

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	625
Number of Logic Elements/Cells	5000
Total RAM Bits	169984
Number of I/O	86
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	132-LFBGA, CSPBGA
Supplier Device Package	132-CSBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-5e-7mn132c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Secondary Clock/Control Sources

LatticeXP2 devices derive secondary clocks (SC0 through SC7) from eight dedicated clock input pads and the rest from routing. Figure 2-7 shows the secondary clock sources.

Figure 2-7. Secondary Clock Sources

Figure 2-16. FlashBAK Technology

Memory Cascading

Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual and Pseudo-Dual Port Modes

In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

EBR memory supports two forms of write behavior for single port or dual port operation:

- 1. Normal Data on the output appears only during a read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. Write Through A copy of the input data appears at the output of the same port during a write cycle. This mode is supported for all data widths.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. GSRN, the global reset signal, resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-17.

Figure 2-17. Memory Core Reset

For further information on the sysMEM EBR block, please see TN1137, LatticeXP2 Memory Usage Guide.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the low-to-high transition of the reset signal, as shown in Figure 2-18. The GSR input to the EBR is always asynchronous.

Reset	
Clock	
Clock —————— Enable	

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM and ROM implementations.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

sysDSP™ Block

The LatticeXP2 family provides a sysDSP block making it ideally suited for low cost, high performance Digital Signal Processing (DSP) applications. Typical functions used in these applications include Bit Correlators, Fast Fourier Transform (FFT) functions, Finite Impulse Response (FIR) Filter, Reed-Solomon Encoder/Decoder, Turbo Encoder/ Decoder and Convolutional Encoder/Decoder. These complex signal processing functions use similar building blocks such as multiply-adders and multiply-accumulators.

sysDSP Block Approach Compare to General DSP

Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by higher clock speeds. The LatticeXP2 family, on the other hand, has many DSP blocks that support different data-widths. This allows the designer to use highly parallel implementations of DSP functions. The designer can optimize the DSP performance vs. area by choosing appropriate levels of parallelism. Figure 2-19 compares the fully serial and the mixed parallel and serial implementations.

sysDSP Block Capabilities

The sysDSP block in the LatticeXP2 family supports four functional elements in three 9, 18 and 36 data path widths. The user selects a function element for a DSP block and then selects the width and type (signed/unsigned) of its operands. The operands in the LatticeXP2 family sysDSP Blocks can be either signed or unsigned but not mixed within a function element. Similarly, the operand widths cannot be mixed within a block. DSP elements can be concatenated.

The resources in each sysDSP block can be configured to support the following four elements:

- MULT (Multiply)
- MAC (Multiply, Accumulate)
- MULTADDSUB (Multiply, Addition/Subtraction)
- MULTADDSUBSUM (Multiply, Addition/Subtraction, Accumulate)

The number of elements available in each block depends on the width selected from the three available options: x9, x18, and x36. A number of these elements are concatenated for highly parallel implementations of DSP functions. Table 2-6 shows the capabilities of the block.

Width of Multiply	x9	x18	x36
MULT	8	4	1
MAC	2	2	_
MULTADDSUB	4	2	_
MULTADDSUBSUM	2	1	_

Some options are available in four elements. The input register in all the elements can be directly loaded or can be loaded as shift register from previous operand registers. By selecting 'dynamic operation' the following operations are possible:

- In the 'Signed/Unsigned' options the operands can be switched between signed and unsigned on every cycle.
- In the 'Add/Sub' option the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.

MULT sysDSP Element

This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, A and B, are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. Figure 2-20 shows the MULT sysDSP element.

Figure 2-20. MULT sysDSP Element

MULTADDSUBSUM sysDSP Element

In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and B1. Additionally the operands A2 and B2 are multiplied and the result is added/ subtracted with the result of the multiplier operation of operands A3 and B3. The result of both addition/subtraction are added in a summation block. The user can enable the input, output and pipeline registers. Figure 2-23 shows the MULTADDSUBSUM sysDSP element.

