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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Introduction
LatticeXP2 devices combine a Look-up Table (LUT) based FPGA fabric with non-volatile Flash cells in an architec-
ture referred to as flexiFLASH.

The flexiFLASH approach provides benefits including instant-on, infinite reconfigurability, on chip storage with 
FlashBAK embedded block memory and Serial TAG memory and design security. The parts also support Live 
Update technology with TransFR, 128-bit AES Encryption and Dual-boot technologies.

The LatticeXP2 FPGA fabric was optimized for the new technology from the outset with high performance and low 
cost in mind. LatticeXP2 devices include LUT-based logic, distributed and embedded memory, Phase Locked 
Loops (PLLs), pre-engineered source synchronous I/O support and enhanced sysDSP blocks.

Lattice Diamond® design software allows large and complex designs to be efficiently implemented using the 
LatticeXP2 family of FPGA devices. Synthesis library support for LatticeXP2 is available for popular logic synthesis 
tools. The Diamond software uses the synthesis tool output along with the constraints from its floor planning tools 
to place and route the design in the LatticeXP2 device. The Diamond tool extracts the timing from the routing and 
back-annotates it into the design for timing verification. 

Lattice provides many pre-designed Intellectual Property (IP) LatticeCORE™ modules for the LatticeXP2 family. By 
using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, 
increasing their productivity.
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Modes of Operation
Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM. 

Logic Mode
In this mode, the LUTs in each slice are configured as LUT4s. A LUT4 has 16 possible input combinations. Four-
input logic functions are generated by programming the LUT4. Since there are two LUT4s per slice, a LUT5 can be 
constructed within one slice. Larger LUTs such as LUT6, LUT7 and LUT8, can be constructed by concatenating 
two or more slices. Note that a LUT8 requires more than four slices.

Ripple Mode
Ripple mode allows efficient implementation of small arithmetic functions. In ripple mode, the following functions 
can be implemented by each slice: 

• Addition 2-bit 

• Subtraction 2-bit 

• Add/Subtract 2-bit using dynamic control 

• Up counter 2-bit 

• Down counter 2-bit

• Up/Down counter with async clear

• Up/Down counter with preload (sync) 

• Ripple mode multiplier building block

• Multiplier support 

• Comparator functions of A and B inputs
– A greater-than-or-equal-to B
– A not-equal-to B
– A less-than-or-equal-to B

Two carry signals, FCI and FCO, are generated per slice in this mode, allowing fast arithmetic functions to be con-
structed by concatenating slices. 

RAM Mode
In this mode, a 16x4-bit distributed Single Port RAM (SPR) can be constructed using each LUT block in Slice 0 and 
Slice 2 as a 16x1-bit memory. Slice 1 is used to provide memory address and control signals. A 16x2-bit Pseudo 
Dual Port RAM (PDPR) memory is created by using one slice as the read-write port and the other companion slice 
as the read-only port.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the soft-
ware will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 
shows the number of slices required to implement different distributed RAM primitives. For more information on 
using RAM in LatticeXP2 devices, please see TN1137, LatticeXP2 Memory Usage Guide.

Table 2-3. Number of Slices Required For Implementing Distributed RAM 

ROM Mode
ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in the ROM mode. Preloading is accom-
plished through the programming interface during PFU configuration. 

SPR 16X4 PDPR 16X4

Number of slices 3 3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

www.latticesemi.com/dynamic/view_document.cfm?document_id=23976


2-7

Architecture
LatticeXP2 Family Data Sheet

Figure 2-4. General Purpose PLL (GPLL) Diagram

Table 2-4 provides a description of the signals in the GPLL blocks. 

Table 2-4. GPLL Block Signal Descriptions

Clock Dividers
LatticeXP2 devices have two clock dividers, one on the left side and one on the right side of the device. These are 
intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or 
÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock 
based on the release of its reset signal. The clock dividers can be fed from the CLKOP output from the GPLLs or 
from the Edge Clocks (ECLK). The clock divider outputs serve as primary clock sources and feed into the clock dis-
tribution network. The Reset (RST) control signal resets the input and forces all outputs to low. The RELEASE sig-
nal releases outputs to the input clock. For further information on clock dividers, please see TN1126, LatticeXP2 
sysCLOCK PLL Design and Usage Guide. Figure 2-5 shows the clock divider connections.

