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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs 3625

Number of Logic Elements/Cells 29000

Total RAM Bits 396288

Number of I/O 472

Number of Gates -

Voltage - Supply 1.14V ~ 1.26V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 672-BBGA

Supplier Device Package 672-FPBGA (27x27)

Purchase URL https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-30e-5fn672c
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Modes of Operation
Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM. 

Logic Mode
In this mode, the LUTs in each slice are configured as LUT4s. A LUT4 has 16 possible input combinations. Four-
input logic functions are generated by programming the LUT4. Since there are two LUT4s per slice, a LUT5 can be 
constructed within one slice. Larger LUTs such as LUT6, LUT7 and LUT8, can be constructed by concatenating 
two or more slices. Note that a LUT8 requires more than four slices.

Ripple Mode
Ripple mode allows efficient implementation of small arithmetic functions. In ripple mode, the following functions 
can be implemented by each slice: 

• Addition 2-bit 

• Subtraction 2-bit 

• Add/Subtract 2-bit using dynamic control 

• Up counter 2-bit 

• Down counter 2-bit

• Up/Down counter with async clear

• Up/Down counter with preload (sync) 

• Ripple mode multiplier building block

• Multiplier support 

• Comparator functions of A and B inputs
– A greater-than-or-equal-to B
– A not-equal-to B
– A less-than-or-equal-to B

Two carry signals, FCI and FCO, are generated per slice in this mode, allowing fast arithmetic functions to be con-
structed by concatenating slices. 

RAM Mode
In this mode, a 16x4-bit distributed Single Port RAM (SPR) can be constructed using each LUT block in Slice 0 and 
Slice 2 as a 16x1-bit memory. Slice 1 is used to provide memory address and control signals. A 16x2-bit Pseudo 
Dual Port RAM (PDPR) memory is created by using one slice as the read-write port and the other companion slice 
as the read-only port.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the soft-
ware will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 
shows the number of slices required to implement different distributed RAM primitives. For more information on 
using RAM in LatticeXP2 devices, please see TN1137, LatticeXP2 Memory Usage Guide.

Table 2-3. Number of Slices Required For Implementing Distributed RAM 

ROM Mode
ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in the ROM mode. Preloading is accom-
plished through the programming interface during PFU configuration. 

SPR 16X4 PDPR 16X4

Number of slices 3 3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

www.latticesemi.com/dynamic/view_document.cfm?document_id=23976
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Routing
There are many resources provided in the LatticeXP2 devices to route signals individually or as busses with related 
control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) seg-
ments. 

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) or x6 (spans seven PFU) 
connections. The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. 
The x2 and x6 resources are buffered to allow both short and long connections routing between PFUs. 

The LatticeXP2 family has an enhanced routing architecture to produce a compact design. The Diamond design 
tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is 
completely automatic, although an interactive routing editor is available to optimize the design. 

sysCLOCK Phase Locked Loops (PLL)
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The LatticeXP2 family supports between 
two and four full featured General Purpose PLLs (GPLL). The architecture of the GPLL is shown in Figure 2-4.

CLKI, the PLL reference frequency, is provided either from the pin or from routing; it feeds into the Input Clock 
Divider block. CLKFB, the feedback signal, is generated from CLKOP (the primary clock output) or from a user 
clock pin/logic. CLKFB feeds into the Feedback Divider and is used to multiply the reference frequency.

Both the input path and feedback signals enter the Voltage Controlled Oscillator (VCO) block. The phase and fre-
quency of the VCO are determined from the input path and feedback signals. A LOCK signal is generated by the 
VCO to indicate that the VCO is locked with the input clock signal.

The output of the VCO feeds into the CLKOP Divider, a post-scalar divider. The duty cycle of the CLKOP Divider 
output can be fine tuned using the Duty Trim block, which creates the CLKOP signal. By allowing the VCO to oper-
ate at higher frequencies than CLKOP, the frequency range of the GPLL is expanded. The output of the CLKOP 
Divider is passed through the CLKOK Divider, a secondary clock divider, to generate lower frequencies for the 
CLKOK output. For applications that require even lower frequencies, the CLKOP signal is passed through a divide-
by-three divider to produce the CLKOK2 output. The CLKOK2 output is provided for applications that use source 
synchronous logic. The Phase/Duty Cycle/Duty Trim block is used to adjust the phase and duty cycle of the CLKOP 
Divider output to generate the CLKOS signal. The phase/duty cycle setting can be pre-programmed or dynamically 
adjusted. 

