Lattice Semiconductor Corporation - LFXP2-40E-6F672C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	5000
Number of Logic Elements/Cells	40000
Total RAM Bits	906240
Number of I/O	540
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-40e-6f672c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Routing

There are many resources provided in the LatticeXP2 devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) or x6 (spans seven PFU) connections. The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. The x2 and x6 resources are buffered to allow both short and long connections routing between PFUs.

The LatticeXP2 family has an enhanced routing architecture to produce a compact design. The Diamond design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

sysCLOCK Phase Locked Loops (PLL)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The LatticeXP2 family supports between two and four full featured General Purpose PLLs (GPLL). The architecture of the GPLL is shown in Figure 2-4.

CLKI, the PLL reference frequency, is provided either from the pin or from routing; it feeds into the Input Clock Divider block. CLKFB, the feedback signal, is generated from CLKOP (the primary clock output) or from a user clock pin/logic. CLKFB feeds into the Feedback Divider and is used to multiply the reference frequency.

Both the input path and feedback signals enter the Voltage Controlled Oscillator (VCO) block. The phase and frequency of the VCO are determined from the input path and feedback signals. A LOCK signal is generated by the VCO to indicate that the VCO is locked with the input clock signal.

The output of the VCO feeds into the CLKOP Divider, a post-scalar divider. The duty cycle of the CLKOP Divider output can be fine tuned using the Duty Trim block, which creates the CLKOP signal. By allowing the VCO to operate at higher frequencies than CLKOP, the frequency range of the GPLL is expanded. The output of the CLKOP Divider is passed through the CLKOK Divider, a secondary clock divider, to generate lower frequencies for the CLKOK output. For applications that require even lower frequencies, the CLKOP signal is passed through a divide-by-three divider to produce the CLKOK2 output. The CLKOK2 output is provided for applications that use source synchronous logic. The Phase/Duty Cycle/Duty Trim block is used to adjust the phase and duty cycle of the CLKOP Divider output to generate the CLKOS signal. The phase/duty cycle setting can be pre-programmed or dynamically adjusted.

The clock outputs from the GPLL; CLKOP, CLKOK, CLKOK2 and CLKOS, are fed to the clock distribution network.

For further information on the GPLL please see TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide.

Figure 2-12. Secondary Clock Selection

Slice Clock Selection

Figure 2-13 shows the clock selections and Figure 2-14 shows the control selections for Slice0 through Slice2. All the primary clocks and the four secondary clocks are routed to this clock selection mux. Other signals, via routing, can be used as clock inputs to the slices. Slice controls are generated from the secondary clocks or other signals connected via routing.

If none of the signals are selected for both clock and control, then the default value of the mux output is 1. Slice 3 does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-13. Slice0 through Slice2 Clock Selection

register. Similarly, CE and RST are selected from their four respective sources (CE0, CE1, CE2, CE3 and RST0, RST1, RST2, RST3) at each input register, pipeline register and output register.

Signed and Unsigned with Different Widths

The DSP block supports other widths, in addition to x9, x18 and x36 widths, of signed and unsigned multipliers. For unsigned operands, unused upper data bits should be filled to create a valid x9, x18 or x36 operand. For signed two's complement operands, sign extension of the most significant bit should be performed until x9, x18 or x36 width is reached. Table 2-7 provides an example of this.

Table 2-7. Sign Extension Example

Number	Unsigned	Unsigned 9-bit	Unsigned 18-bit	Signed	Two's Complement Signed 9 Bits	Two's Complement Signed 18 Bits
+5	0101	000000101	00000000000000101	0101	00000101	00000000000000101
-6	N/A	N/A	N/A	1010	111111010	1111111111111111010

OVERFLOW Flag from MAC

The sysDSP block provides an overflow output to indicate that the accumulator has overflowed. "Roll-over" occurs and an overflow signal is indicated when any of the following is true: two unsigned numbers are added and the result is a smaller number than the accumulator, two positive numbers are added with a negative sum or two negative numbers are added with a positive sum. Note that when overflow occurs the overflow flag is present for only one cycle. By counting these overflow pulses in FPGA logic, larger accumulators can be constructed. The conditions for the overflow signal for signed and unsigned operands are listed in Figure 2-24.