Signal I/O Description 

CLKI I Clock input from external pin or routing 

CLKFB I PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock 
(PIN or logic) 

RST I “1” to reset PLL counters, VCO, charge pumps and M-dividers

RSTK I “1” to reset K-divider

DPHASE [3:0] I DPA Phase Adjust input

DDDUTY [3:0] I DPA Duty Cycle Select input

WRDEL I DPA Fine Delay Adjust input

CLKOS O PLL output clock to clock tree (phase shifted/duty cycle changed) 

CLKOP O PLL output clock to clock tree (no phase shift) 

CLKOK O PLL output to clock tree through secondary clock divider 

CLKOK2 O PLL output to clock tree (CLKOP divided by 3)

LOCK O “1” indicates PLL LOCK to CLKI 

CLKFB
Divider

RST

CLKFB

CLKI

LOCK

CLKOP

CLKOS

RSTK

DPHASE

Internal Feedback

DDUTY
WRDEL

CLKOK2

CLKOK

CLKI
Divider

PFD VCO/
LOOP FILTER

CLKOP
Divider

Phase/
Duty Cycle/
Duty Trim

Duty Trim

CLKOK
Divider

Lock
Detect

3

www.latticesemi.com/dynamic/view_document.cfm?document_id=23975
www.latticesemi.com/dynamic/view_document.cfm?document_id=23975
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Primary Clock Routing 
The clock routing structure in LatticeXP2 devices consists of a network of eight primary clock lines (CLK0 through 
CLK7) per quadrant. The primary clocks of each quadrant are generated from muxes located in the center of the 
device. All the clock sources are connected to these muxes. Figure 2-9 shows the clock routing for one quadrant. 
Each quadrant mux is identical. If desired, any clock can be routed globally.

Figure 2-9. Per Quadrant Primary Clock Selection

Dynamic Clock Select (DCS) 
The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent 
input clock sources without any glitches or runt pulses. This is achieved irrespective of when the select signal is 
toggled. There are two DCS blocks per quadrant; in total, eight DCS blocks per device. The inputs to the DCS block 
come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 (see Figure 2-
9).

Figure 2-10 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed 
to other modes. For more information on the DCS, please see TN1126, LatticeXP2 sysCLOCK PLL Design and 
Usage Guide.

Figure 2-10. DCS Waveforms

Secondary Clock/Control Routing
Secondary clocks in the LatticeXP2 devices are region-based resources. The benefit of region-based resources is 
the relatively low injection delay and skew within the region, as compared to primary clocks. EBR rows, DSP rows 
and a special vertical routing channel bound the secondary clock regions. This special vertical routing channel 
aligns with either the left edge of the center DSP block in the DSP row or the center of the DSP row. Figure 2-11 
shows this special vertical routing channel and the eight secondary clock regions for the LatticeXP2-40. 

CLK0 CLK1 CLK2 CLK3 CLK4 CLK5 CLK6 CLK7

30:1 30:1 30:1 30:1 29:1 29:1 29:1 29:130:1 30:1

8 Primary Clocks (CLK0 to CLK7) per Quadrant

DCS DCS

 Primary Clock Sources: PLLs + CLKDIVs + PIOs + Routing 

CLK0

SEL

DCSOUT

CLK1

www.latticesemi.com/dynamic/view_document.cfm?document_id=23975
www.latticesemi.com/dynamic/view_document.cfm?document_id=23975
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Figure 2-12. Secondary Clock Selection

Slice Clock Selection
Figure 2-13 shows the clock selections and Figure 2-14 shows the control selections for Slice0 through Slice2. All 
the primary clocks and the four secondary clocks are routed to this clock selection mux. Other signals, via routing, 
can be used as clock inputs to the slices. Slice controls are generated from the secondary clocks or other signals 
connected via routing.

If none of the signals are selected for both clock and control, then the default value of the mux output is 1. Slice 3 
does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-13. Slice0 through Slice2 Clock Selection

SC0 SC1 SC2 SC3 SC4 SC5

24:1 24:1 24:1

SC6 SC7

24:1 24:1 24:1 24:1 24:1

4 Secondary Clocks/CE/LSR (SC0 to SC3) per Region 

Clock/Control

Secondary Clock Feedlines: 8 PIOs + 16 Routing 

High Fan-out Data

4 High Fan-out Data Signals (SC4 to SC7) per Region 

Clock to Slice

Primary Clock

Secondary Clock

Routing

Vcc

8

4

12

1

25:1
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MAC sysDSP Element 
In this case, the two operands, A and B, are multiplied and the result is added with the previous accumulated value. 
This accumulated value is available at the output. The user can enable the input and pipeline registers but the out-
put register is always enabled. The output register is used to store the accumulated value. The Accumulators in the 
DSP blocks in LatticeXP2 family can be initialized dynamically. A registered overflow signal is also available. The 
overflow conditions are provided later in this document. Figure 2-21 shows the MAC sysDSP element. 

Figure 2-21. MAC sysDSP
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Table 2-11. PIO Signal List 

PIO 
The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic 
block. These blocks contain registers for operating in a variety of modes along with necessary clock and selection 
logic.

Input Register Block 
The input register blocks for PIOs contain delay elements and registers that can be used to condition high-speed 
interface signals, such as DDR memory interfaces and source synchronous interfaces, before they are passed to 
the device core. Figure 2-26 shows the diagram of the input register block.

Input signals are fed from the sysIO buffer to the input register block (as signal DI). If desired, the input signal can 
bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and, 
in selected blocks, the input to the DQS delay block. If an input delay is desired, designers can select either a fixed 
delay or a dynamic delay DEL[3:0]. The delay, if selected, reduces input register hold time requirements when 
using a global clock. 

