

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detans	
Product Status	Obsolete
Number of LABs/CLBs	1000
Number of Logic Elements/Cells	8000
Total RAM Bits	226304
Number of I/O	201
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-8e-6ft256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeXP2 Family Data Sheet Architecture

August 2014

Data Sheet DS1009

Architecture Overview

Each LatticeXP2 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and a row of sys-DSP[™] Digital Signal Processing blocks as shown in Figure 2-1.

On the left and right sides of the Programmable Functional Unit (PFU) array, there are Non-volatile Memory Blocks. In configuration mode the nonvolatile memory is programmed via the IEEE 1149.1 TAP port or the sysCONFIG[™] peripheral port. On power up, the configuration data is transferred from the Non-volatile Memory Blocks to the configuration SRAM. With this technology, expensive external configuration memory is not required, and designs are secured from unauthorized read-back. This transfer of data from non-volatile memory to configuration SRAM via wide busses happens in microseconds, providing an "instant-on" capability that allows easy interfacing in many applications. LatticeXP2 devices can also transfer data from the sysMEM EBR blocks to the Non-volatile Memory Blocks at user request.

There are two kinds of logic blocks, the PFU and the PFU without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row.

LatticeXP2 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large dedicated 18Kbit memory blocks. Each sysMEM block can be configured in a variety of depths and widths of RAM or ROM. In addition, LatticeXP2 devices contain up to two rows of DSP Blocks. Each DSP block has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO buffers. The sysIO buffers of the LatticeXP2 devices are arranged into eight banks, allowing the implementation of a wide variety of I/O standards. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as 7:1 LVDS interfaces, found in many display applications, and memory interfaces including DDR and DDR2.

The LatticeXP2 registers in PFU and sysI/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

Other blocks provided include PLLs and configuration functions. The LatticeXP2 architecture provides up to four General Purpose PLLs (GPLL) per device. The GPLL blocks are located in the corners of the device.

The configuration block that supports features such as configuration bit-stream de-encryption, transparent updates and dual boot support is located between banks two and three. Every device in the LatticeXP2 family supports a sysCONFIG port, muxed with bank seven I/Os, which supports serial device configuration. A JTAG port is provided between banks two and three.

This family also provides an on-chip oscillator. LatticeXP2 devices use 1.2V as their core voltage.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 2-4. General Purpose PLL (GPLL) Diagram

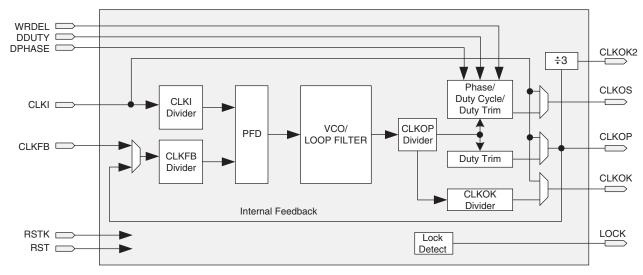


Table 2-4 provides a description of the signals in the GPLL blocks.

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock (PIN or logic)
RST	I	"1" to reset PLL counters, VCO, charge pumps and M-dividers
RSTK	I	"1" to reset K-divider
DPHASE [3:0]	I	DPA Phase Adjust input
DDDUTY [3:0]	I	DPA Duty Cycle Select input
WRDEL	I	DPA Fine Delay Adjust input
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (no phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
CLKOK2	0	PLL output to clock tree (CLKOP divided by 3)
LOCK	0	"1" indicates PLL LOCK to CLKI

Clock Dividers

LatticeXP2 devices have two clock dividers, one on the left side and one on the right side of the device. These are intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or ÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock based on the release of its reset signal. The clock dividers can be fed from the CLKOP output from the GPLLs or from the Edge Clocks (ECLK). The clock divider outputs serve as primary clock sources and feed into the clock distribution network. The Reset (RST) control signal resets the input and forces all outputs to low. The RELEASE signal releases outputs to the input clock. For further information on clock dividers, please see TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide. Figure 2-5 shows the clock divider connections.

sysMEM Memory

LatticeXP2 devices contains a number of sysMEM Embedded Block RAM (EBR). The EBR consists of 18 Kbit RAM with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-5. FIFOs can be implemented in sysMEM EBR blocks by using support logic with PFUs. The EBR block supports an optional parity bit for each data byte to facilitate parity checking. EBR blocks provide byte-enable support for configurations with18-bit and 36-bit data widths.

