

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	625
Number of Logic Elements/Cells	5000
Total RAM Bits	169984
Number of I/O	100
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-5e-5tn144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeXP2 Family Data Sheet Architecture

August 2014

Data Sheet DS1009

Architecture Overview

Each LatticeXP2 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and a row of sys-DSP[™] Digital Signal Processing blocks as shown in Figure 2-1.

On the left and right sides of the Programmable Functional Unit (PFU) array, there are Non-volatile Memory Blocks. In configuration mode the nonvolatile memory is programmed via the IEEE 1149.1 TAP port or the sysCONFIG[™] peripheral port. On power up, the configuration data is transferred from the Non-volatile Memory Blocks to the configuration SRAM. With this technology, expensive external configuration memory is not required, and designs are secured from unauthorized read-back. This transfer of data from non-volatile memory to configuration SRAM via wide busses happens in microseconds, providing an "instant-on" capability that allows easy interfacing in many applications. LatticeXP2 devices can also transfer data from the sysMEM EBR blocks to the Non-volatile Memory Blocks at user request.

There are two kinds of logic blocks, the PFU and the PFU without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row.

LatticeXP2 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large dedicated 18Kbit memory blocks. Each sysMEM block can be configured in a variety of depths and widths of RAM or ROM. In addition, LatticeXP2 devices contain up to two rows of DSP Blocks. Each DSP block has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO buffers. The sysIO buffers of the LatticeXP2 devices are arranged into eight banks, allowing the implementation of a wide variety of I/O standards. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as 7:1 LVDS interfaces, found in many display applications, and memory interfaces including DDR and DDR2.

The LatticeXP2 registers in PFU and sysI/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

Other blocks provided include PLLs and configuration functions. The LatticeXP2 architecture provides up to four General Purpose PLLs (GPLL) per device. The GPLL blocks are located in the corners of the device.

The configuration block that supports features such as configuration bit-stream de-encryption, transparent updates and dual boot support is located between banks two and three. Every device in the LatticeXP2 family supports a sysCONFIG port, muxed with bank seven I/Os, which supports serial device configuration. A JTAG port is provided between banks two and three.

This family also provides an on-chip oscillator. LatticeXP2 devices use 1.2V as their core voltage.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Routing

There are many resources provided in the LatticeXP2 devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) or x6 (spans seven PFU) connections. The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. The x2 and x6 resources are buffered to allow both short and long connections routing between PFUs.

The LatticeXP2 family has an enhanced routing architecture to produce a compact design. The Diamond design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

sysCLOCK Phase Locked Loops (PLL)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The LatticeXP2 family supports between two and four full featured General Purpose PLLs (GPLL). The architecture of the GPLL is shown in Figure 2-4.

CLKI, the PLL reference frequency, is provided either from the pin or from routing; it feeds into the Input Clock Divider block. CLKFB, the feedback signal, is generated from CLKOP (the primary clock output) or from a user clock pin/logic. CLKFB feeds into the Feedback Divider and is used to multiply the reference frequency.

Both the input path and feedback signals enter the Voltage Controlled Oscillator (VCO) block. The phase and frequency of the VCO are determined from the input path and feedback signals. A LOCK signal is generated by the VCO to indicate that the VCO is locked with the input clock signal.

The output of the VCO feeds into the CLKOP Divider, a post-scalar divider. The duty cycle of the CLKOP Divider output can be fine tuned using the Duty Trim block, which creates the CLKOP signal. By allowing the VCO to operate at higher frequencies than CLKOP, the frequency range of the GPLL is expanded. The output of the CLKOP Divider is passed through the CLKOK Divider, a secondary clock divider, to generate lower frequencies for the CLKOK output. For applications that require even lower frequencies, the CLKOP signal is passed through a divide-by-three divider to produce the CLKOK2 output. The CLKOK2 output is provided for applications that use source synchronous logic. The Phase/Duty Cycle/Duty Trim block is used to adjust the phase and duty cycle of the CLKOP Divider output to generate the CLKOS signal. The phase/duty cycle setting can be pre-programmed or dynamically adjusted.

