

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	625
Number of Logic Elements/Cells	5000
Total RAM Bits	169984
Number of I/O	86
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	132-LFBGA, CSPBGA
Supplier Device Package	132-CSBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-5e-6m132c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

LatticeXP2 devices combine a Look-up Table (LUT) based FPGA fabric with non-volatile Flash cells in an architecture referred to as flexiFLASH.

The flexiFLASH approach provides benefits including instant-on, infinite reconfigurability, on chip storage with FlashBAK embedded block memory and Serial TAG memory and design security. The parts also support Live Update technology with TransFR, 128-bit AES Encryption and Dual-boot technologies.

The LatticeXP2 FPGA fabric was optimized for the new technology from the outset with high performance and low cost in mind. LatticeXP2 devices include LUT-based logic, distributed and embedded memory, Phase Locked Loops (PLLs), pre-engineered source synchronous I/O support and enhanced sysDSP blocks.

Lattice Diamond[®] design software allows large and complex designs to be efficiently implemented using the LatticeXP2 family of FPGA devices. Synthesis library support for LatticeXP2 is available for popular logic synthesis tools. The Diamond software uses the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeXP2 device. The Diamond tool extracts the timing from the routing and back-annotates it into the design for timing verification.

Lattice provides many pre-designed Intellectual Property (IP) LatticeCORE[™] modules for the LatticeXP2 family. By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

Routing

There are many resources provided in the LatticeXP2 devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) or x6 (spans seven PFU) connections. The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. The x2 and x6 resources are buffered to allow both short and long connections routing between PFUs.

The LatticeXP2 family has an enhanced routing architecture to produce a compact design. The Diamond design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

sysCLOCK Phase Locked Loops (PLL)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The LatticeXP2 family supports between two and four full featured General Purpose PLLs (GPLL). The architecture of the GPLL is shown in Figure 2-4.

CLKI, the PLL reference frequency, is provided either from the pin or from routing; it feeds into the Input Clock Divider block. CLKFB, the feedback signal, is generated from CLKOP (the primary clock output) or from a user clock pin/logic. CLKFB feeds into the Feedback Divider and is used to multiply the reference frequency.

Both the input path and feedback signals enter the Voltage Controlled Oscillator (VCO) block. The phase and frequency of the VCO are determined from the input path and feedback signals. A LOCK signal is generated by the VCO to indicate that the VCO is locked with the input clock signal.

The output of the VCO feeds into the CLKOP Divider, a post-scalar divider. The duty cycle of the CLKOP Divider output can be fine tuned using the Duty Trim block, which creates the CLKOP signal. By allowing the VCO to operate at higher frequencies than CLKOP, the frequency range of the GPLL is expanded. The output of the CLKOP Divider is passed through the CLKOK Divider, a secondary clock divider, to generate lower frequencies for the CLKOK output. For applications that require even lower frequencies, the CLKOP signal is passed through a divide-by-three divider to produce the CLKOK2 output. The CLKOK2 output is provided for applications that use source synchronous logic. The Phase/Duty Cycle/Duty Trim block is used to adjust the phase and duty cycle of the CLKOP Divider output to generate the CLKOS signal. The phase/duty cycle setting can be pre-programmed or dynamically adjusted.

The clock outputs from the GPLL; CLKOP, CLKOK, CLKOK2 and CLKOS, are fed to the clock distribution network.

For further information on the GPLL please see TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide.

Figure 2-6. Primary Clock Sources for XP2-17

Note: This diagram shows sources for the XP2-17 device. Smaller LatticeXP2 devices have two GPLLs.

Figure 2-14. Slice0 through Slice2 Control Selection

Edge Clock Routing

LatticeXP2 devices have eight high-speed edge clocks that are intended for use with the PIOs in the implementation of high-speed interfaces. Each device has two edge clocks per edge. Figure 2-15 shows the selection muxes for these clocks.

Figure 2-15. Edge Clock Mux Connections

For further information on the sysMEM EBR block, please see TN1137, LatticeXP2 Memory Usage Guide.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the low-to-high transition of the reset signal, as shown in Figure 2-18. The GSR input to the EBR is always asynchronous.