The input block allows three modes of operation. In the Single Data Rate (SDR) mode, the data is registered, by 
one of the registers in the SDR Sync register block, with the system clock. In DDR mode two registers are used to 
sample the data on the positive and negative edges of the DQS signal which creates two data streams, D0 and D2. 
D0 and D2 are synchronized with the system clock before entering the core. Further information on this topic can 
be found in the DDR Memory Support section of this data sheet.

By combining input blocks of the complementary PIOs and sharing registers from output blocks, a gearbox function 
can be implemented, that takes a double data rate signal applied to PIOA and converts it as four data streams, 
IPOS0A, IPOS1A, IPOS0B and IPOS1B. Figure 2-26 shows the diagram using this gearbox function. For more 
information on this topic, please see TN1138, LatticeXP2 High Speed I/O Interface.

Name Type Description 

CE Control from the core Clock enables for input and output block flip-flops

CLK Control from the core System clocks for input and output blocks

ECLK1, ECLK2 Control from the core Fast edge clocks

LSR Control from the core Local Set/Reset

GSRN Control from routing Global Set/Reset (active low)

INCK2 Input to the core Input to Primary Clock Network or PLL reference inputs

DQS Input to PIO DQS signal from logic (routing) to PIO

INDD Input to the core Unregistered data input to core

INFF Input to the core Registered input on positive edge of the clock (CLK0)

IPOS0, IPOS1 Input to the core Double data rate registered inputs to the core

QPOS01, QPOS11 Input to the core Gearbox pipelined inputs to the core

QNEG01, QNEG11 Input to the core Gearbox pipelined inputs to the core

OPOS0, ONEG0, 
OPOS2, ONEG2 Output data from the core Output signals from the core for SDR and DDR operation

OPOS1 ONEG1 Tristate control from the core Signals to Tristate Register block for DDR operation

DEL[3:0] Control from the core Dynamic input delay control bits

TD Tristate control from the core Tristate signal from the core used in SDR operation

DDRCLKPOL Control from clock polarity bus Controls the polarity of the clock (CLK0) that feed the DDR input block

DQSXFER Control from core Controls signal to the Output block 

1. Signals available on left/right/bottom only.
2. Selected I/O.

www.latticesemi.com/dynamic/view_document.cfm?document_id=23977
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DLL Calibrated DQS Delay Block 
Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at 
the input register. For most interfaces a PLL is used for this adjustment. However, in DDR memories the clock, 
referred to as DQS, is not free-running, and this approach cannot be used. The DQS Delay block provides the 
required clock alignment for DDR memory interfaces. 

The DQS signal (selected PIOs only, as shown in Figure 2-30) feeds from the PAD through a DQS delay element to 
a dedicated DQS routing resource. The DQS signal also feeds polarity control logic which controls the polarity of 
the clock to the sync registers in the input register blocks. Figure 2-30 and Figure 2-31 show how the DQS transi-
tion signals are routed to the PIOs. 

The temperature, voltage and process variations of the DQS delay block are compensated by a set of 6-bit bus cal-
ibration signals from two dedicated DLLs (DDR_DLL) on opposite sides of the device. Each DLL compensates 
DQS delays in its half of the device as shown in Figure 2-30. The DLL loop is compensated for temperature, volt-
age and process variations by the system clock and feedback loop. 

Figure 2-30. Edge Clock, DLL Calibration and DQS Local Bus Distribution

I/O Bank 5

I/O
 B

an
k 

6
I/O

 B
an

k 
7

I/O
 B

ank 2
I/O

 B
ank 3

I/O Bank 4

I/O Bank 0 I/O Bank 1

DDR_DLL
(Right)

DDR_DLL
(Left)

ECLK1

ECLK2

Delayed
DQS

Polarity Control

DQSXFER

DQS Delay
Control Bus

DQS Input

Spans 18 PIOs
Top & Bottom
Sides

Spans 16 PIOs
Left & Right Sides



2-34

Architecture
LatticeXP2 Family Data Sheet

DQSXFER
LatticeXP2 devices provide a DQSXFER signal to the output buffer to assist it in data transfer to DDR memories 
that require DQS strobe be shifted 90o. This shifted DQS strobe is generated by the DQSDEL block. The 
DQSXFER signal runs the span of the data bus.

sysIO Buffer 
Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the 
periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement the wide variety 
of standards that are found in today’s systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.

sysIO Buffer Banks 
LatticeXP2 devices have eight sysIO buffer banks for user I/Os arranged two per side. Each bank is capable of sup-
porting multiple I/O standards. Each sysIO bank has its own I/O supply voltage (VCCIO). In addition, each bank has 
voltage references, VREF1 and VREF2, that allow it to be completely independent from the others. Figure 2-32 
shows the eight banks and their associated supplies. 

In LatticeXP2 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are pow-
ered using VCCIO. LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs inde-
pendent of VCCIO. 

Each bank can support up to two separate VREF voltages, VREF1 and VREF2, that set the threshold for the refer-
enced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. 
Each I/O is individually configurable based on the bank’s supply and reference voltages. 