The clock outputs from the GPLL; CLKOP, CLKOK, CLKOK2 and CLKOS, are fed to the clock distribution network.

For further information on the GPLL please see TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide.

Figure 2-5. Clock Divider Connections

Clock Distribution Network

LatticeXP2 devices have eight quadrant-based primary clocks and between six and eight flexible region-based secondary clocks/control signals. Two high performance edge clocks are available on each edge of the device to support high speed interfaces. The clock inputs are selected from external I/Os, the sysCLOCK PLLs, or routing. Clock inputs are fed throughout the chip via the primary, secondary and edge clock networks.

Primary Clock Sources

LatticeXP2 devices derive primary clocks from four sources: PLL outputs, CLKDIV outputs, dedicated clock inputs and routing. LatticeXP2 devices have two to four sysCLOCK PLLs, located in the four corners of the device. There are eight dedicated clock inputs, two on each side of the device. Figure 2-6 shows the primary clock sources.

Secondary Clock/Control Sources

LatticeXP2 devices derive secondary clocks (SC0 through SC7) from eight dedicated clock input pads and the rest from routing. Figure 2-7 shows the secondary clock sources.

Figure 2-7. Secondary Clock Sources

Figure 2-14. Slice0 through Slice2 Control Selection

Edge Clock Routing

LatticeXP2 devices have eight high-speed edge clocks that are intended for use with the PIOs in the implementation of high-speed interfaces. Each device has two edge clocks per edge. Figure 2-15 shows the selection muxes for these clocks.

Figure 2-15. Edge Clock Mux Connections

For further information on the sysMEM EBR block, please see TN1137, LatticeXP2 Memory Usage Guide.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the low-to-high transition of the reset signal, as shown in Figure 2-18. The GSR input to the EBR is always asynchronous.

Reset	
Clock	
Clock —————— Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM and ROM implementations.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

sysDSP™ Block

The LatticeXP2 family provides a sysDSP block making it ideally suited for low cost, high performance Digital Signal Processing (DSP) applications. Typical functions used in these applications include Bit Correlators, Fast Fourier Transform (FFT) functions, Finite Impulse Response (FIR) Filter, Reed-Solomon Encoder/Decoder, Turbo Encoder/ Decoder and Convolutional Encoder/Decoder. These complex signal processing functions use similar building blocks such as multiply-adders and multiply-accumulators.

sysDSP Block Approach Compare to General DSP

Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by higher clock speeds. The LatticeXP2 family, on the other hand, has many DSP blocks that support different data-widths. This allows the designer to use highly parallel implementations of DSP functions. The designer can optimize the DSP performance vs. area by choosing appropriate levels of parallelism. Figure 2-19 compares the fully serial and the mixed parallel and serial implementations.

- In the 'Signed/Unsigned' options the operands can be switched between signed and unsigned on every cycle.
- In the 'Add/Sub' option the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.

MULT sysDSP Element

This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, A and B, are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. Figure 2-20 shows the MULT sysDSP element.

Figure 2-20. MULT sysDSP Element

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to system clock domain. For further discussion on this topic, see the DDR Memory section of this data sheet.

Output Register Block

The output register block provides the ability to register signals from the core of the device before they are passed to the sysIO buffers. The blocks on the PIOs on the left, right and bottom contain registers for SDR operation that are combined with an additional latch for DDR operation. Figure 2-27 shows the diagram of the Output Register Block for PIOs.

In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or latch. In DDR mode, ONEG0 and OPOS0 are fed into registers on the positive edge of the clock. At the next clock cycle the registered OPOS0 is latched. A multiplexer running off the same clock cycle selects the correct register to feed the output (D0).