The clock outputs from the GPLL; CLKOP, CLKOK, CLKOK2 and CLKOS, are fed to the clock distribution network.

For further information on the GPLL please see TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide.

www.latticesemi.com/dynamic/view_document.cfm?document_id=23975
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Figure 2-4. General Purpose PLL (GPLL) Diagram

Table 2-4 provides a description of the signals in the GPLL blocks. 

Table 2-4. GPLL Block Signal Descriptions

Clock Dividers
LatticeXP2 devices have two clock dividers, one on the left side and one on the right side of the device. These are 
intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or 
÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock 
based on the release of its reset signal. The clock dividers can be fed from the CLKOP output from the GPLLs or 
from the Edge Clocks (ECLK). The clock divider outputs serve as primary clock sources and feed into the clock dis-
tribution network. The Reset (RST) control signal resets the input and forces all outputs to low. The RELEASE sig-
nal releases outputs to the input clock. For further information on clock dividers, please see TN1126, LatticeXP2 
sysCLOCK PLL Design and Usage Guide. Figure 2-5 shows the clock divider connections.

Signal I/O Description 

CLKI I Clock input from external pin or routing 

CLKFB I PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock 
(PIN or logic) 

RST I “1” to reset PLL counters, VCO, charge pumps and M-dividers

RSTK I “1” to reset K-divider

DPHASE [3:0] I DPA Phase Adjust input

DDDUTY [3:0] I DPA Duty Cycle Select input

WRDEL I DPA Fine Delay Adjust input

CLKOS O PLL output clock to clock tree (phase shifted/duty cycle changed) 

CLKOP O PLL output clock to clock tree (no phase shift) 

CLKOK O PLL output to clock tree through secondary clock divider 

CLKOK2 O PLL output to clock tree (CLKOP divided by 3)

LOCK O “1” indicates PLL LOCK to CLKI 

CLKFB
Divider

RST

CLKFB

CLKI

LOCK

CLKOP

CLKOS

RSTK

DPHASE

Internal Feedback

DDUTY
WRDEL

CLKOK2

CLKOK

CLKI
Divider

PFD VCO/
LOOP FILTER

CLKOP
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Phase/
Duty Cycle/
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3

www.latticesemi.com/dynamic/view_document.cfm?document_id=23975
www.latticesemi.com/dynamic/view_document.cfm?document_id=23975
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Secondary Clock/Control Sources 
LatticeXP2 devices derive secondary clocks (SC0 through SC7) from eight dedicated clock input pads and the rest 
from routing. Figure 2-7 shows the secondary clock sources.

Figure 2-7. Secondary Clock Sources
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Figure 2-12. Secondary Clock Selection

Slice Clock Selection
Figure 2-13 shows the clock selections and Figure 2-14 shows the control selections for Slice0 through Slice2. All 
the primary clocks and the four secondary clocks are routed to this clock selection mux. Other signals, via routing, 
can be used as clock inputs to the slices. Slice controls are generated from the secondary clocks or other signals 
connected via routing.

If none of the signals are selected for both clock and control, then the default value of the mux output is 1. Slice 3 
does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-13. Slice0 through Slice2 Clock Selection
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Figure 2-16. FlashBAK Technology

Memory Cascading 
Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools 
cascade memory transparently, based on specific design inputs. 

Single, Dual and Pseudo-Dual Port Modes 
In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory 
array. The output data of the memory is optionally registered at the output. 

EBR memory supports two forms of write behavior for single port or dual port operation: 

1. Normal – Data on the output appears only during a read cycle. During a write cycle, the data (at the current 
address) does not appear on the output. This mode is supported for all data widths. 

2. Write Through – A copy of the input data appears at the output of the same port during a write cycle. This 
mode is supported for all data widths. 