Reset	
Clock	
Clock —————— Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM and ROM implementations.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

sysDSP™ Block

The LatticeXP2 family provides a sysDSP block making it ideally suited for low cost, high performance Digital Signal Processing (DSP) applications. Typical functions used in these applications include Bit Correlators, Fast Fourier Transform (FFT) functions, Finite Impulse Response (FIR) Filter, Reed-Solomon Encoder/Decoder, Turbo Encoder/ Decoder and Convolutional Encoder/Decoder. These complex signal processing functions use similar building blocks such as multiply-adders and multiply-accumulators.

sysDSP Block Approach Compare to General DSP

Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by higher clock speeds. The LatticeXP2 family, on the other hand, has many DSP blocks that support different data-widths. This allows the designer to use highly parallel implementations of DSP functions. The designer can optimize the DSP performance vs. area by choosing appropriate levels of parallelism. Figure 2-19 compares the fully serial and the mixed parallel and serial implementations.

sysDSP Block Capabilities

The sysDSP block in the LatticeXP2 family supports four functional elements in three 9, 18 and 36 data path widths. The user selects a function element for a DSP block and then selects the width and type (signed/unsigned) of its operands. The operands in the LatticeXP2 family sysDSP Blocks can be either signed or unsigned but not mixed within a function element. Similarly, the operand widths cannot be mixed within a block. DSP elements can be concatenated.

The resources in each sysDSP block can be configured to support the following four elements:

- MULT (Multiply)
- MAC (Multiply, Accumulate)
- MULTADDSUB (Multiply, Addition/Subtraction)
- MULTADDSUBSUM (Multiply, Addition/Subtraction, Accumulate)

The number of elements available in each block depends on the width selected from the three available options: x9, x18, and x36. A number of these elements are concatenated for highly parallel implementations of DSP functions. Table 2-6 shows the capabilities of the block.

Width of Multiply	x9	x18	x36
MULT	8	4	1
MAC	2	2	_
MULTADDSUB	4	2	_
MULTADDSUBSUM	2	1	_

Some options are available in four elements. The input register in all the elements can be directly loaded or can be loaded as shift register from previous operand registers. By selecting 'dynamic operation' the following operations are possible:

MULTADDSUB sysDSP Element

In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and B1. The user can enable the input, output and pipeline registers. Figure 2-22 shows the MULTADDSUB sysDSP element.

Figure 2-22. MULTADDSUB

MULTADDSUBSUM sysDSP Element

In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and B1. Additionally the operands A2 and B2 are multiplied and the result is added/ subtracted with the result of the multiplier operation of operands A3 and B3. The result of both addition/subtraction are added in a summation block. The user can enable the input, output and pipeline registers. Figure 2-23 shows the MULTADDSUBSUM sysDSP element.

Figure 2-23. MULTADDSUBSUM

Clock, Clock Enable and Reset Resources

Global Clock, Clock Enable (CE) and Reset (RST) signals from routing are available to every DSP block. From four clock sources (CLK0, CLK1, CLK2, CLK3) one clock is selected for each input register, pipeline register and output

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to system clock domain. For further discussion on this topic, see the DDR Memory section of this data sheet.

Output Register Block

The output register block provides the ability to register signals from the core of the device before they are passed to the sysIO buffers. The blocks on the PIOs on the left, right and bottom contain registers for SDR operation that are combined with an additional latch for DDR operation. Figure 2-27 shows the diagram of the Output Register Block for PIOs.

In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or latch. In DDR mode, ONEG0 and OPOS0 are fed into registers on the positive edge of the clock. At the next clock cycle the registered OPOS0 is latched. A multiplexer running off the same clock cycle selects the correct register to feed the output (D0).