Table 2-5. sysMEM Block Configurations

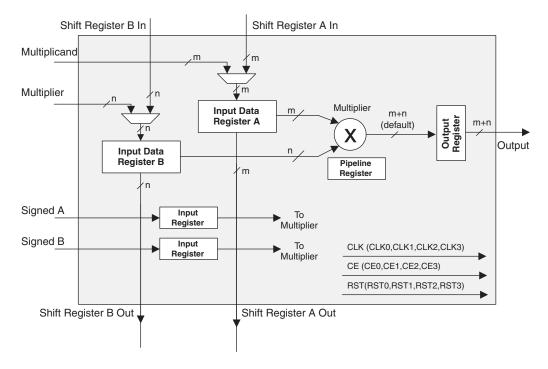
Memory Mode	Configurations
Single Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36
True Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18
Pseudo Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

FlashBAK EBR Content Storage

All the EBR memory in the LatticeXP2 is shadowed by Flash memory. Optionally, initialization values for the memory blocks can be defined using the Lattice Diamond design tools. The initialization values are loaded into the Flash memory during device programming and into the SRAM at power up or whenever the device is reconfigured. This feature is ideal for the storage of a variety of information such as look-up tables and microprocessor code. It is also possible to write the current contents of the EBR memory back to Flash memory. This capability is useful for the storage of data such as error codes and calibration information. For additional information on the FlashBAK capability see TN1137, LatticeXP2 Memory Usage Guide.



- In the 'Signed/Unsigned' options the operands can be switched between signed and unsigned on every cycle.
- In the 'Add/Sub' option the Accumulator can be switched between addition and subtraction on every cycle.
- The loading of operands can switch between parallel and serial operations.

MULT sysDSP Element

This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, A and B, are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. Figure 2-20 shows the MULT sysDSP element.

Figure 2-20. MULT sysDSP Element

LatticeXP2 devices contain two types of sysIO buffer pairs.

1. Top and Bottom (Banks 0, 1, 4 and 5) sysIO Buffer Pairs (Single-Ended Outputs Only)

The sysIO buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

Only the I/Os on the top and bottom banks have programmable PCI clamps.

2. Left and Right (Banks 2, 3, 6 and 7) sysIO Buffer Pairs (50% Differential and 100% Single-Ended Outputs) The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the referenced input buffers can also be configured as a differential input.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp pad is associated with the negative side of the differential I/O.

LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks.

Typical sysIO I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when $V_{CC, V} C_{CCONFIG} (V_{CCIO7})$ and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. During power up and before the FPGA core logic becomes active, all user I/Os will be high-impedance with weak pull-up. Please refer to TN1136, <u>LatticeXP2 sysIO</u> Usage Guide for additional information.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered-up prior to the FPGA core fabric. V_{CCIO} supplies should be powered-up before or together with the V_{CC} and V_{CCAUX} supplies.

Supported sysIO Standards

The LatticeXP2 sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2V, 1.5V, 1.8V, 2.5V and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, MLVDS, BLVDS, LVPECL, RSDS, differential SSTL and differential HSTL. Tables 2-12 and 2-13 show the I/O standards (together with their supply and reference voltages) supported by LatticeXP2 devices. For further information on utilizing the sysIO buffer to support a variety of standards please see TN1136, LatticeXP2 sysIO Usage Guide.

