Lattice Semiconductor Corporation - <u>LFXP2-40E-6F672I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	5000
Number of Logic Elements/Cells	40000
Total RAM Bits	906240
Number of I/O	540
Number of Gates	
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-40e-6f672i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeXP2 Family Data Sheet Introduction

February 2012

Features

- flexiFLASH[™] Architecture
 - Instant-on
 - Infinitely reconfigurable
 - Single chip
 - FlashBAK[™] technology
 - Serial TAG memory
 - Design security

Live Update Technology

- TransFR[™] technology
- Secure updates with 128 bit AES encryption
- Dual-boot with external SPI

■ sysDSP[™] Block

- Three to eight blocks for high performance Multiply and Accumulate
- 12 to 32 18x18 multipliers
- Each block supports one 36x36 multiplier or four 18x18 or eight 9x9 multipliers

Embedded and Distributed Memory

- Up to 885 Kbits sysMEM[™] EBR
- Up to 83 Kbits Distributed RAM

■ sysCLOCK[™] PLLs

- Up to four analog PLLs per device
- Clock multiply, divide and phase shifting

Flexible I/O Buffer

- sysIO[™] buffer supports:
 - LVCMOS 33/25/18/15/12; LVTTL
 - SSTL 33/25/18 class I, II
 - HSTL15 class I; HSTL18 class I, II
 - PCI
 - LVDS, Bus-LVDS, MLVDS, LVPECL, RSDS
- Pre-engineered Source Synchronous Interfaces
 - DDR / DDR2 interfaces up to 200 MHz
 - 7:1 LVDS interfaces support display applications
 - XGMII
- Density And Package Options
 - 5k to 40k LUT4s, 86 to 540 I/Os
 - csBGA, TQFP, PQFP, ftBGA and fpBGA packages
 - Density migration supported
- Flexible Device Configuration
 - SPI (master and slave) Boot Flash Interface
 - Dual Boot Image supported
 - Soft Error Detect (SED) macro embedded

System Level Support

- IEEE 1149.1 and IEEE 1532 Compliant
- · On-chip oscillator for initialization & general use
- Devices operate with 1.2V power supply

Device	XP2-5	XP2-8	XP2-17	XP2-30	XP2-40
LUTs (K)	5	8	17	29	40
Distributed RAM (KBits)	10	18	35	56	83
EBR SRAM (KBits)	166	221	276	387	885
EBR SRAM Blocks	9	12	15	21	48
sysDSP Blocks	3	4	5	7	8
18 x 18 Multipliers	12	16	20	28	32
V _{CC} Voltage	1.2	1.2	1.2	1.2	1.2
GPLL	2	2	4	4	4
Max Available I/O	172	201	358	472	540
Packages and I/O Combinations					•
132-Ball csBGA (8 x 8 mm)	86	86			
144-Pin TQFP (20 x 20 mm)	100	100			
208-Pin PQFP (28 x 28 mm)	146	146	146		
256-Ball ftBGA (17 x17 mm)	172	201	201	201	
484-Ball fpBGA (23 x 23 mm)			358	363	363
672-Ball fpBGA (27 x 27 mm)				472	540

Table 1-1. LatticeXP2 Family Selection Guide

Data Sheet DS1009

^{© 2012} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

PFU Blocks

The core of the LatticeXP2 device is made up of logic blocks in two forms, PFUs and PFFs. PFUs can be programmed to perform logic, arithmetic, distributed RAM and distributed ROM functions. PFF blocks can be programmed to perform logic, arithmetic and ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices, numbered Slice 0 through Slice 3, as shown in Figure 2-2. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs associated with each PFU block.

Figure 2-2. PFU Diagram

Slice

Slice 0 through Slice 2 contain two 4-input combinatorial Look-Up Tables (LUT4), which feed two registers. Slice 3 contains two LUT4s and no registers. For PFUs, Slice 0 and Slice 2 can also be configured as distributed memory, a capability not available in PFF blocks. Table 2-1 shows the capability of the slices in both PFF and PFU blocks along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured as positive/negative edge triggered or level sensitive clocks.