Figure 2-23. MULTADDSUBSUM

Clock, Clock Enable and Reset Resources

Global Clock, Clock Enable (CE) and Reset (RST) signals from routing are available to every DSP block. From four clock sources (CLK0, CLK1, CLK2, CLK3) one clock is selected for each input register, pipeline register and output

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to system clock domain. For further discussion on this topic, see the DDR Memory section of this data sheet.

Output Register Block

The output register block provides the ability to register signals from the core of the device before they are passed to the sysIO buffers. The blocks on the PIOs on the left, right and bottom contain registers for SDR operation that are combined with an additional latch for DDR operation. Figure 2-27 shows the diagram of the Output Register Block for PIOs.

In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or latch. In DDR mode, ONEG0 and OPOS0 are fed into registers on the positive edge of the clock. At the next clock cycle the registered OPOS0 is latched. A multiplexer running off the same clock cycle selects the correct register to feed the output (D0).

By combining output blocks of the complementary PIOs and sharing some registers from input blocks, a gearbox function can be implemented, to take four data streams ONEG0A, ONEG1A, ONEG1B and ONEG1B. Figure 2-27

Figure 2-28. DQS Input Routing (Left and Right)

	PIO A		PADA "T"
	PIO B		PADB "C"
	PIO A		PADA "T"
	PIO B	· · · · ·	PADB "C"
	PIO A		PADA "T"
	PIO B	↓+	PADB "C"
	PIO A		PADA "T"
	PIO B	┃┣	PADB "C"
DOG	PIO A	sysIO Buffer	
 ■ DQ5 		Delay	LVDS Pair
+ DQS	PIO B	Delay	LVDS Pair
↓ DQS	PIO B PIO A		PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
	→ PIO B → PIO A → PIO B		PADA "1" LVDS Pair PADB "C" PADA "T" LVDS Pair LVDS Pair PADA "C"
	→ PIO B → PIO A → PIO B → PIO A		PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
			PADA T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair LVDS Pair PADB "C"
			PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"

Figure 2-29. DQS Input Routing (Top and Bottom)

	PIO A		PADA "T"
	PIO B	+	PADB "C"
	PIO A		PADA "T"
	PIO B	· · · · ·	PADB "C"
—	PIO A		PADA "T" LVDS Pair
	PIO B	→	PADB "C"
—	PIO A		PADA "T"
<u> </u>	PIO B	→	PADB "C"
	PIO A	syslO Buffer	·
DQS		Palay	
•		Delay	LVDS Pair
	PIO B		LVDS Pair I I PADB "C" I
	PIO B PIO A		LVDS Pair I PADB "C"
	→ PIO B → PIO A → PIO B		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"
	→ PIO B → PIO A → PIO B → PIO A		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
	→ PIO B → PIO A → PIO B → PIO A → PIO B		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "C" PADA "C"
	→ PIO B → PIO A → PIO A → PIO A → PIO A → PIO B → PIO A		LVDS Pair PADA "T" LVDS Pair PADA "T" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "T" LVDS Pair
			LVDS Pair PADA "T" LVDS Pair PADA "T" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"
			LVDS Pair PADA "T" LVDS Pair PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "T" LVDS Pair

LatticeXP2 devices contain two types of sysIO buffer pairs.

1. Top and Bottom (Banks 0, 1, 4 and 5) sysIO Buffer Pairs (Single-Ended Outputs Only)

The sysIO buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have programmable PCI clamps.

2. Left and Right (Banks 2, 3, 6 and 7) sysIO Buffer Pairs (50% Differential and 100% Single-Ended Outputs) The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the referenced input buffers can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp pad is associated with the negative side of the differential I/O.

LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

Typical sysIO I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when $V_{CC, V} C_{CCONFIG} (V_{CCIO7})$ and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. During power up and before the FPGA core logic becomes active, all user I/Os will be high-impedance with weak pull-up. Please refer to TN1136, <u>LatticeXP2 sysIO</u> Usage Guide for additional information.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported sysIO Standards

The LatticeXP2 sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2V, 1.5V, 1.8V, 2.5V and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, MLVDS, BLVDS, LVPECL, RSDS, differential SSTL and differential HSTL. Tables 2-12 and 2-13 show the I/O standards (together with their supply and reference voltages) supported by LatticeXP2 devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1136, LatticeXP2 sysIO Usage Guide.

