

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1000
Number of Logic Elements/Cells	8000
Total RAM Bits	226304
Number of I/O	201
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-8e-5ftn256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Modes of Operation

Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM.

Logic Mode

In this mode, the LUTs in each slice are configured as LUT4s. A LUT4 has 16 possible input combinations. Fourinput logic functions are generated by programming the LUT4. Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger LUTs such as LUT6, LUT7 and LUT8, can be constructed by concatenating two or more slices. Note that a LUT8 requires more than four slices.

Ripple Mode

Ripple mode allows efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Up/Down counter with async clear
- Up/Down counter with preload (sync)
- Ripple mode multiplier building block
- Multiplier support
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Two carry signals, FCI and FCO, are generated per slice in this mode, allowing fast arithmetic functions to be constructed by concatenating slices.

RAM Mode

In this mode, a 16x4-bit distributed Single Port RAM (SPR) can be constructed using each LUT block in Slice 0 and Slice 2 as a 16x1-bit memory. Slice 1 is used to provide memory address and control signals. A 16x2-bit Pseudo Dual Port RAM (PDPR) memory is created by using one slice as the read-write port and the other companion slice as the read-only port.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of slices required to implement different distributed RAM primitives. For more information on using RAM in LatticeXP2 devices, please see TN1137, <u>LatticeXP2 Memory Usage Guide</u>.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

Number of slices	3 3	

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

ROM Mode

ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in the ROM mode. Preloading is accomplished through the programming interface during PFU configuration.

Routing

There are many resources provided in the LatticeXP2 devices to route signals individually or as busses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) or x6 (spans seven PFU) connections. The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. The x2 and x6 resources are buffered to allow both short and long connections routing between PFUs.

The LatticeXP2 family has an enhanced routing architecture to produce a compact design. The Diamond design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

sysCLOCK Phase Locked Loops (PLL)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The LatticeXP2 family supports between two and four full featured General Purpose PLLs (GPLL). The architecture of the GPLL is shown in Figure 2-4.

CLKI, the PLL reference frequency, is provided either from the pin or from routing; it feeds into the Input Clock Divider block. CLKFB, the feedback signal, is generated from CLKOP (the primary clock output) or from a user clock pin/logic. CLKFB feeds into the Feedback Divider and is used to multiply the reference frequency.

Both the input path and feedback signals enter the Voltage Controlled Oscillator (VCO) block. The phase and frequency of the VCO are determined from the input path and feedback signals. A LOCK signal is generated by the VCO to indicate that the VCO is locked with the input clock signal.

The output of the VCO feeds into the CLKOP Divider, a post-scalar divider. The duty cycle of the CLKOP Divider output can be fine tuned using the Duty Trim block, which creates the CLKOP signal. By allowing the VCO to operate at higher frequencies than CLKOP, the frequency range of the GPLL is expanded. The output of the CLKOP Divider is passed through the CLKOK Divider, a secondary clock divider, to generate lower frequencies for the CLKOK output. For applications that require even lower frequencies, the CLKOP signal is passed through a divide-by-three divider to produce the CLKOK2 output. The CLKOK2 output is provided for applications that use source synchronous logic. The Phase/Duty Cycle/Duty Trim block is used to adjust the phase and duty cycle of the CLKOP Divider output to generate the CLKOS signal. The phase/duty cycle setting can be pre-programmed or dynamically adjusted.

The clock outputs from the GPLL; CLKOP, CLKOK, CLKOK2 and CLKOS, are fed to the clock distribution network.

For further information on the GPLL please see TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide.

Secondary Clock/Control Sources

LatticeXP2 devices derive secondary clocks (SC0 through SC7) from eight dedicated clock input pads and the rest from routing. Figure 2-7 shows the secondary clock sources.

Figure 2-7. Secondary Clock Sources

Edge Clock Sources

Edge clock resources can be driven from a variety of sources at the same edge. Edge clock resources can be driven from adjacent edge clock PIOs, primary clock PIOs, PLLs and clock dividers as shown in Figure 2-8.

Figure 2-8. Edge Clock Sources

Note: This diagram shows sources for the XP2-17 device. Smaller LatticeXP2 devices have two GPLLs.

Primary Clock Routing

The clock routing structure in LatticeXP2 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The primary clocks of each quadrant are generated from muxes located in the center of the device. All the clock sources are connected to these muxes. Figure 2-9 shows the clock routing for one quadrant. Each quadrant mux is identical. If desired, any clock can be routed globally.