By combining output blocks of the complementary PIOs and sharing some registers from input blocks, a gearbox function can be implemented, to take four data streams ONEG0A, ONEG1A, ONEG1B and ONEG1B. Figure 2-27

sysIO Differential Electrical Characteristics LVDS

Parameter	Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP} , V _{INM}	Input Voltage		0		2.4	V
V _{CM}	Input Common Mode Voltage	Half the Sum of the Two Inputs	0.05	_	2.35	V
V _{THD}	Differential Input Threshold	Difference Between the Two Inputs	+/-100		—	mV
I _{IN}	Input Current	Power On or Power Off		_	+/-10	μΑ
V _{OH}	Output High Voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	_	1.38	1.60	V
V _{OL}	Output Low Voltage for V_{OP} or V_{OM}	R _T = 100 Ohm	0.9V	1.03	—	V
V _{OD}	Output Voltage Differential	(V _{OP} - V _{OM}), R _T = 100 Ohm	250	350	450	mV
ΔV _{OD}	Change in V _{OD} Between High and Low		_	_	50	mV
V _{OS}	Output Voltage Offset	(V _{OP} + V _{OM})/2, R _T = 100 Ohm	1.125	1.20	1.375	V
ΔV_{OS}	Change in V _{OS} Between H and L				50	mV
I _{SA}	Output Short Circuit Current	V _{OD} = 0V Driver Outputs Shorted to Ground	_	_	24	mA
I _{SAB}	Output Short Circuit Current	V _{OD} = 0V Driver Outputs Shorted to Each Other	_	_	12	mA

Over Recommended Operating Conditions

Differential HSTL and SSTL

Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

For further information on LVPECL, RSDS, MLVDS, BLVDS and other differential interfaces please see details in additional technical notes listed at the end of this data sheet.

LVDS25E

The top and bottom sides of LatticeXP2 devices support LVDS outputs via emulated complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one possible solution for point-to-point signals.

MLVDS

The LatticeXP2 devices support the differential MLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors.

Table 3-5. MLVDS DC Conditions¹

		Typical		
Parameter	Description	Ζο=50 Ω	Ζο=70 Ω	Units
V _{CCIO}	Output Driver Supply (+/-5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
R _S	Driver Series Resistor (+/-1%)	35.00	35.00	Ω
R _{TL}	Driver Parallel Resistor (+/-1%)	50.00	70.00	Ω
R _{TR}	Receiver Termination (+/-1%)	50.00	70.00	Ω
V _{OH}	Output High Voltage (After R _{TL})	1.52	1.60	V
V _{OL}	Output Low Voltage (After R _{TL})	0.98	0.90	V
V _{OD}	Output Differential Voltage (After R _{TL})	0.54	0.70	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	21.74	20.00	mA

1. For input buffer, see LVDS table.

For further information on LVPECL, RSDS, MLVDS, BLVDS and other differential interfaces please see details of additional technical information at the end of this data sheet.