Table 2-12. Supported Input Standards

Input Standard	V _{REF} (Nom.)	V _{CCIO} ¹ (Nom.)					
Single Ended Interfaces							
LVTTL	—	—					
LVCMOS33	_	_					
LVCMOS25	—	—					
LVCMOS18	—	1.8					
LVCMOS15	_	1.5					
LVCMOS12	_	—					
PCI33	—	—					
HSTL18 Class I, II	0.9	_					
HSTL15 Class I	0.75	—					
SSTL33 Class I, II	1.5	—					
SSTL25 Class I, II	1.25	_					
SSTL18 Class I, II	0.9	—					
Differential Interfaces							
Differential SSTL18 Class I, II	—	—					
Differential SSTL25 Class I, II	—	—					
Differential SSTL33 Class I, II	—	—					
Differential HSTL15 Class I	—	—					
Differential HSTL18 Class I, II	—	—					
LVDS, MLVDS, LVPECL, BLVDS, RSDS	—	_					

1. When not specified, V_{CCIO} can be set anywhere in the valid operating range (page 3-1).

Initialization Supply Current^{1, 2, 3, 4, 5}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typical (25°C, Max. Supply) ⁶	Units
		XP2-5	20	mA
		XP2-8	21	mA
I _{CC}	Core Power Supply Current	XP2-17	44	mA
		XP2-30	58	mA
		XP2-40	62	mA
I _{CCAUX}		XP2-5	67	mA
	Auxiliary Power Supply Current ⁷	XP2-8	74	mA
		XP2-17	112	mA
		XP2-30	124	mA
		XP2-40	130	mA
I _{CCPLL}	PLL Power Supply Current (per PLL)		1.8	mA
I _{CCIO}	Bank Power Supply Current (per Bank)		6.4	mA
ICCJ	VCCJ Power Supply Current		1.2	mA

1. For further information on supply current, please see TN1139, Power Estimation and Management for LatticeXP2 Devices.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

3. Frequency 0 MHz.

4. Does not include additional current from bypass or decoupling capacitor across the supply.

5. A specific configuration pattern is used that scales with the size of the device; consists of 75% PFU utilization, 50% EBR, and 25% I/O configuration.

6. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

In fpBGA and ftBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual
auxiliary supply current is the sum of I_{CCAUX} and I_{CCPLL}. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the
auxiliary power supply.

Table 3-1. LVDS25E DC Conditions

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/-5%)	2.50	V
Z _{OUT}	Driver Impedance	20	Ω
R _S	Driver Series Resistor (+/-1%)	158	Ω
R _P	Driver Parallel Resistor (+/-1%)	140	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage (after R _P)	1.43	V
V _{OL}	Output Low Voltage (after R _P)	1.07	V
V _{OD}	Output Differential Voltage (After R _P)	0.35	V
V _{CM}	Output Common Mode Voltage	1.25	V
Z _{BACK}	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	6.03	mA

LVCMOS33D

All I/O banks support emulated differential I/O using the LVCMOS33D I/O type. This option, along with the external resistor network, provides the system designer the flexibility to place differential outputs on an I/O bank with 3.3V VCCIO. The default drive current for LVCMOS33D output is 12mA with the option to change the device strength to 4mA, 8mA, 16mA or 20mA. Follow the LVCMOS33 specifications for the DC characteristics of the LVCMOS33D.