Dynamic Clock Select (DCS)

The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent input clock sources without any glitches or runt pulses. This is achieved irrespective of when the select signal is toggled. There are two DCS blocks per quadrant; in total, eight DCS blocks per device. The inputs to the DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 (see Figure 2-9).

Figure 2-10 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information on the DCS, please see TN1126, <u>LatticeXP2 sysCLOCK PLL Design and</u> <u>Usage Guide</u>.

Figure 2-10. DCS Waveforms

Secondary Clock/Control Routing

Secondary clocks in the LatticeXP2 devices are region-based resources. The benefit of region-based resources is the relatively low injection delay and skew within the region, as compared to primary clocks. EBR rows, DSP rows and a special vertical routing channel bound the secondary clock regions. This special vertical routing channel aligns with either the left edge of the center DSP block in the DSP row or the center of the DSP row. Figure 2-11 shows this special vertical routing channel and the eight secondary clock regions for the LatticeXP2-40.

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-27 shows the Tristate Register Block with the Output Block

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as Dtype or latch. In DDR mode, ONEG1 and OPOS1 are fed into registers on the positive edge of the clock. Then in the next clock the registered OPOS1 is latched. A multiplexer running off the same clock cycle selects the correct register for feeding to the output (D0).

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock signal is selected from general purpose routing, ECLK1, ECLK2 or a DQS signal (from the programmable DQS pin) and is provided to the input register block. The clock can optionally be inverted.

DDR Memory Support

PICs have additional circuitry to allow implementation of high speed source synchronous and DDR memory interfaces.

PICs have registered elements that support DDR memory interfaces. Interfaces on the left and right edges are designed for DDR memories that support 16 bits of data, whereas interfaces on the top and bottom are designed for memories that support 18 bits of data. One of every 16 PIOs on the left and right and one of every 18 PIOs on the top and bottom contain delay elements to facilitate the generation of DQS signals. The DQS signals feed the DQS buses which span the set of 16 or 18 PIOs. Figure 2-28 and Figure 2-29 show the DQS pin assignments in each set of PIOs.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Additional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. For additional information on using DDR memory support please see TN1138, <u>LatticeXP2 High Speed I/O Interface</u>.

Figure 2-31. DQS Local Bus

*DQSXFERDEL shifts ECLK1 by 90% and is not associated with a particular PIO.

Polarity Control Logic

In a typical DDR memory interface design, the phase relationship between the incoming delayed DQS strobe and the internal system clock (during the READ cycle) is unknown. The LatticeXP2 family contains dedicated circuits to transfer data between these domains. To prevent set-up and hold violations, at the domain transfer between DQS (delayed) and the system clock, a clock polarity selector is used. This changes the edge on which the data is registered in the synchronizing registers in the input register block and requires evaluation at the start of each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories, DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to control the polarity of the clock to the synchronizing registers.

DQSXFER

LatticeXP2 devices provide a DQSXFER signal to the output buffer to assist it in data transfer to DDR memories that require DQS strobe be shifted 90°. This shifted DQS strobe is generated by the DQSDEL block. The DQSXFER signal runs the span of the data bus.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.

sysIO Buffer Banks

LatticeXP2 devices have eight sysIO buffer banks for user I/Os arranged two per side. Each bank is capable of supporting multiple I/O standards. Each sysIO bank has its own I/O supply voltage (V_{CCIO}). In addition, each bank has voltage references, V_{REF1} and V_{REF2} , that allow it to be completely independent from the others. Figure 2-32 shows the eight banks and their associated supplies.

In LatticeXP2 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs independent of V_{CCIO} .

Each bank can support up to two separate V_{REF} voltages, V_{REF1} and V_{REF2} , that set the threshold for the referenced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

тор

Figure 2-32. LatticeXP2 Banks

воттом

Table 2-12. Supported Input Standards

Input Standard	V _{REF} (Nom.)	V _{CCIO} ¹ (Nom.)
Single Ended Interfaces		-
LVTTL	—	—
LVCMOS33	_	_
LVCMOS25	—	—
LVCMOS18	—	1.8
LVCMOS15	_	1.5
LVCMOS12	_	—
PCI33	—	—
HSTL18 Class I, II	0.9	_
HSTL15 Class I	0.75	—
SSTL33 Class I, II	1.5	_
SSTL25 Class I, II	1.25	_
SSTL18 Class I, II	0.9	—
Differential Interfaces		
Differential SSTL18 Class I, II	—	—
Differential SSTL25 Class I, II	—	—
Differential SSTL33 Class I, II	—	—
Differential HSTL15 Class I	—	—
Differential HSTL18 Class I, II	—	—
LVDS, MLVDS, LVPECL, BLVDS, RSDS	—	_

1. When not specified, V_{CCIO} can be set anywhere in the valid operating range (page 3-1).

- 1. Unlocked
- 2. Key Locked Presenting the key through the programming interface allows the device to be unlocked.
- 3. Permanently Locked The device is permanently locked.