By combining output blocks of the complementary PIOs and sharing some registers from input blocks, a gearbox function can be implemented, to take four data streams ONEG0A, ONEG1A, ONEG1B and ONEG1B. Figure 2-27

Figure 2-28. DQS Input Routing (Left and Right)

	PIO A		PADA "T"
	PIO B		PADB "C"
	PIO A		PADA "T"
	PIO B	· · · · ·	PADB "C"
	PIO A		PADA "T"
	PIO B	↓+	PADB "C"
	PIO A		PADA "T"
	PIO B	┃┣	PADB "C"
DOG	PIO A	sysIO Buffer	
 ■ DQ5 		Delay	LVDS Pair
+ DQS	PIO B	Delay	LVDS Pair
↓ DQS	PIO B PIO A		PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
	→ PIO B → PIO A → PIO B		PADA "1" LVDS Pair PADB "C" PADA "T" LVDS Pair LVDS Pair PADA "C"
	→ PIO B → PIO A → PIO B → PIO A		PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
			PADA T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair LVDS Pair PADB "C"
			PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"

Figure 2-29. DQS Input Routing (Top and Bottom)

	PIO A		PADA "T"
	PIO B	+	PADB "C"
	PIO A		PADA "T"
	PIO B	· · · · ·	PADB "C"
—	PIO A		PADA "T" LVDS Pair
	PIO B	→	PADB "C"
	PIO A		PADA "T"
<u> </u>	PIO B	→	PADB "C"
	PIO A	syslO Buffer	·
DQS		Palay	
•		Delay	LVDS Pair
	PIO B		LVDS Pair I I PADB "C" I
	PIO B PIO A		LVDS Pair I PADB "C"
	→ PIO B → PIO A → PIO B		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"
	→ PIO B → PIO A → PIO B → PIO A		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
	→ PIO B → PIO A → PIO B → PIO A → PIO B		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "C" PADA "C"
	→ PIO B → PIO A → PIO A → PIO A → PIO A → PIO B → PIO A		LVDS Pair PADA "T" LVDS Pair PADA "T" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "T" LVDS Pair
			LVDS Pair PADA "T" LVDS Pair PADA "T" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"
			LVDS Pair PADA "T" LVDS Pair PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "T" LVDS Pair

LatticeXP2 devices contain two types of sysIO buffer pairs.

1. Top and Bottom (Banks 0, 1, 4 and 5) sysIO Buffer Pairs (Single-Ended Outputs Only)

The sysIO buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have programmable PCI clamps.

2. Left and Right (Banks 2, 3, 6 and 7) sysIO Buffer Pairs (50% Differential and 100% Single-Ended Outputs) The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the referenced input buffers can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp pad is associated with the negative side of the differential I/O.

LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

Typical sysIO I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when $V_{CC, V} C_{CCONFIG} (V_{CCIO7})$ and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. During power up and before the FPGA core logic becomes active, all user I/Os will be high-impedance with weak pull-up. Please refer to TN1136, <u>LatticeXP2 sysIO</u> Usage Guide for additional information.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported sysIO Standards

The LatticeXP2 sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2V, 1.5V, 1.8V, 2.5V and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, MLVDS, BLVDS, LVPECL, RSDS, differential SSTL and differential HSTL. Tables 2-12 and 2-13 show the I/O standards (together with their supply and reference voltages) supported by LatticeXP2 devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1136, LatticeXP2 sysIO Usage Guide.

Density Shifting

The LatticeXP2 family is designed to ensure that different density devices in the same family and in the same package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Hot Socketing Specifications^{1, 2, 3, 4}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{DK}	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX.)	_	_	+/-1	mA

1. Insensitive to sequence of V_{CC} , V_{CCAUX} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} , V_{CCAUX} and V_{CCIO} .

2. $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX) or $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).