LatticeXP2 External Switching Characteristics

			-	7	-	6	-	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
General I/O Pir	n Parameters (using Primary Clo	ck without F	PLL)1						
t _{co}		XP2-5		3.80	_	4.20	_	4.60	ns
		XP2-8		3.80		4.20		4.60	ns
	Register	XP2-17		3.80	_	4.20	_	4.60	ns
		XP2-30		4.00	_	4.40	_	4.90	ns
		XP2-40		4.00	_	4.40		4.90	ns
		XP2-5	0.00		0.00	—	0.00		ns
		XP2-8	0.00	_	0.00	—	0.00	_	ns
t _{SU}	Register	XP2-17	0.00	_	0.00	—	0.00	_	ns
		XP2-30	0.00	_	0.00	—	0.00	_	ns
		XP2-40	0.00		0.00	—	0.00		ns
		XP2-5	1.40	_	1.70	—	1.90	_	ns
		XP2-8	1.40	_	1.70	—	1.90	_	ns
t _H	Register	XP2-17	1.40	_	1.70	—	1.90	_	ns
		XP2-30	1.40		1.70	—	1.90		ns
		XP2-40	1.40	_	1.70	—	1.90	_	ns
	Clock to Data Setup - PIO Input Register with Data Input Delay	XP2-5	1.40	_	1.70	—	1.90	_	ns
		XP2-8	1.40	_	1.70	—	1.90	_	ns
t _{SU_DEL}		XP2-17	1.40	_	1.70	—	1.90	_	ns
		XP2-30	1.40		1.70	_	1.90		ns
		XP2-40	1.40	_	1.70	—	1.90	_	ns
		XP2-5	0.00	_	0.00	—	0.00	_	ns
		XP2-8	0.00	_	0.00	—	0.00	_	ns
t _{H_DEL}	Register with Input Data Delay	XP2-17	0.00	_	0.00	—	0.00	_	ns
		XP2-30	0.00		0.00	—	0.00		ns
		XP2-40	0.00		0.00	—	0.00		ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	XP2	_	420	_	357	_	311	MHz
General I/O Pir	n Parameters (using Edge Clock	without PLL	.) ¹						
		XP2-5	_	3.20	—	3.60	—	3.90	ns
		XP2-8		3.20	_	3.60	_	3.90	ns
t _{COE}	Clock to Output - PIO Output Register	XP2-17		3.20		3.60		3.90	ns
		XP2-30		3.20	_	3.60		3.90	ns
		XP2-40		3.20	_	3.60	_	3.90	ns
		XP2-5	0.00	_	0.00	—	0.00	_	ns
		XP2-8	0.00		0.00	_	0.00		ns
t _{SUE}	Register	XP2-17	0.00	—	0.00	—	0.00	—	ns
		XP2-30	0.00		0.00	—	0.00		ns
		XP2-40	0.00		0.00		0.00		ns