To further complement the security of the device a One Time Programmable (OTP) mode is available. Once the device is set in this mode it is not possible to erase or re-program the Flash portion of the device.

Serial TAG Memory

LatticeXP2 devices offer 0.6 to 3.3kbits of Flash memory in the form of Serial TAG memory. The TAG memory is an area of the on-chip Flash that can be used for non-volatile storage including electronic ID codes, version codes, date stamps, asset IDs and calibration settings. A block diagram of the TAG memory is shown in Figure 2-34. The TAG memory is accessed in the same way as external SPI Flash and it can be read or programmed either through JTAG, an external Slave SPI Port, or directly from FPGA logic. To read the TAG memory, a start address is specified and the entire TAG memory contents are read sequentially in a first-in-first-out manner. The TAG memory is always accessible regardless of the device security settings. For more information, see TN1137, LatticeXP2 Memory Usage Guide and TN1141, LatticeXP2 sysCONFIG Usage Guide.

Figure 2-34. Serial TAG Memory Diagram

Live Update Technology

Many applications require field updates of the FPGA. LatticeXP2 devices provide three features that enable this configuration to be done in a secure and failsafe manner while minimizing impact on system operation.

1. **Decryption Support**

LatticeXP2 devices provide on-chip, non-volatile key storage to support decryption of a 128-bit AES encrypted bitstream, securing designs and deterring design piracy.

2. TransFR (Transparent Field Reconfiguration)

TransFR I/O (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. TransFR I/O allows I/O states to be frozen during device configuration. This allows the device to be field updated with a minimum of system disruption and downtime. For more information please see TN1087, <u>Minimizing System Interruption During Configuration</u>. Using TransFR Technology.

3. Dual Boot Image Support

Dual boot images are supported for applications requiring reliable remote updates of configuration data for the system FPGA. After the system is running with a basic configuration, a new boot image can be downloaded remotely and stored in a separate location in the configuration storage device. Any time after the update the LatticeXP2 can be re-booted from this new configuration file. If there is a problem such as corrupt data during download or incorrect version number with this new boot image, the LatticeXP2 device can revert back to the

original backup configuration and try again. This all can be done without power cycling the system. For more information please see TN1220, <u>LatticeXP2 Dual Boot Feature</u>.

For more information on device configuration, please see TN1141, LatticeXP2 sysCONFIG Usage Guide.

Soft Error Detect (SED) Support

LatticeXP2 devices have dedicated logic to perform Cyclic Redundancy Code (CRC) checks. During configuration, the configuration data bitstream can be checked with the CRC logic block. In addition, LatticeXP2 devices can be programmed for checking soft errors in SRAM. SED can be run on a programmed device when the user logic is not active. In the event a soft error occurs, the device can be programmed to either reload from a known good boot image (from internal Flash or external SPI memory) or generate an error signal.

For further information on SED support, please see TN1130, LatticeXP2 Soft Error Detection (SED) Usage Guide.

On-Chip Oscillator

Every LatticeXP2 device has an internal CMOS oscillator that is used to derive a Master Clock (CCLK) for configuration. The oscillator and CCLK run continuously and are available to user logic after configuration is complete. The available CCLK frequencies are listed in Table 2-14. When a different CCLK frequency is selected during the design process, the following sequence takes place:

- 1. Device powers up with the default CCLK frequency.
- 2. During configuration, users select a different CCLK frequency.
- 3. CCLK frequency changes to the selected frequency after clock configuration bits are received.

This internal CMOS oscillator is available to the user by routing it as an input clock to the clock tree. For further information on the use of this oscillator for configuration or user mode, please see TN1141, <u>LatticeXP2 sysCON-FIG Usage Guide</u>.