Table 2-13. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Nom.)				
Single-ended Interfaces						
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3				
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3				
LVCMOS25	4mA, 8mA, 12mA, 16mA, 20mA	2.5				
LVCMOS18	4mA, 8mA, 12mA, 16mA	1.8				
LVCMOS15	4mA, 8mA	1.5				
LVCMOS12	2mA, 6mA	1.2				
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA					
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA					
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA	_				
LVCMOS15, Open Drain	4mA, 8mA					
LVCMOS12, Open Drain	2mA, 6mA					
PCI33	N/A	3.3				
HSTL18 Class I, II	N/A	1.8				
HSTL15 Class I	N/A	1.5				
SSTL33 Class I, II	N/A	3.3				
SSTL25 Class I, II	N/A	2.5				
SSTL18 Class I, II	N/A	1.8				
Differential Interfaces						
Differential SSTL33, Class I, II	N/A	3.3				
Differential SSTL25, Class I, II	N/A	2.5				
Differential SSTL18, Class I, II	N/A	1.8				
Differential HSTL18, Class I, II	N/A	1.8				
Differential HSTL15, Class I	N/A	1.5				
LVDS ^{1, 2}	N/A	2.5				
MLVDS ¹	N/A	2.5				
BLVDS ¹	N/A	2.5				
LVPECL ¹	N/A	3.3				
RSDS ¹	N/A	2.5				
LVCMOS33D ¹	4mA, 8mA, 12mA, 16mA, 20mA	3.3				

1. Emulated with external resistors.

2. On the left and right edges, LVDS outputs are supported with a dedicated differential output driver on 50% of the I/Os. This solution does not require external resistors at the driver.

Hot Socketing

LatticeXP2 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the LatticeXP2 ideal for many multiple power supply and hot-swap applications.

IEEE 1149.1-Compliant Boundary Scan Testability

All LatticeXP2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access Port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in

LatticeXP2 Family Data Sheet DC and Switching Characteristics

September 2014

Data Sheet DS1009

Absolute Maximum Ratings^{1, 2, 3}

Supply Voltage V _{CC} 0.5 to 1.32V
Supply Voltage $V_{CCAUX} \dots \dots \dots 0.5$ to $3.75V$
Supply Voltage $V_{CCJ} \dots \dots \dots \dots 0.5$ to $3.75V$
Supply Voltage $V_{\mbox{\scriptsize CCPLL}}{}^4.\ldots\ldots$ -0.5 to 3.75V
Output Supply Voltage V_{CCIO} \ldots 0.5 to 3.75V
Input or I/O Tristate Voltage Applied $^5.\ldots.$ -0.5 to 3.75V
Storage Temperature (Ambient) $\ldots \ldots$ -65 to 150°C
Junction Temperature Under Bias (Tj) +125°C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice <u>Thermal Management</u> document is required.

3. All voltages referenced to GND.

4. V_{CCPLL} only available on csBGA, PQFP and TQFP packages.

5. Overshoot and undershoot of -2V to (V_{IHMAX} + 2) volts is permitted for a duration of <20 ns.

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Core Supply Voltage	1.14	1.26	V
V _{CCAUX} ^{4, 5}	Auxiliary Supply Voltage	3.135	3.465	V
V _{CCPLL} ¹	PLL Supply Voltage	3.135	3.465	V
V _{CCIO} ^{2, 3, 4}	I/O Driver Supply Voltage	1.14	3.465	V
V _{CCJ} ²	Supply Voltage for IEEE 1149.1 Test Access Port	1.14	3.465	V
t _{JCOM}	Junction Temperature, Commercial Operation	0	85	°C
t _{JIND}	Junction Temperature, Industrial Operation	-40	100	°C

1. V_{CCPLL} only available on csBGA, PQFP and TQFP packages.

If V_{CCIO} or V_{CCJ} is set to 1.2 V, they must be connected to the same power supply as V_{CC}. If V_{CCIO} or V_{CCJ} is set to 3.3V, they must be connected to the same power supply as V_{CCAUX}.

3. See recommended voltages by I/O standard in subsequent table.

4. To ensure proper I/O behavior, V_{CCIO} must be turned off at the same time or earlier than V_{CCAUX} .

5. In fpBGA and ftBGA packages, the PLLs are connected to, and powered from, the auxiliary power supply.

On-Chip Flash Memory Specifications

Symbol	Parameter	Max.	Units
N	Flash Programming Cycles per t _{RETENTION} ¹	10,000	Cvcles
NPROGCYC	Flash Functional Programming Cycles	100,000	Oycles

1. The minimum data retention, t_{RETENTION}, is 20 years.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Supply Current (Standby)^{1, 2, 3, 4}