Over Recommended Operating Conditions

LatticeXP2 Family Timing Adders^{1, 2, 3, 4}

Buffer Type	Description	-7	-6	-5	Units	
Input Adjusters						
LVDS25	LVDS	-0.26	-0.11	0.04	ns	
BLVDS25	BLVDS	-0.26	-0.11	0.04	ns	
MLVDS	LVDS	-0.26	-0.11	0.04	ns	
RSDS	RSDS	-0.26	-0.11	0.04	ns	
LVPECL33	LVPECL	-0.26	-0.11	0.04	ns	
HSTL18_I	HSTL_18 class I	-0.23	-0.08	0.07	ns	
HSTL18_II	HSTL_18 class II	-0.23	-0.08	0.07	ns	
HSTL18D_I	Differential HSTL 18 class I	-0.28	-0.13	0.02	ns	
HSTL18D_II	Differential HSTL 18 class II	-0.28	-0.13	0.02	ns	
HSTL15_I	HSTL_15 class I	-0.23	-0.09	0.06	ns	
HSTL15D_I	Differential HSTL 15 class I	-0.28	-0.13	0.01	ns	
SSTL33_I	SSTL_3 class I	-0.20	-0.04	0.12	ns	
SSTL33_II	SSTL_3 class II	-0.20	-0.04	0.12	ns	
SSTL33D_I	Differential SSTL_3 class I	-0.27	-0.11	0.04	ns	
SSTL33D_II	Differential SSTL_3 class II	-0.27	-0.11	0.04	ns	
SSTL25_I	SSTL_2 class I	-0.21	-0.06	0.10	ns	
SSTL25_II	SSTL_2 class II	-0.21	-0.06	0.10	ns	
SSTL25D_I	Differential SSTL_2 class I	-0.27	-0.12	0.03	ns	
SSTL25D_II	Differential SSTL_2 class II	-0.27	-0.12	0.03	ns	
SSTL18_I	SSTL_18 class I	-0.23	-0.08	0.07	ns	
SSTL18_II	SSTL_18 class II	-0.23	-0.08	0.07	ns	
SSTL18D_I	Differential SSTL_18 class I	-0.28	-0.13	0.02	ns	
SSTL18D_II	Differential SSTL_18 class II	-0.28	-0.13	0.02	ns	
LVTTL33	LVTTL	-0.09	0.05	0.18	ns	
LVCMOS33	LVCMOS 3.3	-0.09	0.05	0.18	ns	
LVCMOS25	LVCMOS 2.5	0.00	0.00	0.00	ns	
LVCMOS18	LVCMOS 1.8	-0.23	-0.07	0.09	ns	
LVCMOS15	LVCMOS 1.5	-0.20	-0.02	0.16	ns	
LVCMOS12	LVCMOS 1.2	-0.35	-0.20	-0.04	ns	
PCI33	3.3V PCI	-0.09	0.05	0.18	ns	
Output Adjusters						
LVDS25E	LVDS 2.5 E ⁵	-0.25	0.02	0.30	ns	
LVDS25	LVDS 2.5	-0.25	0.02	0.30	ns	
BLVDS25	BLVDS 2.5	-0.28	0.00	0.28	ns	
MLVDS	MLVDS 2.5 ⁵	-0.28	0.00	0.28	ns	
RSDS	RSDS 2.5⁵	-0.25	0.02	0.30	ns	
LVPECL33	LVPECL 3.3 ⁵	-0.37	-0.10	0.18	ns	
HSTL18_I	HSTL_18 class I 8mA drive	-0.17	0.13	0.43	ns	
HSTL18_II	HSTL_18 class II	-0.29	0.00	0.29	ns	
HSTL18D_I	Differential HSTL 18 class I 8mA drive	-0.17	0.13	0.43	ns	
HSTL18D_II	Differential HSTL 18 class II	-0.29	0.00	0.29	ns	

Over Recommended Operating Conditions

LatticeXP2 sysCONFIG Port Timing Specifications

Parameter	Description	Min	Max	Units		
sysCONFIG POR, Initialization and Wake Up						
t _{ICFG}	Minimum Vcc to INITN High	_	50	ms		
t _{VMC}	Time from t _{ICFG} to valid Master CCLK	_	2	μs		
t _{PRGMRJ}	PROGRAMN Pin Pulse Rejection	_	12	ns		
t _{PRGM}	PROGRAMN Low Time to Start Configuration	50	—	ns		
t _{DINIT} 1	PROGRAMN High to INITN High Delay	_	1	ms		
t _{DPPINIT}	Delay Time from PROGRAMN Low to INITN Low	_	50	ns		
t _{DPPDONE}	Delay Time from PROGRAMN Low to DONE Low	_	50	ns		
t _{IODISS}	User I/O Disable from PROGRAMN Low	_	35	ns		
t _{IOENSS}	User I/O Enabled Time from CCLK Edge During Wake-up Sequence	_	25	ns		
t _{MWC}	Additional Wake Master Clock Signals after DONE Pin High	0	—	Cycles		
sysCONFIG SP	I Port (Master)					
t _{CFGX}	INITN High to CCLK Low	_	1	μs		
t _{CSSPI}	INITN High to CSSPIN Low	_	2	μs		
t _{CSCCLK}	CCLK Low before CSSPIN Low	0	—	ns		
t _{SOCDO}	CCLK Low to Output Valid	_	15	ns		
t _{CSPID}	CSSPIN[0:1] Low to First CCLK Edge Setup Time	2cyc	600+6cyc	ns		
f _{MAXSPI}	Max CCLK Frequency	—	20	MHz		
t _{SUSPI}	SOSPI Data Setup Time Before CCLK	7	—	ns		
t _{HSPI}	SOSPI Data Hold Time After CCLK	10	—	ns		
sysCONFIG SP	I Port (Slave)					
f _{MAXSPIS}	Slave CCLK Frequency	—	25	MHz		
t _{RF}	Rise and Fall Time	50	—	mV/ns		
t _{STCO}	Falling Edge of CCLK to SOSPI Active	—	20	ns		
t _{STOZ}	Falling Edge of CCLK to SOSPI Disable	—	20	ns		
t _{STSU}	Data Setup Time (SISPI)	8	—	ns		
t _{STH}	Data Hold Time (SISPI)	10	—	ns		
t _{sтскн}	CCLK Clock Pulse Width, High	0.02	200	μs		
t _{STCKL}	CCLK Clock Pulse Width, Low	0.02	200	μs		
t _{STVO}	Falling Edge of CCLK to Valid SOSPI Output		20	ns		
t _{SCS}	CSSPISN High Time	25	—	ns		
t _{SCSS}	CSSPISN Setup Time	25	—	ns		
t _{SCSH}	CSSPISN Hold Time	25	—	ns		