Table 2-14. Selectable	CCLKs and Oscillato	r Freauencies Durina	Configuration and	User Mode

CCLK/Oscillator (MHz)						
2.5 ¹						
3.1 ²						
4.3						
5.4						
6.9						
8.1						
9.2						
10						
13						
15						
20						
26						
32						
40						
54						
80 ³						
163 ³						
1 Software default oscillator frequency						

1. Software default oscillator frequency.

2. Software default CCLK frequency.

3. Frequency not valid for CCLK.

LatticeXP2 External Switching Characteristics

			-	7	-	6	-	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
General I/O Pir	n Parameters (using Primary Clo	ck without F	PLL)1						
		XP2-5		3.80	_	4.20	_	4.60	ns
t _{co}		XP2-8		3.80		4.20		4.60	ns
	Register	XP2-17		3.80	_	4.20	_	4.60	ns
		XP2-30		4.00	_	4.40	_	4.90	ns
		XP2-40		4.00	_	4.40		4.90	ns
		XP2-5	0.00		0.00	—	0.00		ns
		XP2-8	0.00	_	0.00	—	0.00	_	ns
t _{SU}	Register	XP2-17	0.00	_	0.00	—	0.00	_	ns
		XP2-30	0.00	_	0.00	—	0.00	_	ns
		XP2-40	0.00		0.00	—	0.00		ns
		XP2-5	1.40	_	1.70	—	1.90	_	ns
		XP2-8	1.40	_	1.70	—	1.90	_	ns
t _H	Register	XP2-17	1.40	_	1.70	—	1.90	_	ns
	liogiotoi	XP2-30	1.40		1.70	—	1.90		ns
		XP2-40	1.40	_	1.70	—	1.90	_	ns
	Clock to Data Setup - PIO Input Register with Data Input Delay	XP2-5	1.40	_	1.70	—	1.90	_	ns
		XP2-8	1.40	_	1.70	—	1.90	_	ns
t _{SU_DEL}		XP2-17	1.40	_	1.70	—	1.90	_	ns
		XP2-30	1.40		1.70	_	1.90		ns
		XP2-40	1.40	_	1.70	—	1.90	_	ns
		XP2-5	0.00	_	0.00	—	0.00	_	ns
	Clock to Data Hold - PIO Input Register with Input Data Delay	XP2-8	0.00	_	0.00	—	0.00	_	ns
t _{H_DEL}		XP2-17	0.00	_	0.00	—	0.00	_	ns
		XP2-30	0.00		0.00	—	0.00		ns
		XP2-40	0.00		0.00	—	0.00		ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	XP2	_	420	_	357	_	311	MHz
General I/O Pir	n Parameters (using Edge Clock	without PLL	.) ¹						
		XP2-5	_	3.20	—	3.60	—	3.90	ns
		XP2-8		3.20	_	3.60	_	3.90	ns
t _{COE}	Clock to Output - PIO Output Register	XP2-17		3.20		3.60		3.90	ns
		XP2-30		3.20	_	3.60		3.90	ns
		XP2-40		3.20	_	3.60	_	3.90	ns
		XP2-5	0.00	_	0.00	—	0.00	_	ns
		XP2-8	0.00		0.00	_	0.00		ns
t _{SUE}	Register	XP2-17	0.00	—	0.00	—	0.00	—	ns
		XP2-30	0.00		0.00	—	0.00		ns
		XP2-40	0.00		0.00		0.00		ns

LatticeXP2 External Switching Characteristics (Continued)

