN  VIH (MAX.) — — +/-1 mA

1. Insensitive to sequence of VCC, VCCAUX and VCCIO. However, assumes monotonic rise/fall rates for VCC, VCCAUX and VCCIO. 
2. 0  VCC  VCC (MAX), 0  VCCIO  VCCIO (MAX) or 0  VCCAUX  VCCAUX (MAX). 
3. IDK is additive to IPU, IPW or IBH. 
4. LVCMOS and LVTTL only.

Symbol Parameter Condition Min. Typ. Max. Units

IIL, IIH
1 Input or I/O Low Leakage 

0  VIN  VCCIO — — 10 µA

VCCIO  VIN  VIH (MAX) — — 150 µA

IPU I/O Active Pull-up Current 0  VIN  0.7 VCCIO -30 — -150 µA

IPD I/O Active Pull-down Current VIL (MAX)  VIN  VCCIO 30 — 210 µA

IBHLS Bus Hold Low Sustaining Current VIN = VIL (MAX) 30 — — µA

IBHHS Bus Hold High Sustaining Current VIN = 0.7 VCCIO -30 — — µA

IBHLO Bus Hold Low Overdrive Current 0  VIN  VCCIO — — 210 µA

IBHHO Bus Hold High Overdrive Current 0  VIN  VCCIO — — -150 µA

VBHT Bus Hold Trip Points VIL (MAX) — VIH (MIN) V

C1 I/O Capacitance2 VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, 
VCC = 1.2V, VIO = 0 to VIH (MAX) — 8 — pf

C2 Dedicated Input Capacitance VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, 
VCC = 1.2V, VIO = 0 to VIH (MAX) — 6 — pf

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured 
with the output driver active. Bus maintenance circuits are disabled. 

2. TA 25oC, f = 1.0 MHz.

http://www.latticesemi.com/dynamic/view_document.cfm?document_id=34722
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Programming and Erase Flash Supply Current1, 2, 3, 4, 5

Over Recommended Operating Conditions

Symbol Parameter Device
Typical 

(25°C, Max. Supply)6 Units 

ICC Core Power Supply Current

XP2-5 17 mA

XP2-8 21 mA

XP2-17 28 mA

XP2-30 36 mA

XP2-40 50 mA

ICCAUX Auxiliary Power Supply Current7

XP2-5 64 mA

XP2-8 66 mA

XP2-17 83 mA

XP2-30 87 mA

XP2-40 88 mA

ICCPLL PLL Power Supply Current (per PLL) 0.1 mA

ICCIO Bank Power Supply Current (per Bank) 5 mA

ICCJ VCCJ Power Supply Current8 14 mA

1. For further information on supply current, please see TN1139, Power Estimation and Management for LatticeXP2 Devices. 
2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the VCCIO or GND. 
3. Frequency 0 MHz (excludes dynamic power from FPGA operation). 
4. A specific configuration pattern is used that scales with the size of the device; consists of 75% PFU utilization, 50% EBR, and 25% I/O con-

figuration. 
5. Bypass or decoupling capacitor across the supply.
6. TJ = 25°C, power supplies at nominal voltage.
7. In fpBGA and ftBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual 

auxiliary supply current is the sum of ICCAUX and ICCPLL. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the 
auxiliary power supply.

8. When programming via JTAG.

www.latticesemi.com/dynamic/view_document.cfm?document_id=24561
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Derating Timing Tables
Logic timing provided in the following sections of this data sheet and the Diamond design tools are worst case num-
bers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much 
better than the values given in the tables. The Diamond design tool can provide logic timing numbers at a particular 
temperature and voltage.

DSP IP Functions

16-Tap Fully-Parallel FIR Filter 198 MHz

1024-pt FFT 221 MHz

8X8 Matrix Multiplication 196 MHz

1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with device, design and tool version. 
The tool uses internal parameters that have been characterized but are not tested on every device.

Register-to-Register Performance  (Continued)
 Function -7 Timing Units
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LatticeXP2 External Switching Characteristics 
Over Recommended Operating Conditions

Parameter Description Device

-7 -6 -5

UnitsMin. Max. Min. Max. Min. Max.