Memory Core Reset 
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-
nously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A 
and Port B respectively. GSRN, the global reset signal, resets both ports. The output data latches and associated 
resets for both ports are as shown in Figure 2-17. 

Figure 2-17. Memory Core Reset
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IPexpress™
The user can access the sysDSP block via the Lattice IPexpress tool, which provides the option to configure each 
DSP module (or group of modules), or by direct HDL instantiation. In addition, Lattice has partnered with The Math-
Works® to support instantiation in the Simulink® tool, a graphical simulation environment. Simulink works with Dia-
mond to dramatically shorten the DSP design cycle in Lattice FPGAs. 

Optimized DSP Functions 
Lattice provides a library of optimized DSP IP functions. Some of the IP cores planned for the LatticeXP2 DSP 
include the Bit Correlator, FFT functions, FIR Filter, Reed-Solomon Encoder/Decoder, Turbo Encoder/Decoder and 
Convolutional Encoder/Decoder. Please contact Lattice to obtain the latest list of available DSP IP cores. 

Resources Available in the LatticeXP2 Family 
Table 2-8 shows the maximum number of multipliers for each member of the LatticeXP2 family. Table 2-9 shows the 
maximum available EBR RAM Blocks and Serial TAG Memory bits in each LatticeXP2 device. EBR blocks, 
together with Distributed RAM can be used to store variables locally for fast DSP operations. 

Table 2-8. Maximum Number of DSP Blocks in the LatticeXP2 Family 

Table 2-9. Embedded SRAM/TAG Memory in the LatticeXP2 Family

LatticeXP2 DSP Performance
Table 2-10 lists the maximum performance in Millions of MAC (MMAC) operations per second for each member of 
the LatticeXP2 family. 

Table 2-10. DSP Performance

For further information on the sysDSP block, please see TN1140, LatticeXP2 sysDSP Usage Guide. 

Device DSP Block 9x9 Multiplier 18x18 Multiplier 36x36 Multiplier 

XP2-5 3 24 12 3

XP2-8 4 32 16 4

XP2-17 5 40 20 5

XP2-30 7 56 28 7

XP2-40 8 64 32 8

Device EBR SRAM Block 
Total EBR SRAM 

(Kbits) 
TAG Memory

(Bits)

XP2-5 9 166 632

XP2-8 12 221 768

XP2-17 15 276 2184

XP2-30 21 387 2640

XP2-40 48 885 3384

Device DSP Block 
DSP Performance 

MMAC

XP2-5 3 3,900

XP2-8 4 5,200

XP2-17 5 6,500

XP2-30 7 9,100

XP2-40 8 10,400

www.latticesemi.com/dynamic/view_document.cfm?document_id=23978
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shows the diagram using this gearbox function. For more information on this topic, see TN1138, LatticeXP2 High 
Speed I/O Interface.

Figure 2-27. Output and Tristate Block
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Figure 2-28. DQS Input Routing (Left and Right)

Figure 2-29. DQS Input Routing (Top and Bottom)
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DLL Calibrated DQS Delay Block 
Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at 
the input register. For most interfaces a PLL is used for this adjustment. However, in DDR memories the clock, 
referred to as DQS, is not free-running, and this approach cannot be used. The DQS Delay block provides the 
required clock alignment for DDR memory interfaces. 

The DQS signal (selected PIOs only, as shown in Figure 2-30) feeds from the PAD through a DQS delay element to 
a dedicated DQS routing resource. The DQS signal also feeds polarity control logic which controls the polarity of 
the clock to the sync registers in the input register blocks. Figure 2-30 and Figure 2-31 show how the DQS transi-
tion signals are routed to the PIOs. 

The temperature, voltage and process variations of the DQS delay block are compensated by a set of 6-bit bus cal-
ibration signals from two dedicated DLLs (DDR_DLL) on opposite sides of the device. Each DLL compensates 
DQS delays in its half of the device as shown in Figure 2-30. The DLL loop is compensated for temperature, volt-
age and process variations by the system clock and feedback loop. 