Figure 2-24. Accumulator Overflow/Underflow

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to system clock domain. For further discussion on this topic, see the DDR Memory section of this data sheet.

Output Register Block

The output register block provides the ability to register signals from the core of the device before they are passed to the sysIO buffers. The blocks on the PIOs on the left, right and bottom contain registers for SDR operation that are combined with an additional latch for DDR operation. Figure 2-27 shows the diagram of the Output Register Block for PIOs.

In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or latch. In DDR mode, ONEG0 and OPOS0 are fed into registers on the positive edge of the clock. At the next clock cycle the registered OPOS0 is latched. A multiplexer running off the same clock cycle selects the correct register to feed the output (D0).

By combining output blocks of the complementary PIOs and sharing some registers from input blocks, a gearbox function can be implemented, to take four data streams ONEG0A, ONEG1A, ONEG1B and ONEG1B. Figure 2-27

Figure 2-31. DQS Local Bus

*DQSXFERDEL shifts ECLK1 by 90% and is not associated with a particular PIO.

Polarity Control Logic

In a typical DDR memory interface design, the phase relationship between the incoming delayed DQS strobe and the internal system clock (during the READ cycle) is unknown. The LatticeXP2 family contains dedicated circuits to transfer data between these domains. To prevent set-up and hold violations, at the domain transfer between DQS (delayed) and the system clock, a clock polarity selector is used. This changes the edge on which the data is registered in the synchronizing registers in the input register block and requires evaluation at the start of each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories, DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to control the polarity of the clock to the synchronizing registers.

Table 2-13. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Nom.)
Single-ended Interfaces		
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3
LVCMOS25	4mA, 8mA, 12mA, 16mA, 20mA	2.5
LVCMOS18	4mA, 8mA, 12mA, 16mA	1.8
LVCMOS15	4mA, 8mA	1.5
LVCMOS12	2mA, 6mA	1.2
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA	
LVCMOS15, Open Drain	4mA, 8mA	_
LVCMOS12, Open Drain	2mA, 6mA	_
PCI33	N/A	3.3
HSTL18 Class I, II	N/A	1.8
HSTL15 Class I	N/A	1.5
SSTL33 Class I, II	N/A	3.3
SSTL25 Class I, II	N/A	2.5
SSTL18 Class I, II	N/A	1.8
Differential Interfaces		
Differential SSTL33, Class I, II	N/A	3.3
Differential SSTL25, Class I, II	N/A	2.5
Differential SSTL18, Class I, II	N/A	1.8
Differential HSTL18, Class I, II	N/A	1.8
Differential HSTL15, Class I	N/A	1.5
LVDS ^{1, 2}	N/A	2.5
MLVDS ¹	N/A	2.5
BLVDS ¹	N/A	2.5
LVPECL ¹	N/A	3.3
RSDS ¹	N/A	2.5
LVCMOS33D ¹	4mA, 8mA, 12mA, 16mA, 20mA	3.3

1. Emulated with external resistors.

2. On the left and right edges, LVDS outputs are supported with a dedicated differential output driver on 50% of the I/Os. This solution does not require external resistors at the driver.

Hot Socketing

LatticeXP2 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the LatticeXP2 ideal for many multiple power supply and hot-swap applications.

IEEE 1149.1-Compliant Boundary Scan Testability

All LatticeXP2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access Port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in

and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage V_{CCJ} and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards. For more information, please see TN1141, LatticeXP2 sysCONFIG Usage Guide.

flexiFLASH Device Configuration

The LatticeXP2 devices combine Flash and SRAM on a single chip to provide users with flexibility in device programming and configuration. Figure 2-33 provides an overview of the arrangement of Flash and SRAM configuration cells within the device. The remainder of this section provides an overview of these capabilities. See TN1141, LatticeXP2 sysCONFIG Usage Guide for a more detailed description.

Figure 2-33. Overview of Flash and SRAM Configuration Cells Within LatticeXP2 Devices

At power-up, or on user command, data is transferred from the on-chip Flash memory to the SRAM configuration cells that control the operation of the device. This is done with massively parallel buses enabling the parts to operate within microseconds of the power supplies reaching valid levels; this capability is referred to as Instant-On.

