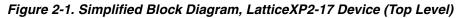


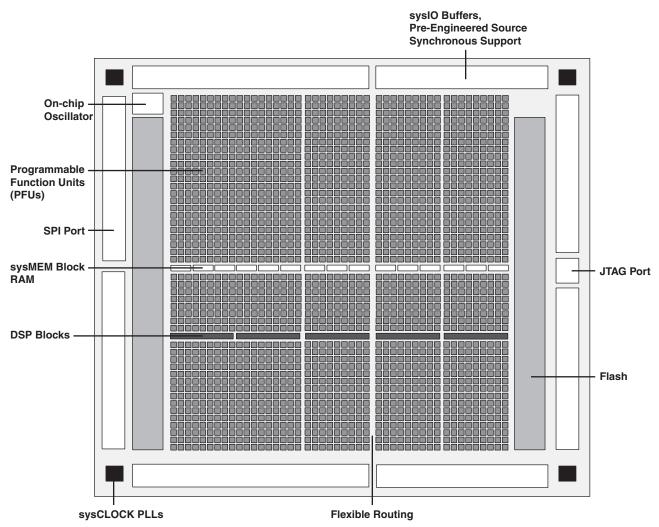
Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

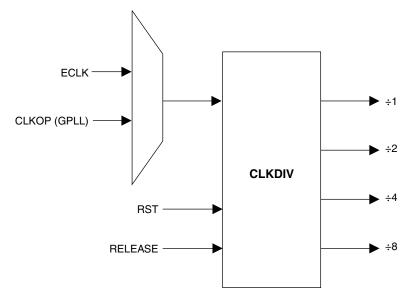
Applications of Embedded - FPGAs


The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


Details	
Product Status	Obsolete
Number of LABs/CLBs	625
Number of Logic Elements/Cells	5000
Total RAM Bits	169984
Number of I/O	86
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	132-LFBGA, CSPBGA
Supplier Device Package	132-CSBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-5e-7m132c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

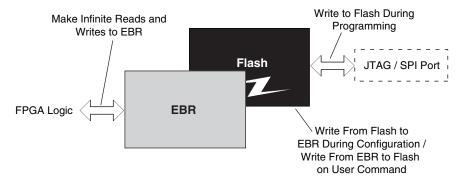

PFU Blocks

The core of the LatticeXP2 device is made up of logic blocks in two forms, PFUs and PFFs. PFUs can be programmed to perform logic, arithmetic, distributed RAM and distributed ROM functions. PFF blocks can be programmed to perform logic, arithmetic and ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices, numbered Slice 0 through Slice 3, as shown in Figure 2-2. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs associated with each PFU block.

Figure 2-5. Clock Divider Connections

Clock Distribution Network


LatticeXP2 devices have eight quadrant-based primary clocks and between six and eight flexible region-based secondary clocks/control signals. Two high performance edge clocks are available on each edge of the device to support high speed interfaces. The clock inputs are selected from external I/Os, the sysCLOCK PLLs, or routing. Clock inputs are fed throughout the chip via the primary, secondary and edge clock networks.

Primary Clock Sources

LatticeXP2 devices derive primary clocks from four sources: PLL outputs, CLKDIV outputs, dedicated clock inputs and routing. LatticeXP2 devices have two to four sysCLOCK PLLs, located in the four corners of the device. There are eight dedicated clock inputs, two on each side of the device. Figure 2-6 shows the primary clock sources.

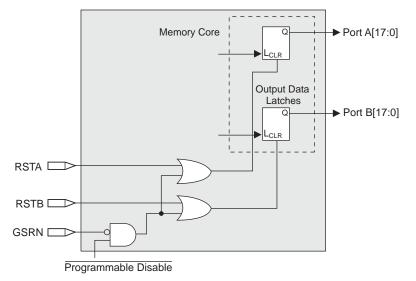
Figure 2-16. FlashBAK Technology

Memory Cascading

Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual and Pseudo-Dual Port Modes