			-7		-6		-5		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		XP2-5	1.00		1.30	_	1.60		ns
		XP2-8	1.00	_	1.30	_	1.60	_	ns
t _{HE}	Clock to Data Hold - PIO Input Register	XP2-17	1.00		1.30	_	1.60		ns
		XP2-30	1.20		1.60	_	1.90		ns
		XP2-40	1.20		1.60		1.90		ns
		XP2-5	1.00		1.30	_	1.60		ns
		XP2-8	1.00		1.30	_	1.60		ns
t _{SU_DELE}	Clock to Data Setup - PIO Input Begister with Data Input Delay	XP2-17	1.00		1.30	_	1.60		ns
		XP2-30	1.20		1.60		1.90		ns
		XP2-40	1.20		1.60		1.90		ns
		XP2-5	0.00		0.00		0.00		ns
		XP2-8	0.00	—	0.00	—	0.00	—	ns
t _{H_DELE}	Clock to Data Hold - PIO Input Begister with Input Data Delay	XP2-17	0.00	—	0.00	—	0.00	—	ns
		XP2-30	0.00		0.00		0.00		ns
		XP2-40	0.00		0.00		0.00		ns
f _{MAX_IOE}	Clock Frequency of I/O and PFU Register	XP2	_	420	_	357	_	311	MHz
General I/O Pir	Parameters (using Primary Clo	ck with PLL)1	1	1	1	1	1	
	Clock to Output - PIO Output Register	XP2-5	—	3.00	—	3.30	—	3.70	ns
		XP2-8		3.00		3.30		3.70	ns
t _{COPLL}		XP2-17		3.00		3.30		3.70	ns
		XP2-30	_	3.00		3.30		3.70	ns
		XP2-40		3.00		3.30		3.70	ns
		XP2-5	1.00		1.20		1.40		ns
		XP2-8	1.00		1.20		1.40		ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	XP2-17	1.00		1.20		1.40		ns
		XP2-30	1.00		1.20		1.40		ns
		XP2-40	1.00		1.20	_	1.40		ns
		XP2-5	0.90		1.10		1.30		ns
		XP2-8	0.90		1.10		1.30		ns
t _{HPLL}	Clock to Data Hold - PIO Input	XP2-17	0.90		1.10		1.30		ns
		XP2-30	1.00	—	1.20	—	1.40	—	ns
		XP2-40	1.00	—	1.20	—	1.40	—	ns
		XP2-5	1.90	—	2.10	—	2.30	—	ns
		XP2-8	1.90		2.10	—	2.30	_	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Begister with Data Input Delay	XP2-17	1.90	—	2.10	—	2.30	—	ns
	lingibion with Data input Delay	XP2-30	2.00	—	2.20	—	2.40	—	ns
		XP2-40	2.00	—	2.20	—	2.40	—	ns

LatticeXP2 Internal Switching Characteristics¹

		-7		-6		-5		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Logi	c Mode Timing				I			I
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)	_	0.216	_	0.238	_	0.260	ns
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)	—	0.304		0.399		0.494	ns
t _{LSR_PFU}	Set/Reset to output of PFU (Asyn- chronous)	—	0.720		0.769		0.818	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.154	_	0.151	—	0.148	_	ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.061	—	-0.057	—	-0.053	—	ns
t _{SUD_PFU}	Clock to D input setup time	0.061	—	0.077	—	0.093	—	ns
t _{HD_PFU}	Clock to D input hold time	0.002	—	0.003	—	0.003	—	ns
t _{CK2Q_PFU}	Clock to Q delay, (D-type Register Configuration)	—	0.342	—	0.363	—	0.383	ns
t _{RSTREC_PFU}	Asynchronous reset recovery time for PFU Logic	—	0.520		0.634		0.748	ns
t _{RST_PFU}	Asynchronous reset time for PFU Logic	_	0.720	—	0.769	—	0.818	ns
PFU Dual Por	t Memory Mode Timing							
t _{CORAM_PFU}	Clock to Output (F Port)	—	1.082	—	1.267	—	1.452	ns
t _{SUDATA_PFU}	Data Setup Time	-0.206	—	-0.240	_	-0.274	—	ns
t _{HDATA_PFU}	Data Hold Time	0.239	—	0.275	_	0.312	—	ns
t _{SUADDR_PFU}	Address Setup Time	-0.294	—	-0.333	_	-0.371	—	ns
t _{HADDR_PFU}	Address Hold Time	0.295	—	0.333	_	0.371	—	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.146	—	-0.169	_	-0.193	—	ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.158	_	0.182	_	0.207	—	ns
PIO Input/Out	put Buffer Timing							
t _{IN_PIO}	Input Buffer Delay (LVCMOS25)	_	0.858	—	0.766	—	0.674	ns
t _{OUT_PIO}	Output Buffer Delay (LVCMOS25)	_	1.561	—	1.403	—	1.246	ns
IOLOGIC Inpu	t/Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	0.583	_	0.893	_	1.201	_	ns
t _{HI_PIO}	Input Register Hold Time (Data after Clock)	0.062	_	0.322	_	0.482	_	ns
t _{COO_PIO}	Output Register Clock to Output Delay	_	0.608	_	0.661	_	0.715	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	0.032	_	0.037	_	0.041	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	-0.022	_	-0.025	—	-0.028	_	ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.184	—	0.201	—	0.217	—	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.080	—	-0.086	—	-0.093	—	ns
t _{RSTREC_PIO}	Asynchronous reset recovery time for IO Logic	0.228	_	0.247	_	0.266	_	ns