The on-chip Flash enables a single-chip solution eliminating the need for external boot memory. This Flash can be programmed through either the JTAG or Slave SPI ports of the device. The SRAM configuration space can also be infinitely reconfigured through the JTAG and Master SPI ports. The JTAG port is IEEE 1149.1 and IEEE 1532 compliant.

As described in the EBR section of the data sheet, the FlashBAK capability of the parts enables the contents of the EBR blocks to be written back into the Flash storage area without erasing or reprogramming other aspects of the device configuration. Serial TAG memory is also available to allow the storage of small amounts of data such as calibration coefficients and error codes.

For applications where security is important, the lack of an external bitstream provides a solution that is inherently more secure than SRAM only FPGAs. This is further enhanced by device locking. The device can be in one of three modes:

original backup configuration and try again. This all can be done without power cycling the system. For more information please see TN1220, <u>LatticeXP2 Dual Boot Feature</u>.

For more information on device configuration, please see TN1141, LatticeXP2 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support

LatticeXP2 devices have dedicated logic to perform Cyclic Redundancy Code (CRC) checks. During configuration, the configuration data bitstream can be checked with the CRC logic block. In addition, LatticeXP2 devices can be programmed for checking soft errors in SRAM. SED can be run on a programmed device when the user logic is not active. In the event a soft error occurs, the device can be programmed to either reload from a known good boot image (from internal Flash or external SPI memory) or generate an error signal.

For further information on SED support, please see TN1130, LatticeXP2 Soft Error Detection (SED) Usage Guide.

On-Chip Oscillator

Every LatticeXP2 device has an internal CMOS oscillator that is used to derive a Master Clock (CCLK) for configuration. The oscillator and CCLK run continuously and are available to user logic after configuration is complete. The available CCLK frequencies are listed in Table 2-14. When a different CCLK frequency is selected during the design process, the following sequence takes place:

- 1. Device powers up with the default CCLK frequency.
- 2. During configuration, users select a different CCLK frequency.
- 3. CCLK frequency changes to the selected frequency after clock configuration bits are received.

This internal CMOS oscillator is available to the user by routing it as an input clock to the clock tree. For further information on the use of this oscillator for configuration or user mode, please see TN1141, <u>LatticeXP2 sysCON-FIG Usage Guide</u>.

Table 2-14. Selectable	CCLKs and Oscillato	r Freauencies Durina	Configuration and	User Mode

CCLK/Oscillator (MHz)				
2.5 ¹				
3.1 ²				
4.3				
5.4				
6.9				
8.1				
9.2				
10				
13				
15				
20				
26				
32				
40				
54				
80 ³				
163 ³				
1 Software default oscillator frequency				

1. Software default oscillator frequency.

2. Software default CCLK frequency.

3. Frequency not valid for CCLK.

LatticeXP2 Family Data Sheet DC and Switching Characteristics

September 2014

Data Sheet DS1009

Absolute Maximum Ratings^{1, 2, 3}

Supply Voltage V _{CC}
Supply Voltage V _{CCAUX}
Supply Voltage V _{CCJ}
Supply Voltage V _{CCPLL} ⁴ 0.5 to 3.75V
Output Supply Voltage V _{CCIO} 0.5 to 3.75V
Input or I/O Tristate Voltage Applied ⁵ 0.5 to 3.75V
Storage Temperature (Ambient)65 to 150°C
Junction Temperature Under Bias (Tj)+125°C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice <u>Thermal Management</u> document is required.

3. All voltages referenced to GND.

4. V_{CCPLL} only available on csBGA, PQFP and TQFP packages.

5. Overshoot and undershoot of -2V to (V_{IHMAX} + 2) volts is permitted for a duration of <20 ns.

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Core Supply Voltage	1.14	1.26	V
V _{CCAUX} ^{4, 5}	Auxiliary Supply Voltage	3.135	3.465	V
V _{CCPLL} ¹	PLL Supply Voltage	3.135	3.465	V
V _{CCIO} ^{2, 3, 4}	I/O Driver Supply Voltage	1.14	3.465	V
V _{CCJ} ²	Supply Voltage for IEEE 1149.1 Test Access Port	1.14	3.465	V
t _{JCOM}	Junction Temperature, Commercial Operation	0	85	°C
t _{JIND}	Junction Temperature, Industrial Operation	-40	100	°C

1. V_{CCPLL} only available on csBGA, PQFP and TQFP packages.

If V_{CCIO} or V_{CCJ} is set to 1.2 V, they must be connected to the same power supply as V_{CC}. If V_{CCIO} or V_{CCJ} is set to 3.3V, they must be connected to the same power supply as V_{CCAUX}.