In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

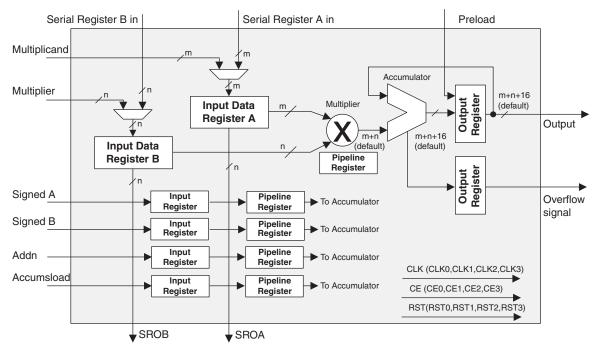

EBR memory supports two forms of write behavior for single port or dual port operation:

- 1. Normal Data on the output appears only during a read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port during a write cycle. This mode is supported for all data widths.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. GSRN, the global reset signal, resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-17.

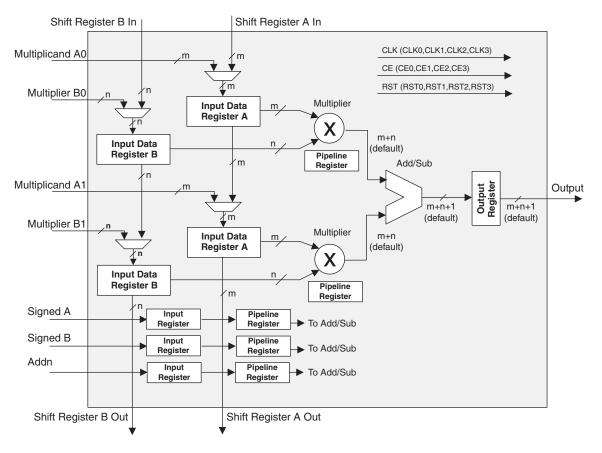
Figure 2-17. Memory Core Reset



MAC sysDSP Element

In this case, the two operands, A and B, are multiplied and the result is added with the previous accumulated value. This accumulated value is available at the output. The user can enable the input and pipeline registers but the output register is always enabled. The output register is used to store the accumulated value. The Accumulators in the DSP blocks in LatticeXP2 family can be initialized dynamically. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-21 shows the MAC sysDSP element.

Figure 2-21. MAC sysDSP



MULTADDSUB sysDSP Element

In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and B1. The user can enable the input, output and pipeline registers. Figure 2-22 shows the MULTADDSUB sysDSP element.

Figure 2-22. MULTADDSUB

IPexpress[™]

The user can access the sysDSP block via the Lattice IPexpress tool, which provides the option to configure each DSP module (or group of modules), or by direct HDL instantiation. In addition, Lattice has partnered with The Math-Works[®] to support instantiation in the Simulink[®] tool, a graphical simulation environment. Simulink works with Diamond to dramatically shorten the DSP design cycle in Lattice FPGAs.

Optimized DSP Functions

Lattice provides a library of optimized DSP IP functions. Some of the IP cores planned for the LatticeXP2 DSP include the Bit Correlator, FFT functions, FIR Filter, Reed-Solomon Encoder/Decoder, Turbo Encoder/Decoder and Convolutional Encoder/Decoder. Please contact Lattice to obtain the latest list of available DSP IP cores.

Resources Available in the LatticeXP2 Family

Table 2-8 shows the maximum number of multipliers for each member of the LatticeXP2 family. Table 2-9 shows the maximum available EBR RAM Blocks and Serial TAG Memory bits in each LatticeXP2 device. EBR blocks, together with Distributed RAM can be used to store variables locally for fast DSP operations.