LatticeXP2 External Switching Characteristics

			-	7	-	6	-	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
General I/O Pir	n Parameters (using Primary Clo	ck without F	PLL)1						
		XP2-5		3.80	_	4.20	_	4.60	ns
		XP2-8		3.80		4.20		4.60	ns
t _{CO}	Register	XP2-17		3.80	_	4.20	_	4.60	ns
		XP2-30		4.00	_	4.40	_	4.90	ns
		XP2-40		4.00	_	4.40		4.90	ns
		XP2-5	0.00		0.00	—	0.00		ns
		XP2-8	0.00	_	0.00	—	0.00	_	ns
t _{SU}	Register	XP2-17	0.00	_	0.00	—	0.00	_	ns
		XP2-30	0.00	_	0.00	—	0.00	_	ns
		XP2-40	0.00		0.00	—	0.00		ns
		XP2-5	1.40	_	1.70	—	1.90	_	ns
		XP2-8	1.40	_	1.70	—	1.90	_	ns
t _H	Register	XP2-17	1.40	_	1.70	—	1.90	_	ns
		XP2-30	1.40		1.70	—	1.90		ns
		XP2-40	1.40	_	1.70	—	1.90	_	ns
		XP2-5	1.40	_	1.70	—	1.90	_	ns
	Clock to Data Setup - PIO Input Register with Data Input Delay	XP2-8	1.40	_	1.70	—	1.90	_	ns
t _{SU_DEL}		XP2-17	1.40	_	1.70	—	1.90	_	ns
		XP2-30	1.40		1.70	_	1.90		ns
		XP2-40	1.40	_	1.70	—	1.90	_	ns
		XP2-5	0.00	_	0.00	—	0.00	_	ns
		XP2-8	0.00	_	0.00	—	0.00	_	ns
t _{H_DEL}	Clock to Data Hold - PIO Input Register with Input Data Delay	XP2-17	0.00	_	0.00	—	0.00	_	ns
		XP2-30	0.00		0.00	—	0.00		ns
		XP2-40	0.00		0.00	—	0.00		ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	XP2	_	420	_	357	_	311	MHz
General I/O Pir	n Parameters (using Edge Clock	without PLL	.) ¹						
		XP2-5	_	3.20	—	3.60	—	3.90	ns
		XP2-8		3.20	_	3.60	_	3.90	ns
t _{COE}	Clock to Output - PIO Output Register	XP2-17		3.20		3.60		3.90	ns
		XP2-30		3.20	_	3.60		3.90	ns
		XP2-40		3.20	_	3.60	_	3.90	ns
		XP2-5	0.00	_	0.00	—	0.00	_	ns
		XP2-8	0.00		0.00	_	0.00		ns
t _{SUE}	Register	XP2-17	0.00	—	0.00	—	0.00	—	ns
		XP2-30	0.00		0.00	—	0.00		ns
		XP2-40	0.00		0.00		0.00		ns

LatticeXP2 Internal Switching Characteristics¹

	-7 -6		6	-				
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Logi	c Mode Timing				I			I
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)	_	0.216	_	0.238	_	0.260	ns
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)	—	0.304		0.399		0.494	ns
t _{LSR_PFU}	Set/Reset to output of PFU (Asyn- chronous)	—	0.720		0.769		0.818	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.154	_	0.151	_	0.148	_	ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.061	—	-0.057	—	-0.053	—	ns
t _{SUD_PFU}	Clock to D input setup time	0.061	—	0.077	—	0.093	—	ns
t _{HD_PFU}	Clock to D input hold time	0.002	—	0.003	—	0.003	—	ns
t _{CK2Q_PFU}	Clock to Q delay, (D-type Register Configuration)	—	0.342	—	0.363	—	0.383	ns
t _{RSTREC_PFU}	Asynchronous reset recovery time for PFU Logic	—	0.520		0.634		0.748	ns
t _{RST_PFU}	Asynchronous reset time for PFU Logic	_	0.720	—	0.769	—	0.818	ns
PFU Dual Por	t Memory Mode Timing							
t _{CORAM_PFU}	Clock to Output (F Port)	—	1.082	—	1.267	—	1.452	ns
t _{SUDATA_PFU}	Data Setup Time	-0.206	—	-0.240	_	-0.274	—	ns
t _{HDATA_PFU}	Data Hold Time	0.239	—	0.275	_	0.312	—	ns
t _{SUADDR_PFU}	Address Setup Time	-0.294	—	-0.333	_	-0.371	—	ns
t _{HADDR_PFU}	Address Hold Time	0.295	—	0.333	_	0.371	—	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.146	—	-0.169	_	-0.193	—	ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.158	—	0.182	_	0.207	—	ns
PIO Input/Out	put Buffer Timing							
t _{IN_PIO}	Input Buffer Delay (LVCMOS25)	_	0.858	—	0.766	—	0.674	ns
t _{OUT_PIO}	Output Buffer Delay (LVCMOS25)	_	1.561	—	1.403	—	1.246	ns
IOLOGIC Inpu	t/Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	0.583	_	0.893	_	1.201	_	ns
t _{HI_PIO}	Input Register Hold Time (Data after Clock)	0.062	_	0.322	_	0.482	_	ns
t _{COO_PIO}	Output Register Clock to Output Delay	_	0.608	_	0.661	_	0.715	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	0.032	_	0.037	_	0.041	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	-0.022	_	-0.025	—	-0.028	_	ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.184	—	0.201	—	0.217	—	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.080	—	-0.086	—	-0.093	—	ns
t _{RSTREC_PIO}	Asynchronous reset recovery time for IO Logic	0.228	_	0.247	_	0.266	_	ns