3. See recommended voltages by I/O standard in subsequent table.

4. To ensure proper I/O behavior, V_{CCIO} must be turned off at the same time or earlier than V_{CCAUX} .

5. In fpBGA and ftBGA packages, the PLLs are connected to, and powered from, the auxiliary power supply.

On-Chip Flash Memory Specifications

Symbol	Parameter	Max.	Units
N _{PROGCYC}	Flash Programming Cycles per t _{RETENTION} ¹		Cycles
	Flash Functional Programming Cycles	100,000	Cycles

1. The minimum data retention, t_{RETENTION}, is 20 years.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Supply Current (Standby)^{1, 2, 3, 4}

Symbol	Parameter	Device	Typical⁵	Units
		XP2-5	14	mA
		XP2-8	18	mA
I _{CC}	Core Power Supply Current	XP2-17	24	mA
		XP2-30	35	mA
		XP2-40	45	mA
		XP2-5	15	mA
	Auxiliary Power Supply Current ⁶	XP2-8	15	mA
I _{CCAUX}		XP2-17	15	mA
		XP2-30	16	mA
		XP2-40	16	mA
I _{CCPLL}	PLL Power Supply Current (per PLL)		0.1	mA
I _{CCIO}	Bank Power Supply Current (per bank)		2	mA
I _{CCJ}	V _{CCJ} Power Supply Current		0.25	mA

Over Recommended Operating Conditions

1. For further information on supply current, please see TN1139, Power Estimation and Management for LatticeXP2 Devices.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

3. Frequency 0 MHz.

4. Pattern represents a "blank" configuration data file.

5. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

6. In fpBGA and ftBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual auxiliary supply current is the sum of I_{CCAUX} and I_{CCPLL}. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the auxiliary power supply.

Initialization Supply Current^{1, 2, 3, 4, 5}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typical (25°C, Max. Supply) ⁶	Units
	Core Power Supply Current	XP2-5	20	mA
		XP2-8	21	mA
I _{CC}		XP2-17	44	mA
		XP2-30	58	mA
		XP2-40	62	mA
ICCAUX		XP2-5	67	mA
	Auxiliary Power Supply Current ⁷	XP2-8	74	mA
		XP2-17	112	mA
		XP2-30	124	mA
		XP2-40	130	mA
I _{CCPLL}	PLL Power Supply Current (per PLL)		1.8	mA
I _{CCIO}	Bank Power Supply Current (per Bank)		6.4	mA
ICCJ	VCCJ Power Supply Current		1.2	mA

1. For further information on supply current, please see TN1139, Power Estimation and Management for LatticeXP2 Devices.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

3. Frequency 0 MHz.

4. Does not include additional current from bypass or decoupling capacitor across the supply.

5. A specific configuration pattern is used that scales with the size of the device; consists of 75% PFU utilization, 50% EBR, and 25% I/O configuration.

6. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

In fpBGA and ftBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual
auxiliary supply current is the sum of I_{CCAUX} and I_{CCPLL}. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the
auxiliary power supply.

Programming and Erase Flash Supply Current^{1, 2, 3, 4, 5}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typical (25°C, Max. Supply) ⁶	Units
		XP2-5	17	mA
		XP2-8	21	mA
I _{CC}	Core Power Supply Current	XP2-17	28	mA
		XP2-30	36	mA
		XP2-40	50	mA
I _{CCAUX}		XP2-5	64	mA
	Auxiliary Power Supply Current ⁷	XP2-8	66	mA
		XP2-17	83	mA
		XP2-30	87	mA
		XP2-40	88	mA
I _{CCPLL}	PLL Power Supply Current (per PLL)		0.1	mA
I _{CCIO}	Bank Power Supply Current (per Bank)		5	mA
I _{CCJ}	V _{CCJ} Power Supply Current ⁸		14	mA

1. For further information on supply current, please see TN1139, Power Estimation and Management for LatticeXP2 Devices.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

3. Frequency 0 MHz (excludes dynamic power from FPGA operation).

4. A specific configuration pattern is used that scales with the size of the device; consists of 75% PFU utilization, 50% EBR, and 25% I/O configuration.