Over Recommended Operating Conditions

1. Re-toggling the PROGRAMN pin is not permitted until the INITN pin is high. Avoid consecutive toggling of PROGRAMN.

On-Chip Oscillator and Configuration Master Clock Characteristics

Parameter	Min.	Max.	Units
Master Clock Frequency	Selected value -30%	Selected value +30%	MHz
Duty Cycle	40	60	%

Over Recommended Operating Conditions

Figure 3-9. Master SPI Configuration Waveforms

FlashBAK Time (from EBR to Flash)

Over Recommended Operating Conditions

Device	EBR Density (Bits)	Time (Typ.)	Units
XP2-5	166K	1.5	S
XP2-8	221K	1.5	S
XP2-17	276K	1.5	S
XP2-30	387K	2.0	S
XP2-40	885K	3.0	S

JTAG Port Timing Specifications

Over Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	TCK Clock Frequency	—	25	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	40	—	ns
t _{BTCPH}	TCK [BSCAN] clock pulse width high	20	—	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	20	—	ns
t _{BTS}	TCK [BSCAN] setup time	8	—	ns
t _{BTH}	TCK [BSCAN] hold time	10	—	ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	—	mV/ns
t _{BTCO}	TAP controller falling edge of clock to valid output	—	10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable	—	10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	—	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	—	ns
t _{BTCRH}	BSCAN test capture register hold time	25	—	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	—	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	—	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	_	25	ns

Switching Test Conditions

Figure 3-11 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-6.

Figure 3-11. Output Test Load, LVTTL and LVCMOS Standards

*CL Includes Test Fixture and Probe Capacitance

 Table 3-6. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	R ₂	CL	Timing Ref.	V _T
				LVCMOS 3.3 = 1.5V	
		8	0pF	LVCMOS 2.5 = $V_{CCIO}/2$	
LVTTL and other LVCMOS settings (L -> H, H -> L)	∞			LVCMOS 1.8 = V _{CCIO} /2	
				LVCMOS 1.5 = $V_{CCIO}/2$	_
				LVCMOS 1.2 = V _{CCIO} /2	_
LVCMOS 2.5 I/O (Z -> H)	8	1MΩ		V _{CCIO} /2	
LVCMOS 2.5 I/O (Z -> L)	1MΩ	∞		V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H -> Z)	8	100		V _{OH} - 0.10	
LVCMOS 2.5 I/O (L -> Z)	100	∞		V _{OL} + 0.10	V _{CCIO}

Note: Output test conditions for all other interfaces are determined by the respective standards.

Signal Descriptions (Cont.)