LatticeXP2 Internal Switching Characteristics¹ (Continued)

		-	7	-	-6		-5	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{RST_PIO}	Asynchronous reset time for PFU Logic	—	0.386	—	0.419	—	0.452	ns
t _{DEL}	Dynamic Delay Step Size	0.035	0.035	0.035	0.035	0.035	0.035	ns
EBR Timing	· · · · · ·							
t _{CO_EBR}	Clock (Read) to Output from Address or Data	_	2.774	_	3.142	_	3.510	ns
t _{COO_EBR}	Clock (Write) to Output from EBR Output Register	_	0.360	_	0.408	—	0.456	ns
^t SUDATA_EBR	Setup Data to EBR Memory (Write Clk)	-0.167	—	-0.198	_	-0.229	—	ns
t _{HDATA_EBR}	Hold Data to EBR Memory (Write Clk)	0.194	—	0.231	_	0.267	_	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory (Write Clk)	-0.117	—	-0.137	_	-0.157	—	ns
t _{HADDR_EBR}	Hold Address to EBR Memory (Write Clk)	0.157	_	0.182	_	0.207	_	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory (Write/Read Clk)	-0.135	_	-0.159	_	-0.182	_	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory (Write/Read Clk)	0.158	—	0.186	_	0.214	_	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register (Read Clk)	0.144	—	0.160	_	0.176	_	ns
t _{HCE_EBR}	Clock Enable Hold Time to EBR Output Register (Read Clk)	-0.097	—	-0.113	_	-0.129	_	ns
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Register (Asynchro- nous)	_	1.156	_	1.341	_	1.526	ns
t _{SUBE_EBR}	Byte Enable Set-Up Time to EBR Output Register	-0.117	—	-0.137	_	-0.157	_	ns
t _{HBE_EBR}	Byte Enable Hold Time to EBR Output Register Dynamic Delay on Each PIO	0.157	_	0.182	_	0.207	_	ns
t _{RSTREC_EBR}	Asynchronous reset recovery time for EBR	0.233	—	0.291		0.347	—	ns
t _{RST_EBR}	Asynchronous reset time for EBR	—	1.156	—	1.341	_	1.526	ns
PLL Paramete	ers							
t _{RSTKREC_PLL}	After RSTK De-assert, Recovery Time Before Next Clock Edge Can Toggle K-divider Counter	1.000	_	1.000	_	1.000	_	ns
t _{RSTREC_PLL}	After RST De-assert, Recovery Time Before Next Clock Edge Can Toggle M-divider Counter (Applies to M-Divider Portion of RST Only ²)	1.000	_	1.000		1.000	_	ns
DSP Block Tir	ning							
t _{SUI_DSP}	Input Register Setup Time	0.135		0.151		0.166		ns
t _{HI_DSP}	Input Register Hold Time	0.021	—	-0.006	—	-0.031		ns
t _{SUP_DSP}	Pipeline Register Setup Time	2.505	—	2.784	—	3.064	—	ns

LatticeXP2 Family Timing Adders^{1, 2, 3, 4} (Continued)

Over Recommended Operating Conditions

Buffer Type	Description	-7	-6	-5	Units
LVCMOS25_4mA	LVCMOS 2.5 4mA drive, slow slew rate	1.05	1.43	1.81	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive, slow slew rate	0.78	1.15	1.52	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive, slow slew rate	0.59	0.96	1.33	ns
LVCMOS25_16mA	LVCMOS 2.5 16mA drive, slow slew rate	0.81	1.18	1.55	ns
LVCMOS25_20mA	LVCMOS 2.5 20mA drive, slow slew rate	0.61	0.98	1.35	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive, slow slew rate	1.01	1.38	1.75	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive, slow slew rate	0.72	1.08	1.45	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive, slow slew rate	0.53	0.90	1.26	ns
LVCMOS18_16mA	LVCMOS 1.8 16mA drive, slow slew rate	0.74	1.11	1.48	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive, slow slew rate	0.96	1.33	1.71	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive, slow slew rate	-0.53	-0.26	0.00	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive, slow slew rate	0.90	1.27	1.65	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive, slow slew rate	-0.55	-0.29	-0.02	ns
PCI33	3.3V PCI	-0.29	-0.01	0.26	ns