5. Bypass or decoupling capacitor across the supply.

6. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

 In fpBGA and ftBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual auxiliary supply current is the sum of I_{CCAUX} and I_{CCPLL}. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the auxiliary power supply.

8. When programming via JTAG.

sysIO Differential Electrical Characteristics LVDS

Parameter	Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP} , V _{INM}	Input Voltage		0	_	2.4	V
V _{CM}	Input Common Mode Voltage	Half the Sum of the Two Inputs	0.05	_	2.35	V
V _{THD}	Differential Input Threshold	Difference Between the Two Inputs	+/-100	_	—	mV
I _{IN}	Input Current	Power On or Power Off			+/-10	μA
V _{OH}	Output High Voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	_	1.38	1.60	V
V _{OL}	Output Low Voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.9V	1.03	—	V
V _{OD}	Output Voltage Differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV _{OD}	Change in V _{OD} Between High and Low		_	_	50	mV
V _{OS}	Output Voltage Offset	(V _{OP} + V _{OM})/2, R _T = 100 Ohm	1.125	1.20	1.375	V
ΔV_{OS}	Change in V _{OS} Between H and L			_	50	mV
I _{SA}	Output Short Circuit Current	V _{OD} = 0V Driver Outputs Shorted to Ground	_	_	24	mA
I _{SAB}	Output Short Circuit Current	V _{OD} = 0V Driver Outputs Shorted to Each Other	_	_	12	mA

Over Recommended Operating Conditions

Differential HSTL and SSTL

Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

For further information on LVPECL, RSDS, MLVDS, BLVDS and other differential interfaces please see details in additional technical notes listed at the end of this data sheet.

LVDS25E

The top and bottom sides of LatticeXP2 devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one possible solution for point-to-point signals.

Table 3-1. LVDS25E DC Conditions

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/-5%)	2.50	V
Z _{OUT}	Driver Impedance	20	Ω
R _S	Driver Series Resistor (+/-1%)	158	Ω
R _P	Driver Parallel Resistor (+/-1%)	140	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage (after R _P)	1.43	V
V _{OL}	Output Low Voltage (after R _P)	1.07	V
V _{OD}	Output Differential Voltage (After R _P)	0.35	V
V _{CM}	Output Common Mode Voltage	1.25	V
Z _{BACK}	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	6.03	mA

LVCMOS33D

All I/O banks support emulated differential I/O using the LVCMOS33D I/O type. This option, along with the external resistor network, provides the system designer the flexibility to place differential outputs on an I/O bank with 3.3V VCCIO. The default drive current for LVCMOS33D output is 12mA with the option to change the device strength to 4mA, 8mA, 16mA or 20mA. Follow the LVCMOS33 specifications for the DC characteristics of the LVCMOS33D.

RSDS

The LatticeXP2 devices support differential RSDS standard. This standard is emulated using complementary LVC-MOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions¹

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/-5%)	2.50	V
Z _{OUT}	Driver Impedance	20	Ω
R _S	Driver Series Resistor (+/-1%)	294	Ω
R _P	Driver Parallel Resistor (+/-1%)	121	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage (After R _P)	1.35	V
V _{OL}	Output Low Voltage (After R _P)	1.15	V
V _{OD}	Output Differential Voltage (After R _P)	0.20	V
V _{CM}	Output Common Mode Voltage	1.25	V
Z _{BACK}	Back Impedance	101.5	Ω
I _{DC}	DC Output Current	3.66	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