Figure 2-32. LatticeXP2 Banks
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sysIO Single-Ended DC Electrical Characteristics
Over Recommended Operating Conditions

Input/Output 
Standard

VIL VIH VOL VOH

IOL
1 (mA) IOH

1 (mA)Min. (V) Max. (V) Min. (V) Max. (V)  Max. (V) Min. (V)

LVCMOS33 -0.3 0.8 2.0 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
-20, -16, 

-12, -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVTTL33 -0.3 0.8 2.0 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
-20, -16, 

-12, -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS25 -0.3 0.7 1.7 3.6
0.4 VCCIO - 0.4 20, 16, 

12, 8, 4
-20, -16, 

-12, -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS18 -0.3 0.35 VCCIO 0.65 VCCIO 3.6
0.4 VCCIO - 0.4 16, 12, 

8, 4
-16, -12,

-8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS15 -0.3 0.35 VCCIO 0.65 VCCIO 3.6
0.4 VCCIO - 0.4 8, 4 -8, -4

0.2 VCCIO - 0.2 0.1 -0.1

LVCMOS12 -0.3 0.35 VCC 0.65 VCC 3.6
0.4 VCCIO - 0.4 6, 2 -6, -2

0.2 VCCIO - 0.2 0.1 -0.1

PCI33 -0.3 0.3 VCCIO 0.5 VCCIO 3.6 0.1 VCCIO 0.9 VCCIO 1.5 -0.5

SSTL33_I -0.3 VREF - 0.2 VREF + 0.2 3.6 0.7 VCCIO - 1.1 8 -8

SSTL33_II -0.3 VREF - 0.2 VREF + 0.2 3.6 0.5 VCCIO - 0.9 16 -16

SSTL25_I -0.3 VREF - 0.18 VREF + 0.18 3.6 0.54 VCCIO - 0.62
7.6 -7.6

12 -12

SSTL25_II -0.3 VREF - 0.18 VREF + 0.18 3.6 0.35 VCCIO - 0.43
15.2 -15.2

20 -20

SSTL18_I -0.3 VREF - 0.125 VREF + 0.125 3.6 0.4 VCCIO - 0.4 6.7 -6.7

SSTL18_II -0.3 VREF - 0.125 VREF + 0.125 3.6 0.28 VCCIO - 0.28
8 -8

11 -11

HSTL15_I -0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4
4 -4

8 -8

HSTL18_I -0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4
8 -8

12 -12

HSTL18_II -0.3 VREF - 0.1 VREF + 0.1 3.6 0.4 VCCIO - 0.4 16 -16

1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as 
shown in the logic signal connections table shall not exceed n * 8mA, where n is the number of I/Os between bank GND connections or 
between the last GND in a bank and the end of a bank. 
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BLVDS
The LatticeXP2 devices support the BLVDS standard. This standard is emulated using complementary LVCMOS 
outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when 
multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one 
possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS Multi-point Output Example

Table 3-2. BLVDS DC Conditions1

Over Recommended Operating Conditions

Parameter Description

Typical

UnitsZo = 45 Zo = 90

VCCIO Output Driver Supply (+/- 5%) 2.50 2.50 V

ZOUT Driver Impedance 10.00 10.00 

RS Driver Series Resistor (+/- 1%) 90.00 90.00 

RTL Driver Parallel Resistor (+/- 1%) 45.00 90.00 

RTR Receiver Termination (+/- 1%) 45.00 90.00 

VOH Output High Voltage (After RTL) 1.38 1.48 V

VOL Output Low Voltage (After RTL) 1.12 1.02 V

VOD Output Differential Voltage (After RTL) 0.25 0.46 V

VCM Output Common Mode Voltage 1.25 1.25 V

IDC DC Output Current 11.24 10.20 mA

1. For input buffer, see LVDS table.

Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential
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LVPECL
The LatticeXP2 devices support the differential LVPECL standard. This standard is emulated using complementary 
LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is 
supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for point-
to-point signals.

Figure 3-3. Differential LVPECL

Table 3-3. LVPECL DC Conditions1

Over Recommended Operating Conditions

Parameter Description Typical Units

VCCIO Output Driver Supply (+/-5%) 3.30 V

ZOUT Driver Impedance 10 

RS Driver Series Resistor (+/-1%) 93 

RP Driver Parallel Resistor (+/-1%) 196 

RT Receiver Termination (+/-1%) 100 

VOH Output High Voltage (After RP) 2.05 V

VOL Output Low Voltage (After RP) 1.25 V

VOD Output Differential Voltage (After RP) 0.80 V

VCM Output Common Mode Voltage 1.65 V

ZBACK Back Impedance 100.5 

IDC DC Output Current 12.11 mA

1. For input buffer, see LVDS table.

Transmission line, 
Zo = 100 ohm differential 

Off-chipOn-chip

VCCIO = 3.3V 
(+/-5%)

VCCIO = 3.3V 
(+/-5%)

RP = 196 ohms 
(+/-1%)

RT = 100 ohms 
(+/-1%)

RS = 93.1 ohms 
(+/-1%)

RS = 93.1 ohms 
(+/-1%)

16mA

16mA

+

-

Off-chip On-chip
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RSDS
The LatticeXP2 devices support differential RSDS standard. This standard is emulated using complementary LVC-
MOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input standard is sup-
ported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS 
standard implementation. Resistor values in Figure 3-4 are industry standard values for 1% resistors. 