Table 2-1.	Resources	and Modes	Available	per Slice
			/ IT amaint	

	PFU E	BLock	PFF E	Block
Slice	Resources	Modes	Resources	Modes
Slice 0	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM
Slice 1	2 LUT4s and 2 Registers	Logic, Ripple, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM
Slice 2	2 LUT4s and 2 Registers	Logic, Ripple, RAM, ROM	2 LUT4s and 2 Registers	Logic, Ripple, ROM
Slice 3	2 LUT4s	Logic, ROM	2 LUT4s	Logic, ROM

Slice 0 through Slice 2 have 14 input signals: 13 signals from routing and one from the carry-chain (from the adjacent slice or PFU). There are seven outputs: six to routing and one to carry-chain (to the adjacent PFU). Slice 3 has 13 input signals from routing and four signals to routing. Table 2-2 lists the signals associated with Slice 0 to Slice 2.

Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

Logic Mode

In this mode, the LUTs in each slice are configured as LUT4s. A LUT4 has 16 possible input combinations. Fourinput logic functions are generated by programming the LUT4. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger LUTs such as LUT6, LUT7 and LUT8, can be constructed by concatenating two or more slices. Note that a LUT8 requires more than four slices.

Ripple Mode

Ripple mode allows efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/Down counter with async clear
- Up/Down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Two carry signals, FCI and FCO, are generated per slice in this mode, allowing fast arithmetic functions to be constructed by concatenating slices.

RAM Mode

In this mode, a 16x4-bit distributed Single Port RAM (SPR) can be constructed using each LUT block in Slice 0 and Slice 2 as a 16x1-bit memory. Slice 1 is used to provide memory address and control signals. A 16x2-bit Pseudo Dual Port RAM (PDPR) memory is created by using one slice as the read-write port and the other companion slice as the read-only port.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information on using RAM in LatticeXP2 devices, please see TN1137, <u>LatticeXP2 Memory Usage Guide</u>.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

Number of slices	3 3	

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

ROM Mode

ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in the ROM mode. Preloading is accomplished through the programming interface during PFU configuration.

Figure 2-5. Clock Divider Connections

Clock Distribution Network

LatticeXP2 devices have eight quadrant-based primary clocks and between six and eight flexible region-based secondary clocks/control signals. Two high performance edge clocks are available on each edge of the device to support high speed interfaces. The clock inputs are selected from external I/Os, the sysCLOCK PLLs, or routing. Clock inputs are fed throughout the chip via the primary, secondary and edge clock networks.

Primary Clock Sources

LatticeXP2 devices derive primary clocks from four sources: PLL outputs, CLKDIV outputs, dedicated clock inputs and routing. LatticeXP2 devices have two to four sysCLOCK PLLs, located in the four corners of the device. There are eight dedicated clock inputs, two on each side of the device. Figure 2-6 shows the primary clock sources.

Figure 2-6. Primary Clock Sources for XP2-17

Note: This diagram shows sources for the XP2-17 device. Smaller LatticeXP2 devices have two GPLLs.

MULTADDSUBSUM sysDSP Element

In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and B1. Additionally the operands A2 and B2 are multiplied and the result is added/ subtracted with the result of the multiplier operation of operands A3 and B3. The result of both addition/subtraction are added in a summation block. The user can enable the input, output and pipeline registers. Figure 2-23 shows the MULTADDSUBSUM sysDSP element.

Figure 2-23. MULTADDSUBSUM

Clock, Clock Enable and Reset Resources

Global Clock, Clock Enable (CE) and Reset (RST) signals from routing are available to every DSP block. From four clock sources (CLK0, CLK1, CLK2, CLK3) one clock is selected for each input register, pipeline register and output

shows the diagram using this gearbox function. For more information on this topic, see TN1138, <u>LatticeXP2 High</u> <u>Speed I/O Interface</u>.

LatticeXP2 devices contain two types of sysIO buffer pairs.