LatticeXP2 External Switching Characteristics

			-7		-	6	-		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
General I/O Pin Parameters (using Primary Clo		ck without F	PLL)1						
		XP2-5		3.80	_	4.20	_	4.60	ns
		XP2-8		3.80		4.20		4.60	ns
t _{CO}	Register	XP2-17		3.80	_	4.20	_	4.60	ns
		XP2-30		4.00	_	4.40	_	4.90	ns
		XP2-40		4.00	_	4.40		4.90	ns
		XP2-5	0.00		0.00	—	0.00		ns
		XP2-8	0.00	_	0.00	—	0.00	_	ns
t _{SU}	Register	XP2-17	0.00	_	0.00	—	0.00	_	ns
		XP2-30	0.00	_	0.00	—	0.00	_	ns
		XP2-40	0.00		0.00	—	0.00		ns
		XP2-5	1.40	_	1.70	—	1.90	_	ns
		XP2-8	1.40	_	1.70	—	1.90	_	ns
t _H	Register	XP2-17	1.40	_	1.70	—	1.90	_	ns
		XP2-30	1.40		1.70	—	1.90		ns
		XP2-40	1.40	_	1.70	—	1.90	_	ns
	XP2-5	1.40	_	1.70	—	1.90	_	ns	
		XP2-8	1.40	_	1.70	—	1.90	_	ns
t _{SU_DEL}	Register with Data Input Delay	XP2-17	1.40	_	1.70	—	1.90	_	ns
		XP2-30	1.40		1.70	_	1.90		ns
		XP2-40	1.40	_	1.70	—	1.90	_	ns
		XP2-5	0.00	_	0.00	—	0.00	_	ns
		XP2-8	0.00	_	0.00	—	0.00	_	ns
t _{H_DEL}	Register with Input Data Delay	XP2-17	0.00	_	0.00	—	0.00	_	ns
		XP2-30	0.00		0.00	—	0.00		ns
		XP2-40	0.00		0.00	—	0.00		ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	XP2	_	420	_	357	_	311	MHz
General I/O Pir	n Parameters (using Edge Clock	without PLL	.) ¹						
		XP2-5		3.20	_	3.60	_	3.90	ns
		XP2-8		3.20		3.60		3.90	ns
t _{COE}	Clock to Output - PIO Output Register	XP2-17		3.20		3.60		3.90	ns
		XP2-30		3.20	_	3.60		3.90	ns
		XP2-40		3.20	_	3.60	_	3.90	ns
		XP2-5	0.00	_	0.00	—	0.00	_	ns
		XP2-8	0.00		0.00		0.00		ns
t _{SUE}	Register	XP2-17	0.00	—	0.00	—	0.00	—	ns
		XP2-30	0.00		0.00	—	0.00		ns
		XP2-40	0.00		0.00		0.00		ns

Over Recommended Operating Conditions

EBR Timing Diagrams

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

Figure 3-7. Read/Write Mode with Input and Output Registers

LatticeXP2 Family Timing Adders^{1, 2, 3, 4} (Continued)