Figure 2-30. Edge Clock, DLL Calibration and DQS Local Bus Distribution
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LatticeXP2 devices contain two types of sysIO buffer pairs. 

1. Top and Bottom (Banks 0, 1, 4 and 5) sysIO Buffer Pairs (Single-Ended Outputs Only)
The sysIO buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of 
single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be con-
figured as a differential input. 

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

Only the I/Os on the top and bottom banks have programmable PCI clamps. 

2. Left and Right (Banks 2, 3, 6 and 7) sysIO Buffer Pairs (50% Differential and 100% Single-Ended Outputs)
The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two 
sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the ref-
erenced input buffers can also be configured as a differential input. 

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential I/O, and the comp pad is associated with the negative side of the differential I/O. 

LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks. 

Typical sysIO I/O Behavior During Power-up 
The internal power-on-reset (POR) signal is deactivated when VCC, VCCCONFIG (VCCIO7) and VCCAUX have reached 
satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s respon-
sibility to ensure that all other VCCIO banks are active with valid input logic levels to properly control the output logic 
states of all the I/O banks that are critical to the application. During power up and before the FPGA core logic 
becomes active, all user I/Os will be high-impedance with weak pull-up. Please refer to TN1136, LatticeXP2 sysIO 
Usage Guide for additional information.

The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buf-
fers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended 
that the I/O buffers be powered-up prior to the FPGA core fabric. VCCIO supplies should be powered-up before or 
together with the VCC and VCCAUX supplies. 

Supported sysIO Standards 
The LatticeXP2 sysIO buffer supports both single-ended and differential standards. Single-ended standards can be 
further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2V, 1.5V, 
1.8V, 2.5V and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options 
for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other 
single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, 
MLVDS, BLVDS, LVPECL, RSDS, differential SSTL and differential HSTL. Tables 2-12 and 2-13 show the I/O stan-
dards (together with their supply and reference voltages) supported by LatticeXP2 devices. For further information 
on utilizing the sysIO buffer to support a variety of standards please see TN1136, LatticeXP2 sysIO Usage Guide. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=24546
www.latticesemi.com/dynamic/view_document.cfm?document_id=24546
www.latticesemi.com/dynamic/view_document.cfm?document_id=24546
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Table 2-12. Supported Input Standards

Input Standard VREF (Nom.) VCCIO
1 (Nom.) 

Single Ended Interfaces 

LVTTL — —

LVCMOS33 — —

LVCMOS25 — —

LVCMOS18 — 1.8 

LVCMOS15 — 1.5 

LVCMOS12 — —

PCI33 — —

HSTL18 Class I, II 0.9 —

HSTL15 Class I 0.75 —

SSTL33 Class I, II 1.5 —

SSTL25 Class I, II 1.25 —

SSTL18 Class I, II  0.9 —

Differential Interfaces 

Differential SSTL18 Class I, II — —

Differential SSTL25 Class I, II — —

Differential SSTL33 Class I, II — —

Differential HSTL15 Class I — —

Differential HSTL18 Class I, II — —

LVDS, MLVDS, LVPECL, BLVDS, RSDS — —

1. When not specified, VCCIO can be set anywhere in the valid operating range (page 3-1). 



2-37

Architecture
LatticeXP2 Family Data Sheet

Table 2-13. Supported Output Standards 

Hot Socketing
LatticeXP2 devices have been carefully designed to ensure predictable behavior during power-up and power-
down. Power supplies can be sequenced in any order. During power-up and power-down sequences, the I/Os 
remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage 
into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. 
These capabilities make the LatticeXP2 ideal for many multiple power supply and hot-swap applications. 

IEEE 1149.1-Compliant Boundary Scan Testability 
All LatticeXP2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access 
Port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan 
path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in 

Output Standard Drive VCCIO (Nom.) 