3. I_{DK} is additive to I_{PU} , I_{PW} or I_{BH} .

4. LVCMOS and LVTTL only.

ESD Performance

Please refer to the <u>LatticeXP2 Product Family Qualification Summary</u> for complete qualification data, including ESD performance.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I., I., ¹		$0 \le V_{IN} \le V_{CCIO}$	—		10	μA
ηΓ, ηΗ	Input of I/O Low Leakage	$V_{CCIO} \le V_{IN} \le V_{IH}$ (MAX)	—	_	150	μΑ
I _{PU}	I/O Active Pull-up Current	$0 \le V_{IN} \le 0.7 \ V_{CCIO}$	-30	_	-150	μΑ
I _{PD}	I/O Active Pull-down Current	$V_{IL} (MAX) \le V_{IN} \le V_{CCIO}$	30	_	210	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL}$ (MAX)	30	_	—	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCIO}$	-30	_	—	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0 \leq V_{IN} \leq V_{CCIO}$	—	_	210	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	—	_	-150	μΑ
V _{BHT}	Bus Hold Trip Points		V_{IL} (MAX)	_	V _{IH} (MIN)	V
C1	I/O Capacitance ²	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = 1.2V, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	—	8	—	pf
C2	Dedicated Input Capacitance	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = 1.2V, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	—	6	—	pf

Over Recommended Operating Conditions

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25°C, f = 1.0 MHz.

BLVDS

The LatticeXP2 devices support the BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Table 3-2. BLVDS DC Conditions¹

		Typical		
Parameter	Description	Ζο = 45 Ω	Ζο = 90 Ω	Units
V _{CCIO}	Output Driver Supply (+/- 5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
R _S	Driver Series Resistor (+/- 1%)	90.00	90.00	Ω
R _{TL}	Driver Parallel Resistor (+/- 1%)	45.00	90.00	Ω
R _{TR}	Receiver Termination (+/- 1%)	45.00	90.00	Ω
V _{OH}	Output High Voltage (After R _{TL})	1.38	1.48	V
V _{OL}	Output Low Voltage (After R _{TL})	1.12	1.02	V
V _{OD}	Output Differential Voltage (After R _{TL})	0.25	0.46	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	11.24	10.20	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

Register-to-Register Performance (Continued)

Function	-7 Timing	Units
DSP IP Functions		
16-Tap Fully-Parallel FIR Filter	198	MHz
1024-pt FFT	221	MHz
8X8 Matrix Multiplication	196	MHz

1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with device, design and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Derating Timing Tables

Logic timing provided in the following sections of this data sheet and the Diamond design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much better than the values given in the tables. The Diamond design tool can provide logic timing numbers at a particular temperature and voltage.

LatticeXP2 Internal Switching Characteristics¹ (Continued)

		-7		-6		-5		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{HP_DSP}	Pipeline Register Hold Time	-0.787	_	-0.890	_	-0.994	_	ns
t _{SUO_DSP}	Output Register Setup Time	4.896	—	5.413	—	5.931	—	ns
t _{HO_DSP}	Output Register Hold Time	-1.439	—	-1.604	—	-1.770	—	ns
t _{COI_DSP} ³	Input Register Clock to Output Time	_	4.513	—	4.947	—	5.382	ns
t _{COP_DSP} ³	Pipeline Register Clock to Output Time	_	2.153	—	2.272	—	2.391	ns
t _{COO_DSP} ³	Output Register Clock to Output Time	_	0.569	—	0.600	—	0.631	ns
t _{SUADSUB}	AdSub Input Register Setup Time	-0.270	—	-0.298	_	-0.327	—	ns
t _{HADSUB}	AdSub Input Register Hold Time	0.306	—	0.338	—	0.371	—	ns