1. Timing Adders are characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. The base parameters used with these timing adders to calculate timing are listed in the LatticeXP2 Internal Switching Characteristics table under PIO Input/Output Timing.

5. These timing adders are measured with the recommended resistor values.

Flash Download Time (from On-Chip Flash to SRAM)

Over Recommended Operating Conditions

Symbol	Parar	Min.	Тур.	Max.	Units	
		XP2-5	—	1.8	2.1	ms
	PROGRAMN Low-to-	XP2-8	—	1.9	2.3	ms
	High. Transition to Done	XP2-17	—	1.7	2.0	ms
	High.	XP2-30	—	2.0	2.1	ms
t		XP2-40	—	2.0	2.3	ms
'REFRESH	Power-up refresh when	XP2-5	—	1.8	2.1	ms
		XP2-8	—	1.9	2.3	ms
	Up to Voc	XP2-17	—	1.7	2.0	ms
	$(V_{CC}=V_{CC} Min)$	XP2-30	—	2.0	2.1	ms
		XP2-40		2.0	2.3	ms

Flash Program Time

Over Recommended Operating Conditions

			Program Time	
Device	Flash	Density	Тур.	Units
	1.0M	TAG	1.0	ms
XF2-5	1.2101	Main Array	1.1	S
XP2-8	2.0M	TAG	1.0	ms
	2.0101	Main Array	1.4	S
VD0 17	2.6M	TAG	1.0	ms
AF2-17	3.0101	Main Array	1.8	S
	6.014	TAG	2.0	ms
XF2-30	0.0101	Main Array	3.0	S
VP2 40	8 OM	TAG	2.0	ms
ΛΓ 2 -40	0.000	Main Array	4.0	S

Flash Erase Time

	Flash Density		Erase Time	
Device			Тур.	Units
YP2_5	1.2M	TAG	1.0	s
XI 2-3	1.2101	Main Array	3.0	s
YP2_8	2.0M	TAG	1.0	S
AF2-0	2.0101	Main Array	4.0	s
VD2 17	2.6M	TAG	1.0	s
XI 2-17	3.0101	Main Array	5.0	S
XD2-30	6 OM	TAG	2.0	s
XI 2-30	0.0101	Main Array	7.0	s
XP2-40	8.0M	TAG	2.0	S
	0.00	Main Array	9.0	S