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions1

Over Recommended Operating Conditions

Parameter  Description Typical Units

VCCIO Output Driver Supply (+/-5%) 2.50 V

ZOUT Driver Impedance 20 

RS Driver Series Resistor (+/-1%) 294 

RP Driver Parallel Resistor (+/-1%) 121 

RT Receiver Termination (+/-1%) 100 

VOH Output High Voltage (After RP) 1.35 V

VOL Output Low Voltage (After RP) 1.15 V

VOD Output Differential Voltage (After RP) 0.20 V

VCM Output Common Mode Voltage 1.25 V

ZBACK Back Impedance 101.5 

IDC DC Output Current 3.66 mA

1. For input buffer, see LVDS table.

RS = 294 ohms
(+/-1%)

RS = 294 ohms
(+/-1%)

RP = 121 ohms
(+/-1%)

RT = 100 ohms
(+/-1%)

On-chip On-chip

8mA

8mA

VCCIO = 2.5V
(+/-5%)

VCCIO = 2.5V
(+/-5%)

Transmission line, 
Zo = 100 ohm differential

+

-

Off-chipOff-chip



3-19

DC and Switching Characteristics
LatticeXP2 Family Data Sheet

LatticeXP2 Internal Switching Characteristics1 
Over Recommended Operating Conditions

Parameter Description

-7 -6 -5

UnitsMin. Max. Min. Max. Min. Max.

PFU/PFF Logic Mode Timing

tLUT4_PFU
LUT4 delay (A to D inputs to F 
output)                                                                                                    — 0.216 — 0.238 — 0.260 ns

tLUT6_PFU
LUT6 delay (A to D inputs to OFX 
output) — 0.304 — 0.399 — 0.494 ns

tLSR_PFU
Set/Reset to output of PFU (Asyn-
chronous) — 0.720 — 0.769 — 0.818 ns

tSUM_PFU
Clock to Mux (M0,M1) Input 
Setup Time 0.154 — 0.151 — 0.148 — ns

tHM_PFU
Clock to Mux (M0,M1) Input Hold 
Time -0.061 — -0.057 — -0.053 — ns

tSUD_PFU Clock to D input setup time 0.061 — 0.077 — 0.093 — ns

tHD_PFU Clock to D input hold time 0.002 — 0.003 — 0.003 — ns

tCK2Q_PFU 
Clock to Q delay, (D-type Register 
Configuration) — 0.342 — 0.363 — 0.383 ns

tRSTREC_PFU
Asynchronous reset recovery 
time for PFU Logic — 0.520 — 0.634 — 0.748 ns

tRST_PFU
Asynchronous reset time for PFU 
Logic — 0.720 — 0.769 — 0.818 ns

PFU Dual Port Memory Mode Timing

tCORAM_PFU Clock to Output (F Port) — 1.082 — 1.267 — 1.452 ns

tSUDATA_PFU Data Setup Time -0.206 — -0.240 — -0.274 — ns

tHDATA_PFU Data Hold Time 0.239 — 0.275 — 0.312 — ns

tSUADDR_PFU Address Setup Time -0.294 — -0.333 — -0.371 — ns

tHADDR_PFU Address Hold Time 0.295 — 0.333 — 0.371 — ns

tSUWREN_PFU Write/Read Enable Setup Time -0.146 — -0.169 — -0.193 — ns

tHWREN_PFU Write/Read Enable Hold Time 0.158 — 0.182 — 0.207 — ns

PIO Input/Output Buffer Timing

tIN_PIO Input Buffer Delay (LVCMOS25) — 0.858 — 0.766 — 0.674 ns

tOUT_PIO Output Buffer Delay (LVCMOS25) — 1.561 — 1.403 — 1.246 ns

IOLOGIC Input/Output Timing

tSUI_PIO
Input Register Setup Time (Data 
Before Clock) 0.583 — 0.893 — 1.201 — ns

tHI_PIO
Input Register Hold Time (Data 
after Clock) 0.062 — 0.322 — 0.482 — ns

tCOO_PIO
Output Register Clock to Output 
Delay — 0.608 — 0.661 — 0.715 ns

tSUCE_PIO
Input Register Clock Enable 
Setup Time 0.032 — 0.037 — 0.041 — ns

tHCE_PIO
Input Register Clock Enable Hold 
Time -0.022 — -0.025 — -0.028 — ns

tSULSR_PIO Set/Reset Setup Time 0.184 — 0.201 — 0.217 — ns

tHLSR_PIO Set/Reset Hold Time -0.080 — -0.086 — -0.093 — ns

tRSTREC_PIO
Asynchronous reset recovery 
time for IO Logic 0.228 — 0.247 — 0.266 — ns
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Figure 3-8. Write Through (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