General I/O Pin Parameters (using Primary Clock without PLL)1

tCO
Clock to Output - PIO Output 
Register

XP2-5 — 3.80 — 4.20 — 4.60 ns

XP2-8 — 3.80 — 4.20 — 4.60 ns

XP2-17 — 3.80 — 4.20 — 4.60 ns

XP2-30 — 4.00 — 4.40 — 4.90 ns

XP2-40 — 4.00 — 4.40 — 4.90 ns

tSU
Clock to Data Setup - PIO Input 
Register

XP2-5 0.00 — 0.00 — 0.00 — ns

XP2-8 0.00 — 0.00 — 0.00 — ns

XP2-17 0.00 — 0.00 — 0.00 — ns

XP2-30 0.00 — 0.00 — 0.00 — ns

XP2-40 0.00 — 0.00 — 0.00 — ns

tH
Clock to Data Hold - PIO Input 
Register

XP2-5 1.40 — 1.70 — 1.90 — ns

XP2-8 1.40 — 1.70 — 1.90 — ns

XP2-17 1.40 — 1.70 — 1.90 — ns

XP2-30 1.40 — 1.70 — 1.90 — ns

XP2-40 1.40 — 1.70 — 1.90 — ns

tSU_DEL
Clock to Data Setup - PIO Input 
Register with Data Input Delay

XP2-5 1.40 — 1.70 — 1.90 — ns

XP2-8 1.40 — 1.70 — 1.90 — ns

XP2-17 1.40 — 1.70 — 1.90 — ns

XP2-30 1.40 — 1.70 — 1.90 — ns

XP2-40 1.40 — 1.70 — 1.90 — ns

tH_DEL
Clock to Data Hold - PIO Input 
Register with Input Data Delay

XP2-5 0.00 — 0.00 — 0.00 — ns

XP2-8 0.00 — 0.00 — 0.00 — ns

XP2-17 0.00 — 0.00 — 0.00 — ns

XP2-30 0.00 — 0.00 — 0.00 — ns

XP2-40 0.00 — 0.00 — 0.00 — ns

fMAX_IO
Clock Frequency of I/O and PFU 
Register XP2 — 420 — 357 — 311 MHz

General I/O Pin Parameters (using Edge Clock without PLL)1 

tCOE
Clock to Output - PIO Output 
Register

XP2-5 — 3.20 — 3.60 — 3.90 ns

XP2-8 — 3.20 — 3.60 — 3.90 ns

XP2-17 — 3.20 — 3.60 — 3.90 ns

XP2-30 — 3.20 — 3.60 — 3.90 ns

XP2-40 — 3.20 — 3.60 — 3.90 ns

tSUE
Clock to Data Setup - PIO Input 
Register

XP2-5 0.00 — 0.00 — 0.00 — ns

XP2-8 0.00 — 0.00 — 0.00 — ns

XP2-17 0.00 — 0.00 — 0.00 — ns

XP2-30 0.00 — 0.00 — 0.00 — ns

XP2-40 0.00 — 0.00 — 0.00 — ns
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LatticeXP2 Internal Switching Characteristics1 
Over Recommended Operating Conditions

Parameter Description

-7 -6 -5

UnitsMin. Max. Min. Max. Min. Max.

PFU/PFF Logic Mode Timing

tLUT4_PFU
LUT4 delay (A to D inputs to F 
output)                                                                                                    — 0.216 — 0.238 — 0.260 ns

tLUT6_PFU
LUT6 delay (A to D inputs to OFX 
output) — 0.304 — 0.399 — 0.494 ns

tLSR_PFU
Set/Reset to output of PFU (Asyn-
chronous) — 0.720 — 0.769 — 0.818 ns

tSUM_PFU
Clock to Mux (M0,M1) Input 
Setup Time 0.154 — 0.151 — 0.148 — ns

tHM_PFU
Clock to Mux (M0,M1) Input Hold 
Time -0.061 — -0.057 — -0.053 — ns

tSUD_PFU Clock to D input setup time 0.061 — 0.077 — 0.093 — ns

tHD_PFU Clock to D input hold time 0.002 — 0.003 — 0.003 — ns

tCK2Q_PFU 
Clock to Q delay, (D-type Register 
Configuration) — 0.342 — 0.363 — 0.383 ns

tRSTREC_PFU
Asynchronous reset recovery 
time for PFU Logic — 0.520 — 0.634 — 0.748 ns