Pin Information Summary

			XP	2-5			XP	2-8		XP2-17 XP2-30			XP	2-40			
Pin Ty	ре	132 csBGA	144 TQFP	208 PQFP	256 ftBGA	132 csBGA	144 TQFP	208 PQFP	256 ftBGA	208 PQFP	256 ftBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	484 fpBGA	672 fpBGA
Single Ended Use	er I/O	86	100	146	172	86	100	146	201	146	201	358	201	363	472	363	540
Differential Pair	Normal	35	39	57	66	35	39	57	77	57	77	135	77	137	180	137	204
User I/O	Highspeed	8	11	16	20	8	11	16	23	16	23	44	23	44	56	44	66
	TAP	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Configuration	Muxed	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
	Dedicated	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Non Configura-	Muxed	5	5	7	7	7	7	9	9	11	11	21	7	11	13	11	13
tion	Dedicated	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Vcc		6	4	9	6	6	4	9	6	9	6	16	6	16	20	16	20
Vccaux		4	4	4	4	4	4	4	4	4	4	8	4	8	8	8	8
VCCPLL		2	2	2	-	2	2	2	-	4	-	-	-	-	-	-	-
	Bank0	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
	Bank1	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
	Bank2	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
VCCIO	Bank3	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
10010	Bank4	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
	Bank5	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
	Bank6	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
	Bank7	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
GND, GND0-GNI	77	15	15	20	20	15	15	22	20	22	20	56	20	56	64	56	64
NC		-	-	4	31	-	-	2	2	-	2	7	2	2	69	2	1
	Bank0	18/9	20/10	20/10	26/13	18/9	20/10	20/10	28/14	20/10	28/14	52/26	28/14	52/26	70/35	52/26	70/35
	Bank1	4/2	6/3	18/9	18/9	4/2	6/3	18/9	22/11	18/9	22/11	36/18	22/11	36/18	54/27	36/18	70/35
	Bank2	16/8	18/9	18/9	22/11	16/8	18/9	18/9	26/13	18/9	26/13	46/23	26/13	46/23	56/28	46/23	64/32
Single Ended/	Bank3	4/2	4/2	16/8	20/10	4/2	4/2	16/8	24/12	16/8	24/12	44/22	24/12	46/23	56/28	46/23	66/33
per Bank	Bank4	8/4	8/4	18/9	18/9	8/4	8/4	18/9	26/13	18/9	26/13	36/18	26/13	38/19	54/27	38/19	70/35
	Bank5	14/7	18/9	20/10	24/12	14/7	18/9	20/10	24/12	20/10	24/12	52/26	24/12	53/26	70/35	53/26	70/35
	Bank6	6/3	8/4	18/9	22/11	6/3	8/4	18/9	27/13	18/9	27/13	46/23	27/13	46/23	56/28	46/23	66/33
	Bank7	16/8	18/9	18/9	22/11	16/8	18/9	18/9	24/12	18/9	24/12	46/23	24/12	46/23	56/28	46/23	64/32
	Bank0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank2	3	4	4	5	3	4	4	6	4	6	11	6	11	14	11	16
True LVDS Pairs	Bank3	1	1	4	5	1	1	4	6	4	6	11	6	11	14	11	17
Bank	Bank4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank6	1	2	4	5	1	2	4	6	4	6	11	6	11	14	11	17
	Bank7	3	4	4	5	3	4	4	5	4	5	11	5	11	14	11	16
	Bank0	1	1	1	1	1	1	1	1	1	1	3	1	2	4	2	4
	Bank1	0	0	1	1	0	0	1	1	1	1	2	1	2	3	2	4
	Bank2	1	1	1	1	1	1	1	1	1	1	2	1	3	3	3	4
DDR Banks	Bank3	0	0	1	1	0	0	1	1	1	1	2	1	3	3	3	4
I/O Bank ¹	Bank4	0	0	1	1	0	0	1	1	1	1	2	1	2	3	2	4
	Bank5	1	1	1	1	1	1	1	1	1	1	3	1	2	4	2	4
	Bank6	0	0	1	1	0	0	1	1	1	1	2	1	3	3	3	4
Ban	Bank7	1	1	1	1	1	1	1	1	1	1	2	1	3	3	3	4

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FTN256C	1.2V	-5	Lead-Free ftBGA	256	COM	30
LFXP2-30E-6FTN256C	1.2V	-6	Lead-Free ftBGA	256	COM	30
LFXP2-30E-7FTN256C	1.2V	-7	Lead-Free ftBGA	256	COM	30
LFXP2-30E-5FN484C	1.2V	-5	Lead-Free fpBGA	484	COM	30
LFXP2-30E-6FN484C	1.2V	-6	Lead-Free fpBGA	484	COM	30
LFXP2-30E-7FN484C	1.2V	-7	Lead-Free fpBGA	484	COM	30
LFXP2-30E-5FN672C	1.2V	-5	Lead-Free fpBGA	672	COM	30
LFXP2-30E-6FN672C	1.2V	-6	Lead-Free fpBGA	672	COM	30
LFXP2-30E-7FN672C	1.2V	-7	Lead-Free fpBGA	672	COM	30