Single-ended Interfaces 

LVTTL 4mA, 8mA, 12mA, 16mA, 20mA 3.3 

LVCMOS33  4mA, 8mA, 12mA 16mA, 20mA 3.3 

LVCMOS25 4mA, 8mA, 12mA, 16mA, 20mA 2.5 

LVCMOS18 4mA, 8mA, 12mA, 16mA 1.8 

LVCMOS15 4mA, 8mA 1.5 

LVCMOS12 2mA, 6mA 1.2 

LVCMOS33, Open Drain  4mA, 8mA, 12mA 16mA, 20mA —

LVCMOS25, Open Drain 4mA, 8mA, 12mA 16mA, 20mA —

LVCMOS18, Open Drain 4mA, 8mA, 12mA 16mA —

LVCMOS15, Open Drain 4mA, 8mA —

LVCMOS12, Open Drain 2mA, 6mA —

PCI33 N/A 3.3 

HSTL18 Class I, II N/A 1.8 

HSTL15 Class I N/A 1.5 

SSTL33 Class I, II N/A 3.3 

SSTL25 Class I, II N/A 2.5 

SSTL18 Class I, II N/A  1.8 

Differential Interfaces 

Differential SSTL33, Class I, II N/A 3.3 

Differential SSTL25, Class I, II N/A 2.5 

Differential SSTL18, Class I, II N/A 1.8 

Differential HSTL18, Class I, II N/A 1.8 

Differential HSTL15, Class I N/A 1.5 

LVDS1, 2 N/A 2.5 

MLVDS1 N/A 2.5 

BLVDS1 N/A 2.5 

LVPECL1 N/A 3.3 

RSDS1 N/A 2.5 

LVCMOS33D1 4mA, 8mA, 12mA, 16mA, 20mA 3.3 

1. Emulated with external resistors. 
2. On the left and right edges, LVDS outputs are supported with a dedicated differential output driver on 50% of the I/Os. This 

solution does not require external resistors at the driver.



2-38

Architecture
LatticeXP2 Family Data Sheet

and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port 
consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage VCCJ and can 
operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards. For more information, please see TN1141, LatticeXP2 
sysCONFIG Usage Guide. 

flexiFLASH Device Configuration
The LatticeXP2 devices combine Flash and SRAM on a single chip to provide users with flexibility in device pro-
gramming and configuration. Figure 2-33 provides an overview of the arrangement of Flash and SRAM configura-
tion cells within the device. The remainder of this section provides an overview of these capabilities. See TN1141, 
LatticeXP2 sysCONFIG Usage Guide for a more detailed description.

Figure 2-33. Overview of Flash and SRAM Configuration Cells Within LatticeXP2 Devices

At power-up, or on user command, data is transferred from the on-chip Flash memory to the SRAM configuration 
cells that control the operation of the device. This is done with massively parallel buses enabling the parts to oper-
ate within microseconds of the power supplies reaching valid levels; this capability is referred to as Instant-On.

The on-chip Flash enables a single-chip solution eliminating the need for external boot memory. This Flash can be 
programmed through either the JTAG or Slave SPI ports of the device. The SRAM configuration space can also be 
infinitely reconfigured through the JTAG and Master SPI ports. The JTAG port is IEEE 1149.1 and IEEE 1532 com-
pliant.

As described in the EBR section of the data sheet, the FlashBAK capability of the parts enables the contents of the 
EBR blocks to be written back into the Flash storage area without erasing or reprogramming other aspects of the 
device configuration. Serial TAG memory is also available to allow the storage of small amounts of data such as 
calibration coefficients and error codes.

For applications where security is important, the lack of an external bitstream provides a solution that is inherently 
more secure than SRAM only FPGAs. This is further enhanced by device locking. The device can be in one of 
three modes:
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sysIO Recommended Operating Conditions
Over Recommended Operating Conditions

Standard

VCCIO VREF (V)

Min. Typ. Max. Min. Typ. Max.