Device	DSP Block	9x9 Multiplier	18x18 Multiplier	36x36 Multiplier
XP2-5	3	24	12	3
XP2-8	4	32	16	4
XP2-17	5	40	20	5
XP2-30	7	56	28	7
XP2-40	8	64	32	8

Table 2-8. Maximum Number of DSP Blocks in the LatticeXP2 Family

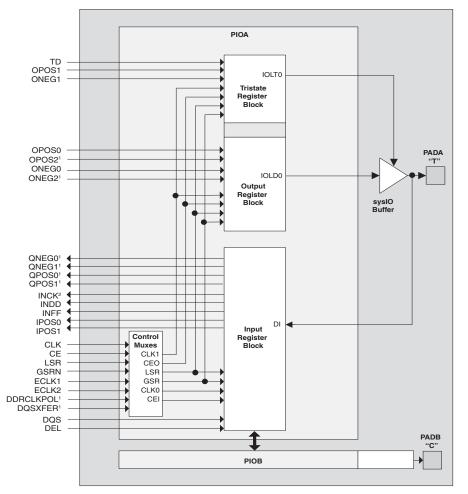
Device	EBR SRAM Block	Total EBR SRAM (Kbits)	TAG Memory (Bits)
XP2-5	9	166	632
XP2-8	12	221	768
XP2-17	15	276	2184
XP2-30	21	387	2640
XP2-40	48	885	3384

LatticeXP2 DSP Performance

Table 2-10 lists the maximum performance in Millions of MAC (MMAC) operations per second for each member of the LatticeXP2 family.

Table 2-10. DSP Performance

Device	DSP Block	DSP Performance MMAC
XP2-5	3	3,900
XP2-8	4	5,200
XP2-17	5	6,500
XP2-30	7	9,100
XP2-40	8	10,400


For further information on the sysDSP block, please see TN1140, <u>LatticeXP2 sysDSP Usage Guide</u>.

Programmable I/O Cells (PIC)

Each PIC contains two PIOs connected to their respective sysIO buffers as shown in Figure 2-25. The PIO Block supplies the output data (DO) and the tri-state control signal (TO) to the sysIO buffer and receives input from the buffer. Table 2-11 provides the PIO signal list.

Figure 2-25. PIC Diagram

Signals are available on left/right/bottom edges only.
 Selected blocks.

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as "T" and "C") as shown in Figure 2-25. The PAD Labels "T" and "C" distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as inputs.

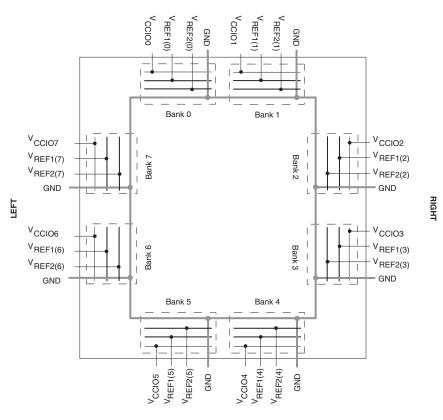
DQSXFER

LatticeXP2 devices provide a DQSXFER signal to the output buffer to assist it in data transfer to DDR memories that require DQS strobe be shifted 90°. This shifted DQS strobe is generated by the DQSDEL block. The DQSXFER signal runs the span of the data bus.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.

sysIO Buffer Banks


LatticeXP2 devices have eight sysIO buffer banks for user I/Os arranged two per side. Each bank is capable of supporting multiple I/O standards. Each sysIO bank has its own I/O supply voltage (V_{CCIO}). In addition, each bank has voltage references, V_{REF1} and V_{REF2} , that allow it to be completely independent from the others. Figure 2-32 shows the eight banks and their associated supplies.

In LatticeXP2 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs independent of V_{CCIO} .

Each bank can support up to two separate V_{REF} voltages, V_{REF1} and V_{REF2} , that set the threshold for the referenced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

тор

Figure 2-32. LatticeXP2 Banks

воттом

LatticeXP2 devices contain two types of sysIO buffer pairs.

1. Top and Bottom (Banks 0, 1, 4 and 5) sysIO Buffer Pairs (Single-Ended Outputs Only)

The sysIO buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have programmable PCI clamps.

2. Left and Right (Banks 2, 3, 6 and 7) sysIO Buffer Pairs (50% Differential and 100% Single-Ended Outputs) The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the referenced input buffers can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp pad is associated with the negative side of the differential I/O.

LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

Typical sysIO I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when $V_{CC, V} C_{CCONFIG} (V_{CCIO7})$ and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. During power up and before the FPGA core logic becomes active, all user I/Os will be high-impedance with weak pull-up. Please refer to TN1136, <u>LatticeXP2 sysIO</u> Usage Guide for additional information.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported sysIO Standards

The LatticeXP2 sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2V, 1.5V, 1.8V, 2.5V and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, MLVDS, BLVDS, LVPECL, RSDS, differential SSTL and differential HSTL. Tables 2-12 and 2-13 show the I/O standards (together with their supply and reference voltages) supported by LatticeXP2 devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1136, LatticeXP2 sysIO Usage Guide.

Table 2-12. Supported Input Standards

Input Standard	V _{REF} (Nom.)	V _{CCIO} ¹ (Nom.)				
Single Ended Interfaces						
LVTTL	—	—				
LVCMOS33	—	—				
LVCMOS25		—				
LVCMOS18		1.8				
LVCMOS15	—	1.5				
LVCMOS12	—	—				
PCI33		—				
HSTL18 Class I, II	0.9	—				
HSTL15 Class I	0.75	—				
SSTL33 Class I, II	1.5	—				
SSTL25 Class I, II	1.25	—				
SSTL18 Class I, II	0.9	—				
Differential Interfaces						
Differential SSTL18 Class I, II	—	—				
Differential SSTL25 Class I, II		—				
Differential SSTL33 Class I, II	—	-				
Differential HSTL15 Class I	—	-				
Differential HSTL18 Class I, II	—	—				
LVDS, MLVDS, LVPECL, BLVDS, RSDS	—	—				

1. When not specified, V_{CCIO} can be set anywhere in the valid operating range (page 3-1).

original backup configuration and try again. This all can be done without power cycling the system. For more information please see TN1220, <u>LatticeXP2 Dual Boot Feature</u>.

For more information on device configuration, please see TN1141, LatticeXP2 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support

LatticeXP2 devices have dedicated logic to perform Cyclic Redundancy Code (CRC) checks. During configuration, the configuration data bitstream can be checked with the CRC logic block. In addition, LatticeXP2 devices can be programmed for checking soft errors in SRAM. SED can be run on a programmed device when the user logic is not active. In the event a soft error occurs, the device can be programmed to either reload from a known good boot image (from internal Flash or external SPI memory) or generate an error signal.

For further information on SED support, please see TN1130, LatticeXP2 Soft Error Detection (SED) Usage Guide.

On-Chip Oscillator

Every LatticeXP2 device has an internal CMOS oscillator that is used to derive a Master Clock (CCLK) for configuration. The oscillator and CCLK run continuously and are available to user logic after configuration is complete. The available CCLK frequencies are listed in Table 2-14. When a different CCLK frequency is selected during the design process, the following sequence takes place:

- 1. Device powers up with the default CCLK frequency.
- 2. During configuration, users select a different CCLK frequency.
- 3. CCLK frequency changes to the selected frequency after clock configuration bits are received.

This internal CMOS oscillator is available to the user by routing it as an input clock to the clock tree. For further information on the use of this oscillator for configuration or user mode, please see TN1141, <u>LatticeXP2 sysCON-FIG Usage Guide</u>.

CCLK/Oscillator (MHz)				
2.5 ¹				
3.1 ²				
4.3				
5.4				
6.9				
8.1				
9.2				
10				
13				
15				
20				
26				
32				
40				
54				
80 ³				
163 ³				
1. Software default oscillator frequency.				

1. Software default oscillator frequency.

2. Software default CCLK frequency.

3. Frequency not valid for CCLK.

Programming and Erase Flash Supply Current^{1, 2, 3, 4, 5}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typical (25°C, Max. Supply) ⁶	Units
		XP2-5	17	mA
		XP2-8	21	mA
I _{CC}	Core Power Supply Current	XP2-17	28	mA
		XP2-30	36	mA
		XP2-40	50	mA
	Auxiliary Power Supply Current ⁷	XP2-5	64	mA
		XP2-8	66	mA
ICCAUX		XP2-17	83	mA
		XP2-30	87	mA
		XP2-40	88	mA
ICCPLL	PLL Power Supply Current (per PLL)		0.1	mA
I _{CCIO}	Bank Power Supply Current (per Bank)		5	mA
ICCJ	V _{CCJ} Power Supply Current ⁸		14	mA

1. For further information on supply current, please see TN1139, Power Estimation and Management for LatticeXP2 Devices.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

3. Frequency 0 MHz (excludes dynamic power from FPGA operation).

4. A specific configuration pattern is used that scales with the size of the device; consists of 75% PFU utilization, 50% EBR, and 25% I/O configuration.