1. Top and Bottom (Banks 0, 1, 4 and 5) sysIO Buffer Pairs (Single-Ended Outputs Only)

The sysIO buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have programmable PCI clamps.

2. Left and Right (Banks 2, 3, 6 and 7) sysIO Buffer Pairs (50% Differential and 100% Single-Ended Outputs) The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the referenced input buffers can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp pad is associated with the negative side of the differential I/O.

LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

Typical sysIO I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when $V_{CC, V} C_{CCONFIG} (V_{CCIO7})$ and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. During power up and before the FPGA core logic becomes active, all user I/Os will be high-impedance with weak pull-up. Please refer to TN1136, <u>LatticeXP2 sysIO</u> Usage Guide for additional information.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported sysIO Standards

The LatticeXP2 sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2V, 1.5V, 1.8V, 2.5V and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, MLVDS, BLVDS, LVPECL, RSDS, differential SSTL and differential HSTL. Tables 2-12 and 2-13 show the I/O standards (together with their supply and reference voltages) supported by LatticeXP2 devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1136, LatticeXP2 sysIO Usage Guide.

Table 2-12. Supported Input Standards

Input Standard	V _{REF} (Nom.)	V _{CCIO} ¹ (Nom.)				
Single Ended Interfaces						
LVTTL	—	—				
LVCMOS33	_	_				
LVCMOS25	—	_				
LVCMOS18	—	1.8				
LVCMOS15	_	1.5				
LVCMOS12	_	—				
PCI33	—	_				
HSTL18 Class I, II	0.9	_				
HSTL15 Class I	0.75	—				
SSTL33 Class I, II	1.5	_				
SSTL25 Class I, II	1.25	_				
SSTL18 Class I, II	0.9	—				
Differential Interfaces						
Differential SSTL18 Class I, II	—	—				
Differential SSTL25 Class I, II	—	—				
Differential SSTL33 Class I, II	—	—				
Differential HSTL15 Class I	—	—				
Differential HSTL18 Class I, II	—	—				
LVDS, MLVDS, LVPECL, BLVDS, RSDS	—	_				

1. When not specified, V_{CCIO} can be set anywhere in the valid operating range (page 3-1).

original backup configuration and try again. This all can be done without power cycling the system. For more information please see TN1220, <u>LatticeXP2 Dual Boot Feature</u>.

For more information on device configuration, please see TN1141, LatticeXP2 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support

LatticeXP2 devices have dedicated logic to perform Cyclic Redundancy Code (CRC) checks. During configuration, the configuration data bitstream can be checked with the CRC logic block. In addition, LatticeXP2 devices can be programmed for checking soft errors in SRAM. SED can be run on a programmed device when the user logic is not active. In the event a soft error occurs, the device can be programmed to either reload from a known good boot image (from internal Flash or external SPI memory) or generate an error signal.

For further information on SED support, please see TN1130, LatticeXP2 Soft Error Detection (SED) Usage Guide.

On-Chip Oscillator

Every LatticeXP2 device has an internal CMOS oscillator that is used to derive a Master Clock (CCLK) for configuration. The oscillator and CCLK run continuously and are available to user logic after configuration is complete. The available CCLK frequencies are listed in Table 2-14. When a different CCLK frequency is selected during the design process, the following sequence takes place:

- 1. Device powers up with the default CCLK frequency.
- 2. During configuration, users select a different CCLK frequency.
- 3. CCLK frequency changes to the selected frequency after clock configuration bits are received.

This internal CMOS oscillator is available to the user by routing it as an input clock to the clock tree. For further information on the use of this oscillator for configuration or user mode, please see TN1141, <u>LatticeXP2 sysCON-FIG Usage Guide</u>.