tRST_PFU
Asynchronous reset time for PFU 
Logic — 0.720 — 0.769 — 0.818 ns

PFU Dual Port Memory Mode Timing

tCORAM_PFU Clock to Output (F Port) — 1.082 — 1.267 — 1.452 ns

tSUDATA_PFU Data Setup Time -0.206 — -0.240 — -0.274 — ns

tHDATA_PFU Data Hold Time 0.239 — 0.275 — 0.312 — ns

tSUADDR_PFU Address Setup Time -0.294 — -0.333 — -0.371 — ns

tHADDR_PFU Address Hold Time 0.295 — 0.333 — 0.371 — ns

tSUWREN_PFU Write/Read Enable Setup Time -0.146 — -0.169 — -0.193 — ns

tHWREN_PFU Write/Read Enable Hold Time 0.158 — 0.182 — 0.207 — ns

PIO Input/Output Buffer Timing

tIN_PIO Input Buffer Delay (LVCMOS25) — 0.858 — 0.766 — 0.674 ns

tOUT_PIO Output Buffer Delay (LVCMOS25) — 1.561 — 1.403 — 1.246 ns

IOLOGIC Input/Output Timing

tSUI_PIO
Input Register Setup Time (Data 
Before Clock) 0.583 — 0.893 — 1.201 — ns

tHI_PIO
Input Register Hold Time (Data 
after Clock) 0.062 — 0.322 — 0.482 — ns

tCOO_PIO
Output Register Clock to Output 
Delay — 0.608 — 0.661 — 0.715 ns

tSUCE_PIO
Input Register Clock Enable 
Setup Time 0.032 — 0.037 — 0.041 — ns

tHCE_PIO
Input Register Clock Enable Hold 
Time -0.022 — -0.025 — -0.028 — ns

tSULSR_PIO Set/Reset Setup Time 0.184 — 0.201 — 0.217 — ns

tHLSR_PIO Set/Reset Hold Time -0.080 — -0.086 — -0.093 — ns

tRSTREC_PIO
Asynchronous reset recovery 
time for IO Logic 0.228 — 0.247 — 0.266 — ns
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tRST_PIO
Asynchronous reset time for PFU 
Logic — 0.386 — 0.419 — 0.452 ns

tDEL Dynamic Delay Step Size 0.035 0.035 0.035 0.035 0.035 0.035 ns

EBR Timing

tCO_EBR
Clock (Read) to Output from 
Address or Data — 2.774 — 3.142 — 3.510 ns

tCOO_EBR
Clock (Write) to Output from EBR 
Output Register — 0.360 — 0.408 — 0.456 ns

tSUDATA_EBR
Setup Data to EBR Memory 
(Write Clk) -0.167 — -0.198 — -0.229 — ns

tHDATA_EBR
Hold Data to EBR Memory (Write 
Clk) 0.194 — 0.231 — 0.267 — ns

tSUADDR_EBR
Setup Address to EBR Memory 
(Write Clk) -0.117 — -0.137 — -0.157 — ns

tHADDR_EBR
Hold Address to EBR Memory 
(Write Clk) 0.157 — 0.182 — 0.207 — ns

tSUWREN_EBR
Setup Write/Read Enable to EBR 
Memory (Write/Read Clk) -0.135 — -0.159 — -0.182 — ns

tHWREN_EBR
Hold Write/Read Enable to EBR 
Memory (Write/Read Clk) 0.158 — 0.186 — 0.214 — ns

tSUCE_EBR
Clock Enable Setup Time to EBR 
Output Register (Read Clk) 0.144 — 0.160 — 0.176 — ns

tHCE_EBR
Clock Enable Hold Time to EBR 
Output Register (Read Clk) -0.097 — -0.113 — -0.129 — ns

tRSTO_EBR

Reset To Output Delay Time from 
EBR Output Register (Asynchro-
nous)

— 1.156 — 1.341 — 1.526 ns

tSUBE_EBR
Byte Enable Set-Up Time to EBR 
Output Register -0.117 — -0.137 — -0.157 — ns

tHBE_EBR

Byte Enable Hold Time to EBR 
Output Register Dynamic Delay 
on Each PIO

0.157 — 0.182 — 0.207 — ns

tRSTREC_EBR
Asynchronous reset recovery 
time for EBR 0.233 — 0.291 — 0.347 — ns

tRST_EBR Asynchronous reset time for EBR — 1.156 — 1.341 — 1.526 ns

PLL Parameters

tRSTKREC_PLL

After RSTK De-assert, Recovery 
Time Before Next Clock Edge 
Can Toggle K-divider Counter

1.000 — 1.000 — 1.000 — ns

tRSTREC_PLL

After RST De-assert, Recovery 
Time Before Next Clock Edge 
Can Toggle M-divider Counter 
(Applies to M-Divider Portion of 
RST Only2)

1.000 — 1.000 — 1.000 — ns

DSP Block Timing

tSUI_DSP Input Register Setup Time 0.135 — 0.151 — 0.166 — ns

tHI_DSP Input Register Hold Time 0.021 — -0.006 — -0.031 — ns

tSUP_DSP Pipeline Register Setup Time 2.505 — 2.784 — 3.064 — ns

LatticeXP2 Internal Switching Characteristics1 (Continued)
Over Recommended Operating Conditions

Parameter Description

-7 -6 -5

UnitsMin. Max. Min. Max. Min. Max.