LatticeXP2 Family Timing Adders^{1, 2, 3, 4}

Buffer Type	Description	-7	-6	-5	Units	
Input Adjusters	Input Adjusters					
LVDS25	LVDS	-0.26	-0.11	0.04	ns	
BLVDS25	BLVDS	-0.26	-0.11	0.04	ns	
MLVDS	LVDS	-0.26	-0.11	0.04	ns	
RSDS	RSDS	-0.26	-0.11	0.04	ns	
LVPECL33	LVPECL	-0.26	-0.11	0.04	ns	
HSTL18_I	HSTL_18 class I	-0.23	-0.08	0.07	ns	
HSTL18_II	HSTL_18 class II	-0.23	-0.08	0.07	ns	
HSTL18D_I	Differential HSTL 18 class I	-0.28	-0.13	0.02	ns	
HSTL18D_II	Differential HSTL 18 class II	-0.28	-0.13	0.02	ns	
HSTL15_I	HSTL_15 class I	-0.23	-0.09	0.06	ns	
HSTL15D_I	Differential HSTL 15 class I	-0.28	-0.13	0.01	ns	
SSTL33_I	SSTL_3 class I	-0.20	-0.04	0.12	ns	
SSTL33_II	SSTL_3 class II	-0.20	-0.04	0.12	ns	
SSTL33D_I	Differential SSTL_3 class I	-0.27	-0.11	0.04	ns	
SSTL33D_II	Differential SSTL_3 class II	-0.27	-0.11	0.04	ns	
SSTL25_I	SSTL_2 class I	-0.21	-0.06	0.10	ns	
SSTL25_II	SSTL_2 class II	-0.21	-0.06	0.10	ns	
SSTL25D_I	Differential SSTL_2 class I	-0.27	-0.12	0.03	ns	
SSTL25D_II	Differential SSTL_2 class II	-0.27	-0.12	0.03	ns	
SSTL18_I	SSTL_18 class I	-0.23	-0.08	0.07	ns	
SSTL18_II	SSTL_18 class II	-0.23	-0.08	0.07	ns	
SSTL18D_I	Differential SSTL_18 class I	-0.28	-0.13	0.02	ns	
SSTL18D_II	Differential SSTL_18 class II	-0.28	-0.13	0.02	ns	
LVTTL33	LVTTL	-0.09	0.05	0.18	ns	
LVCMOS33	LVCMOS 3.3	-0.09	0.05	0.18	ns	
LVCMOS25	LVCMOS 2.5	0.00	0.00	0.00	ns	
LVCMOS18	LVCMOS 1.8	-0.23	-0.07	0.09	ns	
LVCMOS15	LVCMOS 1.5	-0.20	-0.02	0.16	ns	
LVCMOS12	LVCMOS 1.2	-0.35	-0.20	-0.04	ns	
PCI33	3.3V PCI	-0.09	0.05	0.18	ns	
Output Adjusters						
LVDS25E	LVDS 2.5 E ⁵	-0.25	0.02	0.30	ns	
LVDS25	LVDS 2.5	-0.25	0.02	0.30	ns	
BLVDS25	BLVDS 2.5	-0.28	0.00	0.28	ns	
MLVDS	MLVDS 2.5 ⁵	-0.28	0.00	0.28	ns	
RSDS	RSDS 2.5⁵	-0.25	0.02	0.30	ns	
LVPECL33	LVPECL 3.3 ⁵	-0.37	-0.10	0.18	ns	
HSTL18_I	HSTL_18 class I 8mA drive	-0.17	0.13	0.43	ns	
HSTL18_II	HSTL_18 class II	-0.29	0.00	0.29	ns	
HSTL18D_I	Differential HSTL 18 class I 8mA drive	-0.17	0.13	0.43	ns	
HSTL18D_II	Differential HSTL 18 class II	-0.29	0.00	0.29	ns	

Switching Test Conditions

Figure 3-11 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-6.

Figure 3-11. Output Test Load, LVTTL and LVCMOS Standards

*CL Includes Test Fixture and Probe Capacitance

 Table 3-6. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	R ₂	CL	Timing Ref.	V _T
				LVCMOS 3.3 = 1.5V	
LVTTL and other LVCMOS settings (L -> H, H -> L)	œ	æ	0pF	LVCMOS 2.5 = $V_{CCIO}/2$	
				LVCMOS 1.8 = V _{CCIO} /2	
				LVCMOS 1.5 = $V_{CCIO}/2$	_
				LVCMOS 1.2 = V _{CCIO} /2	_
LVCMOS 2.5 I/O (Z -> H)	x	1MΩ		V _{CCIO} /2	
LVCMOS 2.5 I/O (Z -> L)	1MΩ	∞		V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H -> Z)	x	100		V _{OH} - 0.10	
LVCMOS 2.5 I/O (L -> Z)	100	∞		V _{OL} + 0.10	V _{CCIO}

Note: Output test conditions for all other interfaces are determined by the respective standards.