5. Bypass or decoupling capacitor across the supply.

6. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

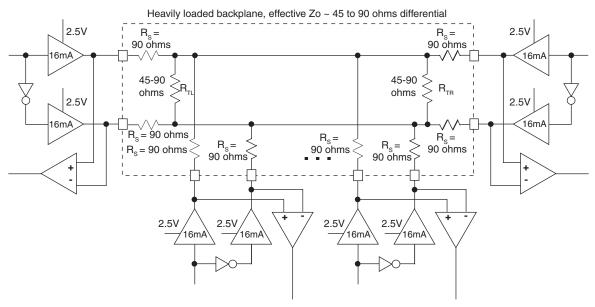
In fpBGA and ftBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual
auxiliary supply current is the sum of I_{CCAUX} and I_{CCPLL}. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the
auxiliary power supply.

8. When programming via JTAG.

sysIO Single-Ended DC Electrical Characteristics

Input/Output	ut VIL VIH		V _{OL} V _{OH}					
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	Max. (V)	Min. (V)	l _{OL} 1 (mA)	I _{OH} ¹ (mA)
LVCMOS33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVTTL33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS25	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS15	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4
	-0.5	0.33 VCCIO	0.03 V CCIO	5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS12	-0.3	0.35 V _{CC}	0.65 V _{CC}	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
LVONOSTZ	-0.5			5.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
PCI33	-0.3	0.3 V _{CCIO}	0.5 V _{CCIO}	3.6	0.1 V _{CCIO}	0.9 V _{CCIO}	1.5	-0.5
SSTL33_I	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.7	V _{CCIO} - 1.1	8	-8
SSTL33_II	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.5	V _{CCIO} - 0.9	16	-16
SSTL25_I	-0.3	V _{BEE} - 0.18	V _{BFF} + 0.18	3.6	0.54	V _{CCIO} - 0.62	7.6	-7.6
001220_1	0.0	VREF 0.10	VREF 1 0.10	0.0	0.01	*CCI0 0.02	12	-12
SSTL25_II	-0.3	V _{RFF} - 0.18	V _{RFF} + 0.18	3.6	0.35	V _{CCIO} - 0.43	15.2	-15.2
001220_11	0.0			0.0	0.00	VCCI0 0.10	20	-20
SSTL18_I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.6	0.4	V _{CCIO} - 0.4	6.7	-6.7
SSTL18_II	-0.3	Vpcc - 0 125	V _{REF} + 0.125	3.6	0.28	V _{CCIO} - 0.28	8	-8
001210_11	0.0	VREF 0.120	VREF 1 0.120	0.0	0.20	*CCI0 0.20	11	-11
HSTL15_I	-0.3	V _{REF} - 0.1	V _{RFF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	4	-4
				0.0	••••		8	-8
HSTL18_I	-0.3	-0.3 V _{BEF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	8	-8
							12	-12
HSTL18_II	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	16	-16

Over Recommended Operating Conditions


 The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as shown in the logic signal connections table shall not exceed n * 8mA, where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

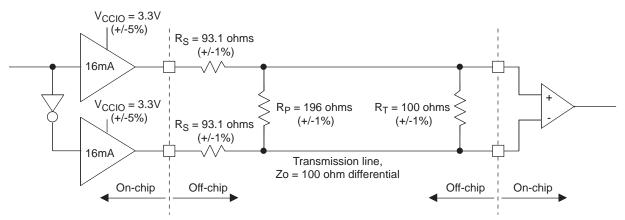
BLVDS

The LatticeXP2 devices support the BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Table 3-2. BLVDS DC Conditions¹