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5FN484C	1.2V	-5	Lead-Free fpBGA	484	COM	40
LFXP2-40E-6FN484C	1.2V	-6	Lead-Free fpBGA	484	COM	40
LFXP2-40E-7FN484C	1.2V	-7	Lead-Free fpBGA	484	COM	40
LFXP2-40E-5FN672C	1.2V	-5	Lead-Free fpBGA	672	COM	40
LFXP2-40E-6FN672C	1.2V	-6	Lead-Free fpBGA	672	COM	40
LFXP2-40E-7FN672C	1.2V	-7	Lead-Free fpBGA	672	COM	40

Industrial

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-5E-5MN132I	1.2V	-5	Lead-Free csBGA	132	IND	5
LFXP2-5E-6MN132I	1.2V	-6	Lead-Free csBGA	132	IND	5
LFXP2-5E-5TN144I	1.2V	-5	Lead-Free TQFP	144	IND	5
LFXP2-5E-6TN144I	1.2V	-6	Lead-Free TQFP	144	IND	5
LFXP2-5E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	5
LFXP2-5E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	5
LFXP2-5E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	5
LFXP2-5E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	5

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-8E-5MN132I	1.2V	-5	Lead-Free csBGA	132	IND	8
LFXP2-8E-6MN132I	1.2V	-6	Lead-Free csBGA	132	IND	8
LFXP2-8E-5TN144I	1.2V	-5	Lead-Free TQFP	144	IND	8
LFXP2-8E-6TN144I	1.2V	-6	Lead-Free TQFP	144	IND	8
LFXP2-8E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	8
LFXP2-8E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	8
LFXP2-8E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	8
LFXP2-8E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	8

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-17E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	17
LFXP2-17E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	17
LFXP2-17E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	17
LFXP2-17E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	17
LFXP2-17E-5FN484I	1.2V	-5	Lead-Free fpBGA	484	IND	17
LFXP2-17E-6FN484I	1.2V	-6	Lead-Free fpBGA	484	IND	17

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	30
LFXP2-30E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	30
LFXP2-30E-5FN484I	1.2V	-5	Lead-Free fpBGA	484	IND	30
LFXP2-30E-6FN484I	1.2V	-6	Lead-Free fpBGA	484	IND	30
LFXP2-30E-5FN672I	1.2V	-5	Lead-Free fpBGA	672	IND	30
LFXP2-30E-6FN672I	1.2V	-6	Lead-Free fpBGA	672	IND	30

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5FN484I	1.2V	-5	Lead-Free fpBGA	484	IND	40
LFXP2-40E-6FN484I	1.2V	-6	Lead-Free fpBGA	484	IND	40
LFXP2-40E-5FN672I	1.2V	-5	Lead-Free fpBGA	672	IND	40
LFXP2-40E-6FN672I	1.2V	-6	Lead-Free fpBGA	672	IND	40

LatticeXP2 Family Data Sheet Supplemental Information

February 2012

Data Sheet DS1009

For Further Information

A variety of technical notes for the LatticeXP2 FPGA family are available on the Lattice Semiconductor web site at <u>www.latticesemi.com</u>.

- TN1136, LatticeXP2 sysIO Usage Guide
- TN1137, LatticeXP2 Memory Usage Guide
- TN1138, LatticeXP2 High Speed I/O Interface
- TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide
- TN1139, Power Estimation and Management for LatticeXP2 Devices
- TN1140, LatticeXP2 sysDSP Usage Guide
- TN1141, LatticeXP2 sysCONFIG Usage Guide
- TN1142, LatticeXP2 Configuration Encryption and Security Usage Guide
- TN1087, Minimizing System Interruption During Configuration Using TransFR Technology
- TN1220, LatticeXP2 Dual Boot Feature
- TN1130, LatticeXP2 Soft Error Detection (SED) Usage Guide
- TN1143, LatticeXP2 Hardware Checklist

For further information on interface standards refer to the following websites:

- JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
- PCI: <u>www.pcisig.com</u>

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.