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO Within PIC	DDR Strobe (DQS) and Data (DQ) Pins
For Left and Right Edges	of the Device	
D[Edge] [n 4]	А	DQ
r[Euge] [11-4]	В	DQ
D[Edga] [n 2]	А	DQ
r[Euge] [II-3]	В	DQ
D[Edgo] [n 2]	А	DQ
	В	DQ
P[Edge] [n-1]	А	DQ
	В	DQ
P[Edge] [n]	А	[Edge]DQSn
	В	DQ
P[Edge] [n+1]	А	DQ
	В	DQ
P[Edge] [n+2]	А	DQ
	В	DQ
P[Edge] [n+3]	А	DQ
	В	DQ
For Top and Bottom Edge	es of the Device	
P[Edge] [n-4]	А	DQ
P[Edge] [n-4]	В	DQ
P[Edge] [n-3]	A	DQ
	В	DQ
P[Edge] [n-2]	A	DQ
. [=090] [=]	В	DQ
P[Edge] [n-1]	A	DQ
. [=090][]	В	DQ
P[Edge] [n]	A	[Edge]DQSn
. [====================================	В	DQ
P[Edge] [n+1]	A	DQ
. [=a90][]	В	DQ
P[Edge] [n+2]	A	DQ
. [=390] [5]	В	DQ
P[Edge] [n+3]	A	DQ
	В	DQ
P[Edge] [n+4]	A	DQ
. [=390][]	В	DQ

Notes:

1. "n" is a row PIC number.

^{2.} The DDR interface is designed for memories that support one DQS strobe up to 16 bits of data for the left and right edges and up to 18 bits of data for the top and bottom edges. In some packages, all the potential DDR data (DQ) pins may not be available. PIC numbering definitions are provided in the "Signal Names" column of the Signal Descriptions table.

Conventional Packaging

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-5E-5M132C	1.2V	-5	csBGA	132	COM	5
LFXP2-5E-6M132C	1.2V	-6	csBGA	132	COM	5
LFXP2-5E-7M132C	1.2V	-7	csBGA	132	COM	5
LFXP2-5E-5FT256C	1.2V	-5	ftBGA	256	COM	5
LFXP2-5E-6FT256C	1.2V	-6	ftBGA	256	COM	5
LFXP2-5E-7FT256C	1.2V	-7	ftBGA	256	COM	5

Commercial

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-8E-5M132C	1.2V	-5	csBGA	132	COM	8
LFXP2-8E-6M132C	1.2V	-6	csBGA	132	COM	8
LFXP2-8E-7M132C	1.2V	-7	csBGA	132	COM	8
LFXP2-8E-5FT256C	1.2V	-5	ftBGA	256	COM	8
LFXP2-8E-6FT256C	1.2V	-6	ftBGA	256	COM	8
LFXP2-8E-7FT256C	1.2V	-7	ftBGA	256	COM	8

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-17E-5FT256C	1.2V	-5	ftBGA	256	COM	17
LFXP2-17E-6FT256C	1.2V	-6	ftBGA	256	COM	17
LFXP2-17E-7FT256C	1.2V	-7	ftBGA	256	COM	17
LFXP2-17E-5F484C	1.2V	-5	fpBGA	484	COM	17
LFXP2-17E-6F484C	1.2V	-6	fpBGA	484	COM	17
LFXP2-17E-7F484C	1.2V	-7	fpBGA	484	COM	17

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FT256C	1.2V	-5	ftBGA	256	COM	30
LFXP2-30E-6FT256C	1.2V	-6	ftBGA	256	COM	30
LFXP2-30E-7FT256C	1.2V	-7	ftBGA	256	COM	30
LFXP2-30E-5F484C	1.2V	-5	fpBGA	484	COM	30
LFXP2-30E-6F484C	1.2V	-6	fpBGA	484	COM	30
LFXP2-30E-7F484C	1.2V	-7	fpBGA	484	COM	30
LFXP2-30E-5F672C	1.2V	-5	fpBGA	672	COM	30
LFXP2-30E-6F672C	1.2V	-6	fpBGA	672	COM	30
LFXP2-30E-7F672C	1.2V	-7	fpBGA	672	COM	30