Table 2-14. Selectable	CCLKs and Oscillato	r Freauencies Durina	Configuration and	User Mode

CCLK/Oscillator (MHz)
2.5 ¹
3.1 ²
4.3
5.4
6.9
8.1
9.2
10
13
15
20
26
32
40
54
80 ³
163 ³
1 Software default oscillator frequency

1. Software default oscillator frequency.

2. Software default CCLK frequency.

3. Frequency not valid for CCLK.

Density Shifting

The LatticeXP2 family is designed to ensure that different density devices in the same family and in the same package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

sysIO Recommended Operating Conditions

		V _{CCIO}		V _{REF} (V)				
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.		
LVCMOS33 ²	3.135	3.3	3.465	—				
LVCMOS25 ²	2.375	2.5	2.625	—				
LVCMOS18	1.71	1.8	1.89	—	—	—		
LVCMOS15	1.425	1.5	1.575	—				
LVCMOS12 ²	1.14	1.2	1.26	—				
LVTTL33 ²	3.135	3.3	3.465	—	—	—		
PCI33	3.135	3.3	3.465	—				
SSTL18_I ² , SSTL18_II ²	1.71	1.8	1.89	0.833	0.9	0.969		
SSTL25_I ² , SSTL25_II ²	2.375	2.5	2.625	1.15	1.25	1.35		
SSTL33_I ² , SSTL33_II ²	3.135	3.3	3.465	1.3	1.5	1.7		
HSTL15_l ²	1.425	1.5	1.575	0.68	0.75	0.9		
HSTL18_I ² , HSTL18_II ²	1.71	1.8	1.89	0.816	0.9	1.08		
LVDS25 ²	2.375	2.5	2.625	—				
MLVDS251	2.375	2.5	2.625	—				
LVPECL33 ^{1, 2}	3.135	3.3	3.465	—				
BLVDS25 ^{1, 2}	2.375	2.5	2.625	—				
RSDS ^{1, 2}	2.375	2.5	2.625	—				
SSTL18D_I ² , SSTL18D_II ²	1.71	1.8	1.89	—	—	—		
SSTL25D_ I ² , SSTL25D_II ²	2.375	2.5	2.625	—	—	—		
SSTL33D_ I ² , SSTL33D_ II ²	3.135	3.3	3.465	—	—	—		
HSTL15D_ I ²	1.425	1.5	1.575	—	—	—		
HSTL18D_ I ² , HSTL18D_ II ²	1.71	1.8	1.89	_	—	—		

Over Recommended Operating Conditions

1. Inputs on chip. Outputs are implemented with the addition of external resistors. 2. Input on this standard does not depend on the value of V_{CCIO} .

LatticeXP2 External Switching Characteristics (Continued)

		-7		-6		-5			
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		XP2-5	1.00		1.30	_	1.60		ns
		XP2-8	1.00	_	1.30	_	1.60	_	ns
t _{HE}	Clock to Data Hold - PIO Input Register	XP2-17	1.00		1.30	_	1.60		ns
		XP2-30	1.20		1.60	_	1.90		ns
		XP2-40	1.20		1.60		1.90		ns
		XP2-5	1.00		1.30	_	1.60		ns
		XP2-8	1.00		1.30	_	1.60		ns
t _{SU_DELE}	Clock to Data Setup - PIO Input Begister with Data Input Delay	XP2-17	1.00		1.30	_	1.60		ns
		XP2-30	1.20		1.60		1.90		ns
		XP2-40	1.20		1.60		1.90		ns
		XP2-5	0.00		0.00		0.00		ns
		XP2-8	0.00	—	0.00	—	0.00	—	ns
t _{H_DELE}	Clock to Data Hold - PIO Input Begister with Input Data Delay	XP2-17	0.00	—	0.00	—	0.00	—	ns
		XP2-30	0.00		0.00		0.00		ns
		XP2-40	0.00		0.00		0.00		ns
f _{MAX_IOE}	Clock Frequency of I/O and PFU Register	XP2	_	420	_	357	_	311	MHz
General I/O Pir	Parameters (using Primary Clo	ck with PLL)1	1	1	1	1	1	
	XP2-5	—	3.00	—	3.30	—	3.70	ns	
		XP2-8		3.00		3.30		3.70	ns
t _{COPLL} Clock to Output - PIO Output Register	Clock to Output - PIO Output	XP2-17		3.00		3.30		3.70	ns
		XP2-30	_	3.00		3.30		3.70	ns
		XP2-40		3.00		3.30		3.70	ns
		XP2-5	1.00		1.20		1.40		ns
		XP2-8	1.00		1.20		1.40		ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	XP2-17	1.00		1.20		1.40		ns
		XP2-30	1.00		1.20		1.40		ns
		XP2-40	1.00		1.20	_	1.40		ns
		XP2-5	0.90		1.10		1.30		ns
		XP2-8	0.90		1.10		1.30		ns
t _{HPLL}	Clock to Data Hold - PIO Input	XP2-17	0.90		1.10		1.30		ns
		XP2-30	1.00	—	1.20	—	1.40	—	ns
		XP2-40	1.00	—	1.20	—	1.40	—	ns
		XP2-5	1.90	—	2.10	—	2.30	—	ns
		XP2-8	1.90		2.10	—	2.30	_	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Begister with Data Input Delay	XP2-17	1.90	—	2.10	—	2.30	—	ns
	lingibion with Data input Delay	XP2-30	2.00	—	2.20	—	2.40	—	ns
		XP2-40	2.00	—	2.20	—	2.40	—	ns