Over Recommended Operating Conditions

1. Internal parameters are characterized, but not tested on every device.

2. RST resets VCO and all counters in PLL.

3. These parameters include the Adder Subtractor block in the path.

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO Within PIC	DDR Strobe (DQS) and Data (DQ) Pins
For Left and Right Edges	of the Device	
D[Edge] [n 4]	А	DQ
r[Euge] [11-4]	В	DQ
D[Edga] [n 2]	А	DQ
r[Euge] [II-3]	В	DQ
D[Edgo] [n 2]	А	DQ
	В	DQ
P[Edge] [n-1]	А	DQ
	В	DQ
P[Edge] [n]	А	[Edge]DQSn
	В	DQ
P[Edge] [n+1]	А	DQ
	В	DQ
P[Edge] [n+2]	А	DQ
	В	DQ
P[Edge] [n+3]	А	DQ
	В	DQ
For Top and Bottom Edge	es of the Device	
P[Edge] [n-4]	А	DQ
	В	DQ
P[Edge] [n-3]	A	DQ
	В	DQ
P[Edge] [n-2]	A	DQ
. [=090] [=]	В	DQ
P[Edge] [n-1]	A	DQ
. [=090][]	В	DQ
P[Edge] [n]	A	[Edge]DQSn
. [====================================	В	DQ
P[Edge] [n+1]	A	DQ
. [=a90][]	В	DQ
P[Edge] [n+2]	A	DQ
. [=390] [5]	В	DQ
P[Edge] [n+3]	A	DQ
	В	DQ
P[Edge] [n+4]	A	DQ
. [=390][]	В	DQ

Notes:

1. "n" is a row PIC number.

^{2.} The DDR interface is designed for memories that support one DQS strobe up to 16 bits of data for the left and right edges and up to 18 bits of data for the top and bottom edges. In some packages, all the potential DDR data (DQ) pins may not be available. PIC numbering definitions are provided in the "Signal Names" column of the Signal Descriptions table.

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FTN256C	1.2V	-5	Lead-Free ftBGA	256	COM	30
LFXP2-30E-6FTN256C	1.2V	-6	Lead-Free ftBGA	256	COM	30
LFXP2-30E-7FTN256C	1.2V	-7	Lead-Free ftBGA	256	COM	30
LFXP2-30E-5FN484C	1.2V	-5	Lead-Free fpBGA	484	COM	30
LFXP2-30E-6FN484C	1.2V	-6	Lead-Free fpBGA	484	COM	30
LFXP2-30E-7FN484C	1.2V	-7	Lead-Free fpBGA	484	COM	30
LFXP2-30E-5FN672C	1.2V	-5	Lead-Free fpBGA	672	COM	30
LFXP2-30E-6FN672C	1.2V	-6	Lead-Free fpBGA	672	COM	30
LFXP2-30E-7FN672C	1.2V	-7	Lead-Free fpBGA	672	COM	30

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5FN484C	1.2V	-5	Lead-Free fpBGA	484	COM	40
LFXP2-40E-6FN484C	1.2V	-6	Lead-Free fpBGA	484	COM	40
LFXP2-40E-7FN484C	1.2V	-7	Lead-Free fpBGA	484	COM	40
LFXP2-40E-5FN672C	1.2V	-5	Lead-Free fpBGA	672	COM	40
LFXP2-40E-6FN672C	1.2V	-6	Lead-Free fpBGA	672	COM	40
LFXP2-40E-7FN672C	1.2V	-7	Lead-Free fpBGA	672	COM	40

Industrial

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-5E-5MN132I	1.2V	-5	Lead-Free csBGA	132	IND	5
LFXP2-5E-6MN132I	1.2V	-6	Lead-Free csBGA	132	IND	5
LFXP2-5E-5TN144I	1.2V	-5	Lead-Free TQFP	144	IND	5
LFXP2-5E-6TN144I	1.2V	-6	Lead-Free TQFP	144	IND	5
LFXP2-5E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	5
LFXP2-5E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	5
LFXP2-5E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	5
LFXP2-5E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	5

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-8E-5MN132I	1.2V	-5	Lead-Free csBGA	132	IND	8
LFXP2-8E-6MN132I	1.2V	-6	Lead-Free csBGA	132	IND	8
LFXP2-8E-5TN144I	1.2V	-5	Lead-Free TQFP	144	IND	8
LFXP2-8E-6TN144I	1.2V	-6	Lead-Free TQFP	144	IND	8
LFXP2-8E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	8
LFXP2-8E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	8
LFXP2-8E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	8
LFXP2-8E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	8