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5F484C	1.2V	-5	fpBGA	484	COM	40
LFXP2-40E-6F484C	1.2V	-6	fpBGA	484	COM	40
LFXP2-40E-7F484C	1.2V	-7	fpBGA	484	COM	40
LFXP2-40E-5F672C	1.2V	-5	fpBGA	672	COM	40
LFXP2-40E-6F672C	1.2V	-6	fpBGA	672	COM	40
LFXP2-40E-7F672C	1.2V	-7	fpBGA	672	COM	40

Industrial

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-5E-5M132I	1.2V	-5	csBGA	132	IND	5
LFXP2-5E-6M132I	1.2V	-6	csBGA	132	IND	5
LFXP2-5E-6FT256I	1.2V	-6	ftBGA	256	IND	5

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-8E-5M132I	1.2V	-5	csBGA	132	IND	8
LFXP2-8E-6M132I	1.2V	-6	csBGA	132	IND	8
LFXP2-5E-5FT256I	1.2V	-5	ftBGA	256	IND	5
LFXP2-8E-5FT256I	1.2V	-5	ftBGA	256	IND	8
LFXP2-8E-6FT256I	1.2V	-6	ftBGA	256	IND	8

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-17E-5FT256I	1.2V	-5	ftBGA	256	IND	17
LFXP2-17E-6FT256I	1.2V	-6	ftBGA	256	IND	17
LFXP2-17E-5F484I	1.2V	-5	fpBGA	484	IND	17
LFXP2-17E-6F484I	1.2V	-6	fpBGA	484	IND	17

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FT256I	1.2V	-5	ftBGA	256	IND	30
LFXP2-30E-6FT256I	1.2V	-6	ftBGA	256	IND	30
LFXP2-30E-5F484I	1.2V	-5	fpBGA	484	IND	30
LFXP2-30E-6F484I	1.2V	-6	fpBGA	484	IND	30
LFXP2-30E-5F672I	1.2V	-5	fpBGA	672	IND	30
LFXP2-30E-6F672I	1.2V	-6	fpBGA	672	IND	30

LatticeXP2 Family Data Sheet Revision History

September 2014

Data Sheet DS1009

Revision History

Date	Version	Section	Change Summary
May 2007	01.1	_	Initial release.
September 2007	01.2	DC and Switching Characteristics	Added JTAG Port Timing Waveforms diagram.
			Updated sysCLOCK PLL Timing table.
		Pinout Information	Added Thermal Management text section.
February 2008	01.3	Architecture	Added LVCMOS33D to Supported Output Standards table.
			Clarified: "This Flash can be programmed through either the JTAG or Slave SPI ports of the device. The SRAM configuration space can also be infinitely reconfigured through the JTAG and Master SPI ports."
			Added External Slave SPI Port to Serial TAG Memory section. Updated Serial TAG Memory diagram.
		DC and Switching Characteristics	Updated Flash Programming Specifications table.
			Added "8W" specification to Hot Socketing Specifications table.
			Updated Timing Tables
			Clarifications for IIH in DC Electrical Characteristics table.
			Added LVCMOS33D section
			Updated DOA and DOA (Regs) to EBR Timing diagrams.
			Removed Master Clock Frequency and Duty Cycle sections from the LatticeXP2 sysCONFIG Port Timing Specifications table. These are listed on the On-chip Oscillator and Configuration Master Clock Characteristics table.
			Changed CSSPIN to CSSPISN in description of $t_{SCS}, t_{SCSS},$ and t_{SCSH} parameters. Removed t_{SOE} parameter.
			Clarified On-chip Oscillator documentation
			Added Switching Test Conditions
		Pinout Information	Added "True LVDS Pairs Bonding Out per Bank," "DDR Banks Bonding Out per I/O Bank," and "PCI capable I/Os Bonding Out per Bank" to Pin Information Summary in place of previous blank table "PCI and DDR Capabilities of the Device-Package Combinations"
			Removed pinout listing. This information is available on the LatticeXP2 product web pages
		Ordering Information	Added XP2-17 "8W" and all other family OPNs.
April 2008	01.4	DC and Switching	Updated Absolute Maximum Ratings footnotes.
		Characteristics	Updated Recommended Operating Conditions Table footnotes.
			Updated Supply Current (Standby) Table
			Updated Initialization Supply Current Table
			Updated Programming and Erase Flash Supply Current Table
			Updated Register to Register Performance Table
			Updated LatticeXP2 External Switching Characteristics Table
			Updated LatticeXP2 Internal Switching Characteristics Table
			Updated sysCLOCK PLL Timing Table

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.