Over Recommended Operating Conditions

EBR Timing Diagrams

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

Figure 3-7. Read/Write Mode with Input and Output Registers

LatticeXP2 Family Data Sheet Pinout Information

February 2012

Data Sheet DS1009

Signal Descriptions		
Signal Name	I/O	Description
General Purpose		l
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).
P[Edge] [Row/Column Number*]_[A/B]	I/O	[Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or B (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
		[A/B] indicates the PIO within the PIC to which the pad is connected. Some of these user-programmable pins are shared with special function pins. These pins, when not used as special purpose pins, can be programmed as I/Os for user logic. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.
GSRN	I	Global RESET signal (active low). Any I/O pin can be GSRN.
NC	—	No connect.
GND		Ground. Dedicated pins.
V _{CC}		Power supply pins for core logic. Dedicated pins.
V _{CCAUX}	_	Auxiliary power supply pin. This dedicated pin powers all the differential and referenced input buffers.
V _{CCPLL}		PLL supply pins. csBGA, PQFP and TQFP packages only.
V _{CCIOx}		Dedicated power supply pins for I/O bank x.
V _{REF1_x} , V _{REF2_x}	_	Reference supply pins for I/O bank x. Pre-determined pins in each bank are assigned as V_{REF} inputs. When not used, they may be used as I/O pins.
PLL and Clock Functions (Used as us	er prog	ammable I/O pins when not in use for PLL or clock pins)
[LOC][num]_V _{CCPLL}		Power supply pin for PLL: LLC, LRC, URC, ULC, num = row from center.
[LOC][num]_GPLL[T, C]_IN_A	I	General Purpose PLL (GPLL) input pads: LLC, LRC, URC, ULC, num = row from center, $T = true$ and $C = complement$, index A,B,Cat each side.
[LOC][num]_GPLL[T, C]_FB_A	I	Optional feedback GPLL input pads: LLC, LRC, URC, ULC, num = row from center, $T =$ true and $C =$ complement, index A,B,Cat each side.
PCLK[T, C]_[n:0]_[3:0]	I	Primary Clock pads, T = true and C = complement, n per side, indexed by bank and $0,1,2,3$ within bank.
[LOC]DQS[num]	I	DQS input pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = ball function number. Any pad can be configured to be output.
Test and Programming (Dedicated Pi	ns)	
TMS	I	Test Mode Select input, used to control the 1149.1 state machine. Pull-up is enabled during configuration.
тск	I	Test Clock input pin, used to clock the 1149.1 state machine. No pull-up enabled.
ТЛ	I	Test Data in pin. Used to load data into device using 1149.1 state machine. After power-up, this TAP port can be activated for configuration by sending appropriate command. (Note: once a configuration port is selected it is locked. Another configuration port cannot be selected until the power-up

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

sequence). Pull-up is enabled during configuration.