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-17E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	17
LFXP2-17E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	17
LFXP2-17E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	17
LFXP2-17E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	17
LFXP2-17E-5FN484I	1.2V	-5	Lead-Free fpBGA	484	IND	17
LFXP2-17E-6FN484I	1.2V	-6	Lead-Free fpBGA	484	IND	17

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	30
LFXP2-30E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	30
LFXP2-30E-5FN484I	1.2V	-5	Lead-Free fpBGA	484	IND	30
LFXP2-30E-6FN484I	1.2V	-6	Lead-Free fpBGA	484	IND	30
LFXP2-30E-5FN672I	1.2V	-5	Lead-Free fpBGA	672	IND	30
LFXP2-30E-6FN672I	1.2V	-6	Lead-Free fpBGA	672	IND	30

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5FN484I	1.2V	-5	Lead-Free fpBGA	484	IND	40
LFXP2-40E-6FN484I	1.2V	-6	Lead-Free fpBGA	484	IND	40
LFXP2-40E-5FN672I	1.2V	-5	Lead-Free fpBGA	672	IND	40
LFXP2-40E-6FN672I	1.2V	-6	Lead-Free fpBGA	672	IND	40

Date	Version	Section	Change Summary
April 2008	01.4	DC and Switching	Updated Flash Download Time (From On-Chip Flash to SRAM) Table
(cont.)	(cont.)	Characteristics (cont.)	Updated Flash Program Time Table
			Updated Flash Erase Time Table
			Updated FlashBAK (from EBR to Flash) Table
			Updated Hot Socketing Specifications Table footnotes
		Pinout Information	Updated Signal Descriptions Table
June 2008	01.5	Architecture	Removed Read-Before-Write sysMEM EBR mode.
			Clarification of the operation of the secondary clock regions.
		DC and Switching Characteristics	Removed Read-Before-Write sysMEM EBR mode.
		Pinout Information	Updated DDR Banks Bonding Out per I/O Bank section of Pin Informa- tion Summary Table.
August 2008	01.6	—	Data sheet status changed from preliminary to final.
		Architecture	Clarification of the operation of the secondary clock regions.
		DC and Switching Characteristics	Removed "8W" specification from Hot Socketing Specifications table.
			Removed "8W" footnote from DC Electrical Characteristics table.
			Updated Register-to-Register Performance table.
		Ordering Information	Removed "8W" option from Part Number Description.
			Removed XP2-17 "8W" OPNs.
April 2011	01.7	DC and Switching Characteristics	Recommended Operating Conditions table, added footnote 5.
			On-Chip Flash Memory Specifications table, added footnote 1.
			BLVDS DC Conditions, corrected column title to be Z0 = 90 ohms.
			sysCONFIG Port Timing Specifications table, added footnote 1 for t _{DINIT} .
January 2012	01.8	Multiple	Added support for Lattice Diamond design software.
		Architecture	Corrected information regarding SED support.
		DC and Switching Characteristics	Added reference to ESD Performance Qualification Summary informa- tion.
May 2013	01.9	All	Updated document with new corporate logo.
		Architecture	Architecture Overview – Added information on the state of the register on power up and after configuration.
			Added information regarding SED support.
		DC and Switching Characteristics	Removed Input Clock Rise/Fall Time 1ns max from the sysCLOCK PLL Timing table.
		Ordering Information	Updated topside mark in Ordering Information diagram.
March 2014	02.0	Architecture	Updated Typical sysIO I/O Behavior During Power-up section. Added information on POR signal deactivation.
August 2014	02.1	Architecture	Updated Typical sysIO I/O Behavior During Power-up section. Described user I/Os during power up and before FPGA core logic is active.
September 2014	2.2	DC and Switching Characteristics	Updated Switching Test Conditions section. Re-linked missing figure.