LVCMOS332 3.135 3.3 3.465 — — —

LVCMOS252 2.375 2.5 2.625 — — —

LVCMOS18 1.71 1.8 1.89 — — —

LVCMOS15 1.425 1.5 1.575 — — —

LVCMOS122 1.14 1.2 1.26 — — —

LVTTL332 3.135 3.3 3.465 — — —

PCI33 3.135 3.3 3.465 — — —

SSTL18_I2,
SSTL18_II2 1.71 1.8 1.89 0.833 0.9 0.969

SSTL25_I2,
SSTL25_II2 2.375 2.5 2.625 1.15 1.25 1.35

SSTL33_I2,
SSTL33_II2 3.135 3.3 3.465 1.3 1.5 1.7

HSTL15_I2 1.425 1.5 1.575 0.68 0.75 0.9

HSTL18_I2,
HSTL18_II2 1.71 1.8 1.89 0.816 0.9 1.08

LVDS252 2.375 2.5 2.625 — — —

MLVDS251 2.375 2.5 2.625 — — —

LVPECL331, 2 3.135 3.3 3.465 — — —

BLVDS251, 2 2.375 2.5 2.625 — — —

RSDS1, 2 2.375 2.5 2.625 — — —

SSTL18D_I2, 
SSTL18D_II2 1.71 1.8 1.89 — — —

SSTL25D_ I2, 
SSTL25D_II2 2.375 2.5 2.625 — — —

SSTL33D_ I2, 
SSTL33D_ II2 3.135 3.3 3.465 — — —

HSTL15D_ I2 1.425 1.5 1.575 — — —

HSTL18D_ I2, 
HSTL18D_ II2 1.71 1.8 1.89 — — —

1. Inputs on chip. Outputs are implemented with the addition of external resistors.
2. Input on this standard does not depend on the value of VCCIO. 
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Figure 3-8. Write Through (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.
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TDO O Output pin. Test Data Out pin used to shift data out of a device using 1149.1. 

VCCJ — Power supply pin for JTAG Test Access Port. 

Configuration Pads (Used during sysCONFIG)

CFG[1:0] I Mode pins used to specify configuration mode values latched on rising edge 
of INITN. During configuration, an internal pull-up is enabled. 

INITN1 I/O Open Drain pin. Indicates the FPGA is ready to be configured. During config-
uration, a pull-up is enabled.

PROGRAMN I Initiates configuration sequence when asserted low. This pin always has an 
active pull-up.

DONE I/O Open Drain pin. Indicates that the configuration sequence is complete, and 
the startup sequence is in progress. 

CCLK I/O Configuration Clock for configuring an FPGA in sysCONFIG mode. 

SISPI2 I/O Input data pin in slave SPI mode and Output data pin in Master SPI mode.

SOSPI2 I/O Output data pin in slave SPI mode and Input data pin in Master SPI mode.

CSSPIN2 O Chip select for external SPI Flash memory in Master SPI mode. This pin has 
a weak internal pull-up.

CSSPISN I Chip select in Slave SPI mode. This pin has a weak internal pull-up.

TOE I
Test Output Enable tristates all I/O pins when driven low. This pin has a weak 
internal pull-up, but when not used an external pull-up to VCC is recom-
mended.

1. If not actively driven, the internal pull-up may not be sufficient. An external pull-up resistor of 4.7k to 10k is recommended.
2. When using the device in Master SPI mode, it must be mutually exclusive from JTAG operations (i.e. TCK tied to GND) or the JTAG TCK 

must be free-running when used in a system JTAG test environment. If Master SPI mode is used in conjunction with a JTAG download 
cable, the device power cycle is required after the cable is unplugged.

Signal Descriptions (Cont.)
Signal Name I/O Description 
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Part Number Description

LFXP2 – XX E – X  XXXXX  X

Grade
    C = Commercial
    I = Industrial    

Logic Capacity
     5 = 5K LUTs
     8 = 8K LUTs
     17 = 17K LUTs
     30 = 30K LUTs
     40 = 40K LUTs

     Supply Voltage
   E = 1.2V

Speed
    5 = Slowest
    6 
    7 = Fastest 

Package
    M132 = 132-ball csBGA
    FT256 = 256-ball ftBGA
    F484 = 484-ball fpBGA
    F672 = 672-ball fpBGA

    MN132 = 132-ball Lead-Free csBGA
    TN144 = 144-pin Lead-Free TQFP
    QN208 = 208-pin Lead-Free PQFP
    FTN256 = 256-ball Lead-Free ftBGA
    FN484 = 484-ball Lead-Free fpBGA
    FN672 = 672-ball Lead-Free fpBGA

Device Family
    XP2
 

Ordering Information
The LatticeXP2 devices are marked with a single temperature grade, either Commercial or Industrial, as shown 
below.