Buffer Type	Description	-7	-6	-5	Units
HSTL15_I	HSTL_15 class I 4mA drive	0.32	0.69	1.06	ns
HSTL15D_I	Differential HSTL 15 class I 4mA drive	0.32	0.69	1.06	ns
SSTL33_I	SSTL_3 class I	-0.25	0.05	0.35	ns
SSTL33_II	SSTL_3 class II	-0.31	-0.02	0.27	ns
SSTL33D_I	Differential SSTL_3 class I	-0.25	0.05	0.35	ns
SSTL33D_II	Differential SSTL_3 class II	-0.31	-0.02	0.27	ns
SSTL25_I	SSTL_2 class I 8mA drive	-0.25	0.02	0.30	ns
SSTL25_II	SSTL_2 class II 16mA drive	-0.28	0.00	0.28	ns
SSTL25D_I	Differential SSTL_2 class I 8mA drive	-0.25	0.02	0.30	ns
SSTL25D_II	Differential SSTL_2 class II 16mA drive	-0.28	0.00	0.28	ns
SSTL18_I	SSTL_1.8 class I	-0.17	0.13	0.43	ns
SSTL18_II	SSTL_1.8 class II 8mA drive	-0.18	0.12	0.42	ns
SSTL18D_I	Differential SSTL_1.8 class I	-0.17	0.13	0.43	ns
SSTL18D_II	Differential SSTL_1.8 class II 8mA drive	-0.18	0.12	0.42	ns
LVTTL33_4mA	LVTTL 4mA drive	-0.37	-0.05	0.26	ns
LVTTL33_8mA	LVTTL 8mA drive	-0.45	-0.18	0.10	ns
LVTTL33_12mA	LVTTL 12mA drive	-0.52	-0.24	0.04	ns
LVTTL33_16mA	LVTTL 16mA drive	-0.43	-0.14	0.14	ns
LVTTL33_20mA	LVTTL 20mA drive	-0.46	-0.18	0.09	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive, fast slew rate	-0.37	-0.05	0.26	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive, fast slew rate	-0.45	-0.18	0.10	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive, fast slew rate	-0.52	-0.24	0.04	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive, fast slew rate	-0.43	-0.14	0.14	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive, fast slew rate	-0.46	-0.18	0.09	ns
LVCMOS25_4mA	LVCMOS 2.5 4mA drive, fast slew rate	-0.42	-0.15	0.13	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive, fast slew rate	-0.48	-0.21	0.05	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive, fast slew rate	0.00	0.00	0.00	ns
LVCMOS25_16mA	LVCMOS 2.5 16mA drive, fast slew rate	-0.45	-0.18	0.08	ns
LVCMOS25_20mA	LVCMOS 2.5 20mA drive, fast slew rate	-0.49	-0.22	0.04	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive, fast slew rate	-0.46	-0.18	0.10	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive, fast slew rate	-0.52	-0.25	0.02	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive, fast slew rate	-0.56	-0.30	-0.03	ns
LVCMOS18_16mA	LVCMOS 1.8 16mA drive, fast slew rate	-0.50	-0.24	0.03	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive, fast slew rate	-0.45	-0.17	0.11	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive, fast slew rate	-0.53	-0.26	0.00	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive, fast slew rate	-0.46	-0.19	0.08	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive, fast slew rate	-0.55	-0.29	-0.02	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive, slow slew rate	0.98	1.41	1.84	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive, slow slew rate	0.74	1.16	1.58	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive, slow slew rate	0.56	0.97	1.38	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive, slow slew rate	0.77	1.19	1.61	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive, slow slew rate	0.57	0.98	1.40	ns