		Typical		
Parameter	Description	Ζο = 45 Ω	Ζο = 90 Ω	Units
V _{CCIO}	Output Driver Supply (+/- 5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
R _S	Driver Series Resistor (+/- 1%)	90.00	90.00	Ω
R _{TL}	Driver Parallel Resistor (+/- 1%)	45.00	90.00	Ω
R _{TR}	Receiver Termination (+/- 1%)	45.00	90.00	Ω
V _{OH}	Output High Voltage (After R _{TL})	1.38	1.48	V
V _{OL}	Output Low Voltage (After R _{TL})	1.12	1.02	V
V _{OD}	Output Differential Voltage (After R _{TL})	0.25	0.46	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	11.24	10.20	mA

Over Recommended Operating Conditions


1. For input buffer, see LVDS table.

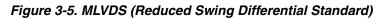
LVPECL

The LatticeXP2 devices support the differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals.

Figure 3-3. Differential LVPECL

Table 3-3. LVPECL DC Conditions¹

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/-5%)	3.30	V
Z _{OUT}	Driver Impedance	10	Ω
R _S	Driver Series Resistor (+/-1%)	93	Ω
R _P	Driver Parallel Resistor (+/-1%)	196	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage (After R _P)	2.05	V
V _{OL}	Output Low Voltage (After R _P)	1.25	V
V _{OD}	Output Differential Voltage (After R _P)	0.80	V
V _{CM}	Output Common Mode Voltage	1.65	V
Z _{BACK}	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	12.11	mA


Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

MLVDS

The LatticeXP2 devices support the differential MLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors.

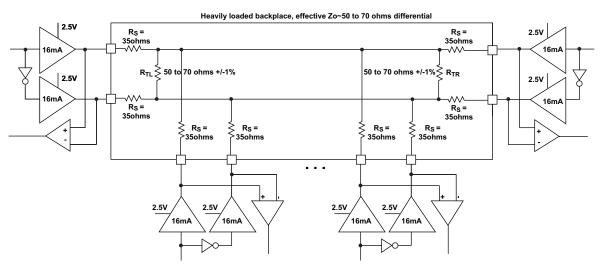


Table 3-5. MLVDS DC Conditions¹

	Typical			
Parameter	Description	Ζο=50 Ω	Ζο=70 Ω	Units
V _{CCIO}	Output Driver Supply (+/-5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
R _S	Driver Series Resistor (+/-1%)	35.00	35.00	Ω
R _{TL}	Driver Parallel Resistor (+/-1%)	50.00	70.00	Ω
R _{TR}	Receiver Termination (+/-1%)	50.00	70.00	Ω
V _{OH}	Output High Voltage (After R _{TL})	1.52	1.60	V
V _{OL}	Output Low Voltage (After R _{TL})	0.98	0.90	V
V _{OD}	Output Differential Voltage (After R _{TL})	0.54	0.70	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	21.74	20.00	mA

1. For input buffer, see LVDS table.

For further information on LVPECL, RSDS, MLVDS, BLVDS and other differential interfaces please see details of additional technical information at the end of this data sheet.

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-7 Timing	Units
Basic Functions		
16-bit Decoder	4.4	ns
32-bit Decoder	5.2	ns
64-bit Decoder	5.6	ns
4:1 MUX	3.7	ns
8:1 MUX	3.9	ns
16:1 MUX	4.3	ns
32:1 MUX	4.5	ns

Register-to-Register Performance

Function	-7 Timing	Units
Basic Functions		
16-bit Decoder	521	MHz
32-bit Decoder	537	MHz
64-bit Decoder	484	MHz
4:1 MUX	744	MHz
8:1 MUX	678	MHz
16:1 MUX	616	MHz
32:1 MUX	529	MHz
8-bit Adder	570	MHz
16-bit Adder	507	MHz
64-bit Adder	293	MHz
16-bit Counter	541	MHz
32-bit Counter	440	MHz
64-bit Counter	321	MHz
64-bit Accumulator	261	MHz
Embedded Memory Functions		
512x36 Single Port RAM, EBR Output Registers	315	MHz
1024x18 True-Dual Port RAM (Write Through or Normal, EBR Output Registers)	315	MHz
1024x18 True-Dual Port RAM (Write Through or Normal, PLC Output Registers)	231	MHz
Distributed Memory Functions		
16x4 Pseudo-Dual Port RAM (One PFU)	760	MHz
32x2 Pseudo-Dual Port RAM	455	MHz
64x1 Pseudo-Dual Port RAM	351	MHz
DSP Functions		
18x18 Multiplier (All Registers)	342	MHz
9x9 Multiplier (All Registers)	342	MHz
36x36 Multiply (All Registers)	330	MHz
18x18 Multiply/Accumulate (Input and Output Registers)	218	MHz
18x18 Multiply-Add/Sub-Sum (All Registers)	292	MHz