LFXP2-17E
7FT256C
Datecode

LFXP2-17E
6FT256I

Datecode

LatticeXP2 Family Data Sheet
Ordering Information
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Conventional Packaging
Commercial

Part Number Voltage Grade Package Pins Temp. LUTs (k)

LFXP2-5E-5M132C 1.2V -5 csBGA 132 COM 5

LFXP2-5E-6M132C 1.2V -6 csBGA 132 COM 5

LFXP2-5E-7M132C 1.2V -7 csBGA 132 COM 5

LFXP2-5E-5FT256C 1.2V -5 ftBGA 256 COM 5

LFXP2-5E-6FT256C 1.2V -6 ftBGA 256 COM 5

LFXP2-5E-7FT256C 1.2V -7 ftBGA 256 COM 5

Part Number Voltage Grade Package Pins Temp. LUTs (k)

LFXP2-8E-5M132C 1.2V -5 csBGA 132 COM 8

LFXP2-8E-6M132C 1.2V -6 csBGA 132 COM 8

LFXP2-8E-7M132C 1.2V -7 csBGA 132 COM 8

LFXP2-8E-5FT256C 1.2V -5 ftBGA 256 COM 8

LFXP2-8E-6FT256C 1.2V -6 ftBGA 256 COM 8

LFXP2-8E-7FT256C 1.2V -7 ftBGA 256 COM 8

Part Number Voltage Grade Package Pins Temp. LUTs (k)

LFXP2-17E-5FT256C 1.2V -5 ftBGA 256 COM 17

LFXP2-17E-6FT256C 1.2V -6 ftBGA 256 COM 17

LFXP2-17E-7FT256C 1.2V -7 ftBGA 256 COM 17

LFXP2-17E-5F484C 1.2V -5 fpBGA 484 COM 17

LFXP2-17E-6F484C 1.2V -6 fpBGA 484 COM 17

LFXP2-17E-7F484C 1.2V -7 fpBGA 484 COM 17

Part Number Voltage Grade Package Pins Temp. LUTs (k)

LFXP2-30E-5FT256C 1.2V -5 ftBGA 256 COM 30

LFXP2-30E-6FT256C 1.2V -6 ftBGA 256 COM 30

LFXP2-30E-7FT256C 1.2V -7 ftBGA 256 COM 30

LFXP2-30E-5F484C 1.2V -5 fpBGA 484 COM 30

LFXP2-30E-6F484C 1.2V -6 fpBGA 484 COM 30

LFXP2-30E-7F484C 1.2V -7 fpBGA 484 COM 30

LFXP2-30E-5F672C 1.2V -5 fpBGA 672 COM 30

LFXP2-30E-6F672C 1.2V -6 fpBGA 672 COM 30

LFXP2-30E-7F672C 1.2V -7 fpBGA 672 COM 30
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For Further Information
A variety of technical notes for the LatticeXP2 FPGA family are available on the Lattice Semiconductor web site at 
www.latticesemi.com.

• TN1136, LatticeXP2 sysIO Usage Guide

• TN1137, LatticeXP2 Memory Usage Guide

• TN1138, LatticeXP2 High Speed I/O Interface

• TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide

• TN1139, Power Estimation and Management for LatticeXP2 Devices

• TN1140, LatticeXP2 sysDSP Usage Guide

• TN1141, LatticeXP2 sysCONFIG Usage Guide 

• TN1142, LatticeXP2 Configuration Encryption and Security Usage Guide

• TN1087, Minimizing System Interruption During Configuration Using TransFR Technology

• TN1220, LatticeXP2 Dual Boot Feature

• TN1130, LatticeXP2 Soft Error Detection (SED) Usage Guide

• TN1143, LatticeXP2 Hardware Checklist

For further information on interface standards refer to the following websites:

• JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org

• PCI: www.pcisig.com
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