A0 A1 A0

D0 D1

D4

tSU

tACCESS tACCESS tACCESS

tH

D2 D3 D4

D0 D1 D2Data from Prev Read
or Write

Three consecutive writes to A0

D3DOA

DIA

ADA

WEA

CSA

CLKA

tACCESS
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HSTL15_I HSTL_15 class I 4mA drive 0.32 0.69 1.06 ns

HSTL15D_I Differential HSTL 15 class I 4mA drive 0.32 0.69 1.06 ns

SSTL33_I SSTL_3 class I -0.25 0.05 0.35 ns

SSTL33_II SSTL_3 class II -0.31 -0.02 0.27 ns

SSTL33D_I Differential SSTL_3 class I -0.25 0.05 0.35 ns

SSTL33D_II Differential SSTL_3 class II -0.31 -0.02 0.27 ns

SSTL25_I SSTL_2 class I 8mA drive -0.25 0.02 0.30 ns

SSTL25_II SSTL_2 class II 16mA drive -0.28 0.00 0.28 ns

SSTL25D_I Differential SSTL_2 class I 8mA drive -0.25 0.02 0.30 ns

SSTL25D_II Differential SSTL_2 class II 16mA drive -0.28 0.00 0.28 ns

SSTL18_I SSTL_1.8 class I -0.17 0.13 0.43 ns

SSTL18_II SSTL_1.8 class II 8mA drive -0.18 0.12 0.42 ns

SSTL18D_I Differential SSTL_1.8 class I -0.17 0.13 0.43 ns

SSTL18D_II Differential SSTL_1.8 class II 8mA drive -0.18 0.12 0.42 ns

LVTTL33_4mA LVTTL 4mA drive -0.37 -0.05 0.26 ns

LVTTL33_8mA LVTTL 8mA drive -0.45 -0.18 0.10 ns

LVTTL33_12mA LVTTL 12mA drive -0.52 -0.24 0.04 ns

LVTTL33_16mA LVTTL 16mA drive -0.43 -0.14 0.14 ns

LVTTL33_20mA LVTTL 20mA drive -0.46 -0.18 0.09 ns

LVCMOS33_4mA LVCMOS 3.3 4mA drive, fast slew rate -0.37 -0.05 0.26 ns

LVCMOS33_8mA LVCMOS 3.3 8mA drive, fast slew rate -0.45 -0.18 0.10 ns

LVCMOS33_12mA LVCMOS 3.3 12mA drive, fast slew rate -0.52 -0.24 0.04 ns

LVCMOS33_16mA LVCMOS 3.3 16mA drive, fast slew rate -0.43 -0.14 0.14 ns

LVCMOS33_20mA LVCMOS 3.3 20mA drive, fast slew rate -0.46 -0.18 0.09 ns

LVCMOS25_4mA LVCMOS 2.5 4mA drive, fast slew rate -0.42 -0.15 0.13 ns

LVCMOS25_8mA LVCMOS 2.5 8mA drive, fast slew rate -0.48 -0.21 0.05 ns

LVCMOS25_12mA LVCMOS 2.5 12mA drive, fast slew rate 0.00 0.00 0.00 ns

LVCMOS25_16mA LVCMOS 2.5 16mA drive, fast slew rate -0.45 -0.18 0.08 ns

LVCMOS25_20mA LVCMOS 2.5 20mA drive, fast slew rate -0.49 -0.22 0.04 ns

LVCMOS18_4mA LVCMOS 1.8 4mA drive, fast slew rate -0.46 -0.18 0.10 ns

LVCMOS18_8mA LVCMOS 1.8 8mA drive, fast slew rate -0.52 -0.25 0.02 ns

LVCMOS18_12mA LVCMOS 1.8 12mA drive, fast slew rate -0.56 -0.30 -0.03 ns

LVCMOS18_16mA LVCMOS 1.8 16mA drive, fast slew rate -0.50 -0.24 0.03 ns

LVCMOS15_4mA LVCMOS 1.5 4mA drive, fast slew rate -0.45 -0.17 0.11 ns

LVCMOS15_8mA LVCMOS 1.5 8mA drive, fast slew rate -0.53 -0.26 0.00 ns

LVCMOS12_2mA LVCMOS 1.2 2mA drive, fast slew rate -0.46 -0.19 0.08 ns

LVCMOS12_6mA LVCMOS 1.2 6mA drive, fast slew rate -0.55 -0.29 -0.02 ns

LVCMOS33_4mA LVCMOS 3.3 4mA drive, slow slew rate 0.98 1.41 1.84 ns

LVCMOS33_8mA LVCMOS 3.3 8mA drive, slow slew rate 0.74 1.16 1.58 ns

LVCMOS33_12mA LVCMOS 3.3 12mA drive, slow slew rate 0.56 0.97 1.38 ns

LVCMOS33_16mA LVCMOS 3.3 16mA drive, slow slew rate 0.77 1.19 1.61 ns

LVCMOS33_20mA LVCMOS 3.3 20mA drive, slow slew rate 0.57 0.98 1.40 ns

LatticeXP2 Family Timing Adders1, 2, 3, 4 (Continued)
Over Recommended Operating Conditions