LatticeXP2 Family Timing Adders^{1, 2, 3, 4} (Continued)

Over Recommended Operating Conditions

Buffer Type	Description	-7	-6	-5	Units
LVCMOS25_4mA	LVCMOS 2.5 4mA drive, slow slew rate	1.05	1.43	1.81	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive, slow slew rate	0.78	1.15	1.52	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive, slow slew rate	0.59	0.96	1.33	ns
LVCMOS25_16mA	LVCMOS 2.5 16mA drive, slow slew rate	0.81	1.18	1.55	ns
LVCMOS25_20mA	LVCMOS 2.5 20mA drive, slow slew rate	0.61	0.98	1.35	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive, slow slew rate	1.01	1.38	1.75	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive, slow slew rate	0.72	1.08	1.45	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive, slow slew rate	0.53	0.90	1.26	ns
LVCMOS18_16mA	LVCMOS 1.8 16mA drive, slow slew rate	0.74	1.11	1.48	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive, slow slew rate	0.96	1.33	1.71	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive, slow slew rate	-0.53	-0.26	0.00	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive, slow slew rate	0.90	1.27	1.65	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive, slow slew rate	-0.55	-0.29	-0.02	ns
PCI33	3.3V PCI	-0.29	-0.01	0.26	ns

1. Timing Adders are characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. The base parameters used with these timing adders to calculate timing are listed in the LatticeXP2 Internal Switching Characteristics table under PIO Input/Output Timing.

5. These timing adders are measured with the recommended resistor values.

Lead-Free Packaging

Commercial

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-5E-5MN132C	1.2V	-5	Lead-Free csBGA	132	COM	5
LFXP2-5E-6MN132C	1.2V	-6	Lead-Free csBGA	132	COM	5
LFXP2-5E-7MN132C	1.2V	-7	Lead-Free csBGA	132	COM	5
LFXP2-5E-5TN144C	1.2V	-5	Lead-Free TQFP	144	COM	5
LFXP2-5E-6TN144C	1.2V	-6	Lead-Free TQFP	144	COM	5
LFXP2-5E-7TN144C	1.2V	-7	Lead-Free TQFP	144	COM	5
LFXP2-5E-5QN208C	1.2V	-5	Lead-Free PQFP	208	COM	5
LFXP2-5E-6QN208C	1.2V	-6	Lead-Free PQFP	208	COM	5
LFXP2-5E-7QN208C	1.2V	-7	Lead-Free PQFP	208	COM	5
LFXP2-5E-5FTN256C	1.2V	-5	Lead-Free ftBGA	256	COM	5
LFXP2-5E-6FTN256C	1.2V	-6	Lead-Free ftBGA	256	COM	5
LFXP2-5E-7FTN256C	1.2V	-7	Lead-Free ftBGA	256	COM	5

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-8E-5MN132C	1.2V	-5	Lead-Free csBGA	132	COM	8
LFXP2-8E-6MN132C	1.2V	-6	Lead-Free csBGA	132	COM	8
LFXP2-8E-7MN132C	1.2V	-7	Lead-Free csBGA	132	COM	8
LFXP2-8E-5TN144C	1.2V	-5	Lead-Free TQFP	144	COM	8
LFXP2-8E-6TN144C	1.2V	-6	Lead-Free TQFP	144	COM	8
LFXP2-8E-7TN144C	1.2V	-7	Lead-Free TQFP	144	COM	8
LFXP2-8E-5QN208C	1.2V	-5	Lead-Free PQFP	208	COM	8
LFXP2-8E-6QN208C	1.2V	-6	Lead-Free PQFP	208	COM	8
LFXP2-8E-7QN208C	1.2V	-7	Lead-Free PQFP	208	COM	8
LFXP2-8E-5FTN256C	1.2V	-5	Lead-Free ftBGA	256	COM	8
LFXP2-8E-6FTN256C	1.2V	-6	Lead-Free ftBGA	256	COM	8
LFXP2-8E-7FTN256C	1.2V	-7	Lead-Free ftBGA	256	COM	8