Signal Name	I/O	Description
TDO	0	Output pin. Test Data Out pin used to shift data out of a device using 1149.1.
VCCJ		Power supply pin for JTAG Test Access Port.
Configuration Pads (Used during sysC	ONFIG)	
CFG[1:0]	Ι	Mode pins used to specify configuration mode values latched on rising edge of INITN. During configuration, an internal pull-up is enabled.
INITN ¹	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled.
PROGRAMN	Ι	Initiates configuration sequence when asserted low. This pin always has an active pull-up.
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress.
CCLK	I/O	Configuration Clock for configuring an FPGA in sysCONFIG mode.
SISPI ²	I/O	Input data pin in slave SPI mode and Output data pin in Master SPI mode.
SOSPI ²	I/O	Output data pin in slave SPI mode and Input data pin in Master SPI mode.
CSSPIN ²	0	Chip select for external SPI Flash memory in Master SPI mode. This pin has a weak internal pull-up.
CSSPISN	I	Chip select in Slave SPI mode. This pin has a weak internal pull-up.
TOE	I	Test Output Enable tristates all I/O pins when driven low. This pin has a weak internal pull-up, but when not used an external pull-up to $V_{\rm CC}$ is recommended.

1. If not actively driven, the internal pull-up may not be sufficient. An external pull-up resistor of 4.7k to $10k\Omega$ is recommended.

2. When using the device in Master SPI mode, it must be mutually exclusive from JTAG operations (i.e. TCK tied to GND) or the JTAG TCK must be free-running when used in a system JTAG test environment. If Master SPI mode is used in conjunction with a JTAG download cable, the device power cycle is required after the cable is unplugged.

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FTN256C	1.2V	-5	Lead-Free ftBGA	256	COM	30
LFXP2-30E-6FTN256C	1.2V	-6	Lead-Free ftBGA	256	COM	30
LFXP2-30E-7FTN256C	1.2V	-7	Lead-Free ftBGA	256	COM	30
LFXP2-30E-5FN484C	1.2V	-5	Lead-Free fpBGA	484	COM	30
LFXP2-30E-6FN484C	1.2V	-6	Lead-Free fpBGA	484	COM	30
LFXP2-30E-7FN484C	1.2V	-7	Lead-Free fpBGA	484	COM	30
LFXP2-30E-5FN672C	1.2V	-5	Lead-Free fpBGA	672	COM	30
LFXP2-30E-6FN672C	1.2V	-6	Lead-Free fpBGA	672	COM	30
LFXP2-30E-7FN672C	1.2V	-7	Lead-Free fpBGA	672	COM	30

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5FN484C	1.2V	-5	Lead-Free fpBGA	484	COM	40
LFXP2-40E-6FN484C	1.2V	-6	Lead-Free fpBGA	484	COM	40
LFXP2-40E-7FN484C	1.2V	-7	Lead-Free fpBGA	484	COM	40
LFXP2-40E-5FN672C	1.2V	-5	Lead-Free fpBGA	672	COM	40
LFXP2-40E-6FN672C	1.2V	-6	Lead-Free fpBGA	672	COM	40
LFXP2-40E-7FN672C	1.2V	-7	Lead-Free fpBGA	672	COM	40

Industrial

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-5E-5MN132I	1.2V	-5	Lead-Free csBGA	132	IND	5
LFXP2-5E-6MN132I	1.2V	-6	Lead-Free csBGA	132	IND	5
LFXP2-5E-5TN144I	1.2V	-5	Lead-Free TQFP	144	IND	5
LFXP2-5E-6TN144I	1.2V	-6	Lead-Free TQFP	144	IND	5
LFXP2-5E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	5
LFXP2-5E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	5
LFXP2-5E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	5
LFXP2-5E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	5

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-8E-5MN132I	1.2V	-5	Lead-Free csBGA	132	IND	8
LFXP2-8E-6MN132I	1.2V	-6	Lead-Free csBGA	132	IND	8
LFXP2-8E-5TN144I	1.2V	-5	Lead-Free TQFP	144	IND	8
LFXP2-8E-6TN144I	1.2V	-6	Lead-Free TQFP	144	IND	8
LFXP2-8E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	8
LFXP2-8E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	8
LFXP2-8E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	8
LFXP2-8E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	8