LatticeXP2 Family Data Sheet Ordering Information

February 2012

Data Sheet DS1009

Part Number Description

Ordering Information

The LatticeXP2 devices are marked with a single temperature grade, either Commercial or Industrial, as shown below.

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LatticeXP2 Family Data Sheet Supplemental Information

February 2012

Data Sheet DS1009

For Further Information

A variety of technical notes for the LatticeXP2 FPGA family are available on the Lattice Semiconductor web site at <u>www.latticesemi.com</u>.

- TN1136, LatticeXP2 sysIO Usage Guide
- TN1137, LatticeXP2 Memory Usage Guide
- TN1138, LatticeXP2 High Speed I/O Interface
- TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide
- TN1139, Power Estimation and Management for LatticeXP2 Devices
- TN1140, LatticeXP2 sysDSP Usage Guide
- TN1141, LatticeXP2 sysCONFIG Usage Guide
- TN1142, LatticeXP2 Configuration Encryption and Security Usage Guide
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- TN1220, LatticeXP2 Dual Boot Feature
- TN1130, LatticeXP2 Soft Error Detection (SED) Usage Guide
- TN1143, LatticeXP2 Hardware Checklist

For further information on interface standards refer to the following websites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
- PCI: <u>www.pcisig.com</u>

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
April 2008	01.4	DC and Switching	Updated Flash Download Time (From On-Chip Flash to SRAM) Table
(cont.)	(cont.)	Characteristics (cont.)	Updated Flash Program Time Table
			Updated Flash Erase Time Table
			Updated FlashBAK (from EBR to Flash) Table
			Updated Hot Socketing Specifications Table footnotes
		Pinout Information	Updated Signal Descriptions Table
June 2008	01.5	Architecture	Removed Read-Before-Write sysMEM EBR mode.
			Clarification of the operation of the secondary clock regions.
		DC and Switching Characteristics	Removed Read-Before-Write sysMEM EBR mode.
		Pinout Information	Updated DDR Banks Bonding Out per I/O Bank section of Pin Informa- tion Summary Table.
August 2008	01.6	—	Data sheet status changed from preliminary to final.
		Architecture	Clarification of the operation of the secondary clock regions.
		DC and Switching Characteristics	Removed "8W" specification from Hot Socketing Specifications table.
			Removed "8W" footnote from DC Electrical Characteristics table.
			Updated Register-to-Register Performance table.
		Ordering Information	Removed "8W" option from Part Number Description.
			Removed XP2-17 "8W" OPNs.
April 2011	01.7	DC and Switching Characteristics	Recommended Operating Conditions table, added footnote 5.
			On-Chip Flash Memory Specifications table, added footnote 1.
			BLVDS DC Conditions, corrected column title to be Z0 = 90 ohms.
			sysCONFIG Port Timing Specifications table, added footnote 1 for t _{DINIT} .
January 2012	01.8	Multiple	Added support for Lattice Diamond design software.
		Architecture	Corrected information regarding SED support.
		DC and Switching Characteristics	Added reference to ESD Performance Qualification Summary informa- tion.
May 2013	01.9	All	Updated document with new corporate logo.
		Architecture	Architecture Overview – Added information on the state of the register on power up and after configuration.
			Added information regarding SED support.
		DC and Switching Characteristics	Removed Input Clock Rise/Fall Time 1ns max from the sysCLOCK PLL Timing table.
		Ordering Information	Updated topside mark in Ordering Information diagram.
March 2014	02.0	Architecture	Updated Typical sysIO I/O Behavior During Power-up section. Added information on POR signal deactivation.
August 2014	02.1	Architecture	Updated Typical sysIO I/O Behavior During Power-up section. Described user I/Os during power up and before FPGA core logic is active.
September 2014	2.2	DC and Switching Characteristics	Updated Switching Test Conditions section. Re-linked missing figure.