3-22

DC and Switching Characteristics
LatticeXP2 Family Data Sheet

EBR Timing Diagrams
Figure 3-6. Read/Write Mode (Normal)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

Figure 3-7. Read/Write Mode with Input and Output Registers
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LVCMOS25_4mA LVCMOS 2.5 4mA drive, slow slew rate 1.05 1.43 1.81 ns

LVCMOS25_8mA LVCMOS 2.5 8mA drive, slow slew rate 0.78 1.15 1.52 ns

LVCMOS25_12mA LVCMOS 2.5 12mA drive, slow slew rate 0.59 0.96 1.33 ns

LVCMOS25_16mA LVCMOS 2.5 16mA drive, slow slew rate 0.81 1.18 1.55 ns

LVCMOS25_20mA LVCMOS 2.5 20mA drive, slow slew rate 0.61 0.98 1.35 ns

LVCMOS18_4mA LVCMOS 1.8 4mA drive, slow slew rate 1.01 1.38 1.75 ns

LVCMOS18_8mA LVCMOS 1.8 8mA drive, slow slew rate 0.72 1.08 1.45 ns

LVCMOS18_12mA LVCMOS 1.8 12mA drive, slow slew rate 0.53 0.90 1.26 ns

LVCMOS18_16mA LVCMOS 1.8 16mA drive, slow slew rate 0.74 1.11 1.48 ns

LVCMOS15_4mA LVCMOS 1.5 4mA drive, slow slew rate 0.96 1.33 1.71 ns

LVCMOS15_8mA LVCMOS 1.5 8mA drive, slow slew rate -0.53 -0.26 0.00 ns

LVCMOS12_2mA LVCMOS 1.2 2mA drive, slow slew rate 0.90 1.27 1.65 ns

LVCMOS12_6mA LVCMOS 1.2 6mA drive, slow slew rate -0.55 -0.29 -0.02 ns

PCI33 3.3V PCI -0.29 -0.01 0.26 ns

1. Timing Adders are characterized but not tested on every device.
2. LVCMOS timing measured with the load specified in Switching Test Condition table.
3. All other standards tested according to the appropriate specifications.
4. The base parameters used with these timing adders to calculate timing are listed in the LatticeXP2 Internal Switching Characteristics table 

under PIO Input/Output Timing.
5. These timing adders are measured with the recommended resistor values.

LatticeXP2 Family Timing Adders1, 2, 3, 4 (Continued)
Over Recommended Operating Conditions

Buffer Type Description -7 -6 -5 Units
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On-Chip Oscillator and Configuration Master Clock Characteristics
Over Recommended Operating Conditions

Figure 3-9. Master SPI Configuration Waveforms

Parameter Min. Max. Units

Master Clock Frequency Selected value -30% Selected value +30% MHz

Duty Cycle 40 60 %

Opcode Address

0    1    2    3      …    7    8    9   10    …   31  32  33  34    …   127  128

VCC

PROGRAMN

DONE

INITN

CSSPIN

CCLK

SISPI

SOSPI

Capture CFGxCapture CR0

Ignore Valid Bitstream
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PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin
PICs Associated with 

DQS Strobe PIO Within PIC
DDR Strobe (DQS) and 

Data (DQ) Pins

For Left and Right Edges of the Device

P[Edge] [n-4] 
A DQ 

B DQ 

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ

B DQ 

P[Edge] [n] 
A [Edge]DQSn

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

P[Edge] [n+3] 
A DQ 

B DQ 

For Top and Bottom Edges of the Device

P[Edge] [n-4] 
A DQ 

B DQ 

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ 

B DQ 

P[Edge] [n] 
A [Edge]DQSn 

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

P[Edge] [n+3] 
A DQ 

B DQ 

P[Edge] [n+4] 
A DQ 

B DQ 

Notes:
1. “n” is a row PIC number. 
2. The DDR interface is designed for memories that support one DQS strobe up to 16 bits 

of data for the left and right edges and up to 18 bits of data for the top and bottom 
edges. In some packages, all the potential DDR data (DQ) pins may not be available. 
PIC numbering definitions are provided in the “Signal Names” column of the Signal 
Descriptions table.