Buffer Type Description -7 -6 -5 Units
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LVCMOS25_4mA LVCMOS 2.5 4mA drive, slow slew rate 1.05 1.43 1.81 ns

LVCMOS25_8mA LVCMOS 2.5 8mA drive, slow slew rate 0.78 1.15 1.52 ns

LVCMOS25_12mA LVCMOS 2.5 12mA drive, slow slew rate 0.59 0.96 1.33 ns

LVCMOS25_16mA LVCMOS 2.5 16mA drive, slow slew rate 0.81 1.18 1.55 ns

LVCMOS25_20mA LVCMOS 2.5 20mA drive, slow slew rate 0.61 0.98 1.35 ns

LVCMOS18_4mA LVCMOS 1.8 4mA drive, slow slew rate 1.01 1.38 1.75 ns

LVCMOS18_8mA LVCMOS 1.8 8mA drive, slow slew rate 0.72 1.08 1.45 ns

LVCMOS18_12mA LVCMOS 1.8 12mA drive, slow slew rate 0.53 0.90 1.26 ns

LVCMOS18_16mA LVCMOS 1.8 16mA drive, slow slew rate 0.74 1.11 1.48 ns

LVCMOS15_4mA LVCMOS 1.5 4mA drive, slow slew rate 0.96 1.33 1.71 ns

LVCMOS15_8mA LVCMOS 1.5 8mA drive, slow slew rate -0.53 -0.26 0.00 ns

LVCMOS12_2mA LVCMOS 1.2 2mA drive, slow slew rate 0.90 1.27 1.65 ns

LVCMOS12_6mA LVCMOS 1.2 6mA drive, slow slew rate -0.55 -0.29 -0.02 ns

PCI33 3.3V PCI -0.29 -0.01 0.26 ns

1. Timing Adders are characterized but not tested on every device.
2. LVCMOS timing measured with the load specified in Switching Test Condition table.
3. All other standards tested according to the appropriate specifications.
4. The base parameters used with these timing adders to calculate timing are listed in the LatticeXP2 Internal Switching Characteristics table 

under PIO Input/Output Timing.
5. These timing adders are measured with the recommended resistor values.

LatticeXP2 Family Timing Adders1, 2, 3, 4 (Continued)
Over Recommended Operating Conditions

Buffer Type Description -7 -6 -5 Units
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Signal Descriptions 
Signal Name I/O Description 

General Purpose

P[Edge] [Row/Column Number*]_[A/B] I/O 

[Edge] indicates the edge of the device on which the pad is located. Valid 
edge designations are L (Left), B (Bottom), R (Right), T (Top). 

[Row/Column Number] indicates the PFU row or the column of the device on 
which the PIC exists. When Edge is T (Top) or B (Bottom), only need to spec-
ify Row Number. When Edge is L (Left) or R (Right), only need to specify Col-
umn Number.

[A/B] indicates the PIO within the PIC to which the pad is connected. Some of 
these user-programmable pins are shared with special function pins. These 
pins, when not used as special purpose pins, can be programmed as I/Os for 
user logic. During configuration the user-programmable I/Os are tri-stated 
with an internal pull-up resistor enabled. If any pin is not used (or not bonded 
to a package pin), it is also tri-stated with an internal pull-up resistor enabled 
after configuration. 

GSRN I Global RESET signal (active low). Any I/O pin can be GSRN. 

NC — No connect. 

GND — Ground. Dedicated pins. 

VCC — Power supply pins for core logic. Dedicated pins. 

VCCAUX — Auxiliary power supply pin. This dedicated pin powers all the differential and 
referenced input buffers. 

VCCPLL — PLL supply pins. csBGA, PQFP and TQFP packages only. 

VCCIOx — Dedicated power supply pins for I/O bank x. 

VREF1_x, VREF2_x — Reference supply pins for I/O bank x. Pre-determined pins in each bank are 
assigned as VREF inputs. When not used, they may be used as I/O pins. 

PLL and Clock Functions (Used as user programmable I/O pins when not in use for PLL or clock pins) 

[LOC][num]_VCCPLL — Power supply pin for PLL: LLC, LRC, URC, ULC, num = row from center.

[LOC][num]_GPLL[T, C]_IN_A I General Purpose PLL (GPLL) input pads: LLC, LRC, URC, ULC, num = row 
from center, T = true and C = complement, index A,B,C...at each side. 

[LOC][num]_GPLL[T, C]_FB_A I Optional feedback GPLL input pads: LLC, LRC, URC, ULC, num = row from 
center, T = true and C = complement, index A,B,C...at each side. 

PCLK[T, C]_[n:0]_[3:0] I Primary Clock pads, T = true and C = complement, n per side, indexed by 
bank and 0,1,2,3 within bank. 

[LOC]DQS[num] I DQS input pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = ball 
function number. Any pad can be configured to be output. 