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-17E-5QN208C	1.2V	-5	Lead-Free PQFP	208	COM	17
LFXP2-17E-6QN208C	1.2V	-6	Lead-Free PQFP	208	COM	17
LFXP2-17E-7QN208C	1.2V	-7	Lead-Free PQFP	208	COM	17
LFXP2-17E-5FTN256C	1.2V	-5	Lead-Free ftBGA	256	COM	17
LFXP2-17E-6FTN256C	1.2V	-6	Lead-Free ftBGA	256	COM	17
LFXP2-17E-7FTN256C	1.2V	-7	Lead-Free ftBGA	256	COM	17
LFXP2-17E-5FN484C	1.2V	-5	Lead-Free fpBGA	484	COM	17
LFXP2-17E-6FN484C	1.2V	-6	Lead-Free fpBGA	484	COM	17
LFXP2-17E-7FN484C	1.2V	-7	Lead-Free fpBGA	484	СОМ	17

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FTN256C	1.2V	-5	Lead-Free ftBGA	256	COM	30
LFXP2-30E-6FTN256C	1.2V	-6	Lead-Free ftBGA	256	COM	30
LFXP2-30E-7FTN256C	1.2V	-7	Lead-Free ftBGA	256	COM	30
LFXP2-30E-5FN484C	1.2V	-5	Lead-Free fpBGA	484	COM	30
LFXP2-30E-6FN484C	1.2V	-6	Lead-Free fpBGA	484	COM	30
LFXP2-30E-7FN484C	1.2V	-7	Lead-Free fpBGA	484	COM	30
LFXP2-30E-5FN672C	1.2V	-5	Lead-Free fpBGA	672	COM	30
LFXP2-30E-6FN672C	1.2V	-6	Lead-Free fpBGA	672	COM	30
LFXP2-30E-7FN672C	1.2V	-7	Lead-Free fpBGA	672	COM	30

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5FN484C	1.2V	-5	Lead-Free fpBGA	484	COM	40
LFXP2-40E-6FN484C	1.2V	-6	Lead-Free fpBGA	484	COM	40
LFXP2-40E-7FN484C	1.2V	-7	Lead-Free fpBGA	484	COM	40
LFXP2-40E-5FN672C	1.2V	-5	Lead-Free fpBGA	672	COM	40
LFXP2-40E-6FN672C	1.2V	-6	Lead-Free fpBGA	672	COM	40
LFXP2-40E-7FN672C	1.2V	-7	Lead-Free fpBGA	672	COM	40

Industrial

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-5E-5MN132I	1.2V	-5	Lead-Free csBGA	132	IND	5
LFXP2-5E-6MN132I	1.2V	-6	Lead-Free csBGA	132	IND	5
LFXP2-5E-5TN144I	1.2V	-5	Lead-Free TQFP	144	IND	5
LFXP2-5E-6TN144I	1.2V	-6	Lead-Free TQFP	144	IND	5
LFXP2-5E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	5
LFXP2-5E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	5
LFXP2-5E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	5
LFXP2-5E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	5

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-8E-5MN132I	1.2V	-5	Lead-Free csBGA	132	IND	8
LFXP2-8E-6MN132I	1.2V	-6	Lead-Free csBGA	132	IND	8
LFXP2-8E-5TN144I	1.2V	-5	Lead-Free TQFP	144	IND	8
LFXP2-8E-6TN144I	1.2V	-6	Lead-Free TQFP	144	IND	8
LFXP2-8E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	8
LFXP2-8E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	8
LFXP2-8E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	8
LFXP2-8E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	8