Over Recommended Operating Conditions

Pin Information Summary

XP2-5 XP2-8		XP2-17			XP2-30			XP2-40									
Pin Ty	ре	132 csBGA	144 TQFP	208 PQFP	256 ftBGA	132 csBGA	144 TQFP	208 PQFP	256 ftBGA	208 PQFP	256 ftBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	484 fpBGA	672 fpBGA
Single Ended Use	er I/O	86	100	146	172	86	100	146	201	146	201	358	201	363	472	363	540
Differential Pair	Normal	35	39	57	66	35	39	57	77	57	77	135	77	137	180	137	204
User I/O	Highspeed	8	11	16	20	8	11	16	23	16	23	44	23	44	56	44	66
	TAP	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Configuration	Muxed	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
	Dedicated	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Non Configura-	Muxed	5	5	7	7	7	7	9	9	11	11	21	7	11	13	11	13
tion	Dedicated	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Vcc		6	4	9	6	6	4	9	6	9	6	16	6	16	20	16	20
Vccaux		4	4	4	4	4	4	4	4	4	4	8	4	8	8	8	8
VCCPLL		2	2	2	-	2	2	2	-	4	-	-	-	-	-	-	-
	Bank0	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
	Bank1	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
	Bank2	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
VCCIO	Bank3	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
10010	Bank4	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
	Bank5	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
	Bank6	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
	Bank7	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
GND, GND0-GNI	77	15	15	20	20	15	15	22	20	22	20	56	20	56	64	56	64
NC		-	-	4	31	-	-	2	2	-	2	7	2	2	69	2	1
	Bank0	18/9	20/10	20/10	26/13	18/9	20/10	20/10	28/14	20/10	28/14	52/26	28/14	52/26	70/35	52/26	70/35
	Bank1	4/2	6/3	18/9	18/9	4/2	6/3	18/9	22/11	18/9	22/11	36/18	22/11	36/18	54/27	36/18	70/35
	Bank2	16/8	18/9	18/9	22/11	16/8	18/9	18/9	26/13	18/9	26/13	46/23	26/13	46/23	56/28	46/23	64/32
Single Ended/	Bank3	4/2	4/2	16/8	20/10	4/2	4/2	16/8	24/12	16/8	24/12	44/22	24/12	46/23	56/28	46/23	66/33
per Bank	Bank4	8/4	8/4	18/9	18/9	8/4	8/4	18/9	26/13	18/9	26/13	36/18	26/13	38/19	54/27	38/19	70/35
	Bank5	14/7	18/9	20/10	24/12	14/7	18/9	20/10	24/12	20/10	24/12	52/26	24/12	53/26	70/35	53/26	70/35
	Bank6	6/3	8/4	18/9	22/11	6/3	8/4	18/9	27/13	18/9	27/13	46/23	27/13	46/23	56/28	46/23	66/33
	Bank7	16/8	18/9	18/9	22/11	16/8	18/9	18/9	24/12	18/9	24/12	46/23	24/12	46/23	56/28	46/23	64/32
	Bank0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank2	3	4	4	5	3	4	4	6	4	6	11	6	11	14	11	16
True LVDS Pairs	Bank3	1	1	4	5	1	1	4	6	4	6	11	6	11	14	11	17
Bank	Bank4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank6	1	2	4	5	1	2	4	6	4	6	11	6	11	14	11	17
	Bank7	3	4	4	5	3	4	4	5	4	5	11	5	11	14	11	16
	Bank0	1	1	1	1	1	1	1	1	1	1	3	1	2	4	2	4
	Bank1	0	0	1	1	0	0	1	1	1	1	2	1	2	3	2	4
	Bank2	1	1	1	1	1	1	1	1	1	1	2	1	3	3	3	4
DDR Banks	Bank3	0	0	1	1	0	0	1	1	1	1	2	1	3	3	3	4
I/O Bank ¹	Bank4	0	0	1	1	0	0	1	1	1	1	2	1	2	3	2	4
	Bank5	1	1	1	1	1	1	1	1	1	1	3	1	2	4	2	4
	Bank6	0	0	1	1	0	0	1	1	1	1	2	1	3	3	3	4
	Bank7	1	1	1	1	1	1	1	1	1	1	2	1	3	3	3	4

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5F484C	1.2V	-5	fpBGA	484	COM	40
LFXP2-40E-6F484C	1.2V	-6	fpBGA	484	COM	40
LFXP2-40E-7F484C	1.2V	-7	fpBGA	484	COM	40
LFXP2-40E-5F672C	1.2V	-5	fpBGA	672	COM	40
LFXP2-40E-6F672C	1.2V	-6	fpBGA	672	COM	40
LFXP2-40E-7F672C	1.2V	-7	fpBGA	672	COM	40

Industrial

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-5E-5M132I	1.2V	-5	csBGA	132	IND	5
LFXP2-5E-6M132I	1.2V	-6	csBGA	132	IND	5
LFXP2-5E-6FT256I	1.2V	-6	ftBGA	256	IND	5

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-8E-5M132I	1.2V	-5	csBGA	132	IND	8
LFXP2-8E-6M132I	1.2V	-6	csBGA	132	IND	8
LFXP2-5E-5FT256I	1.2V	-5	ftBGA	256	IND	5
LFXP2-8E-5FT256I	1.2V	-5	ftBGA	256	IND	8
LFXP2-8E-6FT256I	1.2V	-6	ftBGA	256	IND	8

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-17E-5FT256I	1.2V	-5	ftBGA	256	IND	17
LFXP2-17E-6FT256I	1.2V	-6	ftBGA	256	IND	17
LFXP2-17E-5F484I	1.2V	-5	fpBGA	484	IND	17
LFXP2-17E-6F484I	1.2V	-6	fpBGA	484	IND	17

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FT256I	1.2V	-5	ftBGA	256	IND	30
LFXP2-30E-6FT256I	1.2V	-6	ftBGA	256	IND	30
LFXP2-30E-5F484I	1.2V	-5	fpBGA	484	IND	30
LFXP2-30E-6F484I	1.2V	-6	fpBGA	484	IND	30
LFXP2-30E-5F672I	1.2V	-5	fpBGA	672	IND	30
LFXP2-30E-6F672I	1.2V	-6	fpBGA	672	IND	30