Test and Programming (Dedicated Pins)

TMS I Test Mode Select input, used to control the 1149.1 state machine. Pull-up is 
enabled during configuration. 

TCK I Test Clock input pin, used to clock the 1149.1 state machine. No pull-up 
enabled. 

TDI I 

Test Data in pin. Used to load data into device using 1149.1 state machine. 
After power-up, this TAP port can be activated for configuration by sending 
appropriate command. (Note: once a configuration port is selected it is 
locked. Another configuration port cannot be selected until the power-up 
sequence). Pull-up is enabled during configuration. 

LatticeXP2 Family Data Sheet
Pinout Information
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TDO O Output pin. Test Data Out pin used to shift data out of a device using 1149.1. 

VCCJ — Power supply pin for JTAG Test Access Port. 

Configuration Pads (Used during sysCONFIG)

CFG[1:0] I Mode pins used to specify configuration mode values latched on rising edge 
of INITN. During configuration, an internal pull-up is enabled. 

INITN1 I/O Open Drain pin. Indicates the FPGA is ready to be configured. During config-
uration, a pull-up is enabled.

PROGRAMN I Initiates configuration sequence when asserted low. This pin always has an 
active pull-up.

DONE I/O Open Drain pin. Indicates that the configuration sequence is complete, and 
the startup sequence is in progress. 

CCLK I/O Configuration Clock for configuring an FPGA in sysCONFIG mode. 

SISPI2 I/O Input data pin in slave SPI mode and Output data pin in Master SPI mode.

SOSPI2 I/O Output data pin in slave SPI mode and Input data pin in Master SPI mode.

CSSPIN2 O Chip select for external SPI Flash memory in Master SPI mode. This pin has 
a weak internal pull-up.

CSSPISN I Chip select in Slave SPI mode. This pin has a weak internal pull-up.

TOE I
Test Output Enable tristates all I/O pins when driven low. This pin has a weak 
internal pull-up, but when not used an external pull-up to VCC is recom-
mended.

1. If not actively driven, the internal pull-up may not be sufficient. An external pull-up resistor of 4.7k to 10k is recommended.
2. When using the device in Master SPI mode, it must be mutually exclusive from JTAG operations (i.e. TCK tied to GND) or the JTAG TCK 

must be free-running when used in a system JTAG test environment. If Master SPI mode is used in conjunction with a JTAG download 
cable, the device power cycle is required after the cable is unplugged.

Signal Descriptions (Cont.)
Signal Name I/O Description 
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Conventional Packaging
Commercial

Part Number Voltage Grade Package Pins Temp. LUTs (k)

LFXP2-5E-5M132C 1.2V -5 csBGA 132 COM 5

LFXP2-5E-6M132C 1.2V -6 csBGA 132 COM 5

LFXP2-5E-7M132C 1.2V -7 csBGA 132 COM 5

LFXP2-5E-5FT256C 1.2V -5 ftBGA 256 COM 5

LFXP2-5E-6FT256C 1.2V -6 ftBGA 256 COM 5

LFXP2-5E-7FT256C 1.2V -7 ftBGA 256 COM 5

Part Number Voltage Grade Package Pins Temp. LUTs (k)

LFXP2-8E-5M132C 1.2V -5 csBGA 132 COM 8

LFXP2-8E-6M132C 1.2V -6 csBGA 132 COM 8

LFXP2-8E-7M132C 1.2V -7 csBGA 132 COM 8

LFXP2-8E-5FT256C 1.2V -5 ftBGA 256 COM 8

LFXP2-8E-6FT256C 1.2V -6 ftBGA 256 COM 8

LFXP2-8E-7FT256C 1.2V -7 ftBGA 256 COM 8

Part Number Voltage Grade Package Pins Temp. LUTs (k)

LFXP2-17E-5FT256C 1.2V -5 ftBGA 256 COM 17

LFXP2-17E-6FT256C 1.2V -6 ftBGA 256 COM 17

LFXP2-17E-7FT256C 1.2V -7 ftBGA 256 COM 17

LFXP2-17E-5F484C 1.2V -5 fpBGA 484 COM 17

LFXP2-17E-6F484C 1.2V -6 fpBGA 484 COM 17

LFXP2-17E-7F484C 1.2V -7 fpBGA 484 COM 17

Part Number Voltage Grade Package Pins Temp. LUTs (k)

LFXP2-30E-5FT256C 1.2V -5 ftBGA 256 COM 30

LFXP2-30E-6FT256C 1.2V -6 ftBGA 256 COM 30

LFXP2-30E-7FT256C 1.2V -7 ftBGA 256 COM 30

LFXP2-30E-5F484C 1.2V -5 fpBGA 484 COM 30

LFXP2-30E-6F484C 1.2V -6 fpBGA 484 COM 30

LFXP2-30E-7F484C 1.2V -7 fpBGA 484 COM 30

LFXP2-30E-5F672C 1.2V -5 fpBGA 672 COM 30

LFXP2-30E-6F672C 1.2V -6 fpBGA 672 COM 30

LFXP2-30E-7F672C 1.2V -7 fpBGA 672 COM 30