Symbol	Parameter	Device	Typical⁵	Units
		XP2-5	14	mA
		XP2-8	18	mA
lcc	Core Power Supply Current	XP2-17	24	mA
		XP2-30	35	mA
		XP2-40	45	mA
Iccaux	Auxiliary Power Supply Current ⁶	XP2-5	15	mA
		XP2-8	15	mA
		XP2-17	15	mA
		XP2-30	16	mA
		XP2-40	16	mA
CCPLL	PLL Power Supply Current (per PLL)		0.1	mA
CCIO	Bank Power Supply Current (per bank)		2	mA
CCJ	V _{CCJ} Power Supply Current		0.25	mA

Over Recommended Operating Conditions

1. For further information on supply current, please see TN1139, Power Estimation and Management for LatticeXP2 Devices.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

3. Frequency 0 MHz.

4. Pattern represents a "blank" configuration data file.

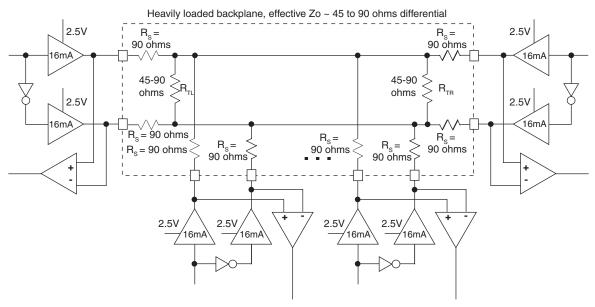
5. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

6. In fpBGA and ftBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual auxiliary supply current is the sum of I_{CCAUX} and I_{CCPLL}. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the auxiliary power supply.

sysIO Recommended Operating Conditions

	V _{CCIO}			V _{REF} (V)		
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.
LVCMOS33 ²	3.135	3.3	3.465	—	—	—
LVCMOS25 ²	2.375	2.5	2.625	—	—	—
LVCMOS18	1.71	1.8	1.89	—	—	—
LVCMOS15	1.425	1.5	1.575	—	—	—
LVCMOS12 ²	1.14	1.2	1.26	—	—	—
LVTTL33 ²	3.135	3.3	3.465	—	—	—
PCI33	3.135	3.3	3.465	—	—	—
SSTL18_I ² , SSTL18_II ²	1.71	1.8	1.89	0.833	0.9	0.969
SSTL25_I ² , SSTL25_II ²	2.375	2.5	2.625	1.15	1.25	1.35
SSTL33_I ² , SSTL33_II ²	3.135	3.3	3.465	1.3	1.5	1.7
HSTL15_I ²	1.425	1.5	1.575	0.68	0.75	0.9
HSTL18_I ² , HSTL18_II ²	1.71	1.8	1.89	0.816	0.9	1.08
LVDS25 ²	2.375	2.5	2.625		—	—
MLVDS251	2.375	2.5	2.625		—	—
LVPECL33 ^{1, 2}	3.135	3.3	3.465		—	—
BLVDS25 ^{1, 2}	2.375	2.5	2.625		—	—
RSDS ^{1, 2}	2.375	2.5	2.625		—	—
SSTL18D_I ² , SSTL18D_II ²	1.71	1.8	1.89	_	_	_
SSTL25D_ I ² , SSTL25D_II ²	2.375	2.5	2.625	_	_	_
SSTL33D_ I ² , SSTL33D_ II ²	3.135	3.3	3.465	—	—	—
HSTL15D_ I ²	1.425	1.5	1.575		—	—
HSTL18D_ I², HSTL18D_ II²	1.71	1.8	1.89	—	_	—

Over Recommended Operating Conditions


1. Inputs on chip. Outputs are implemented with the addition of external resistors. 2. Input on this standard does not depend on the value of V_{CCIO} .

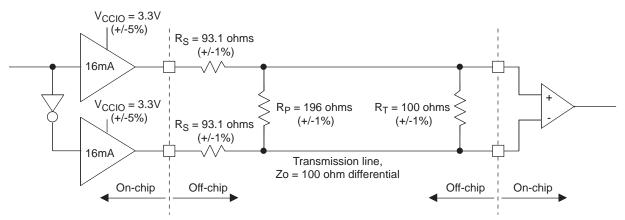
BLVDS

The LatticeXP2 devices support the BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Table 3-2. BLVDS DC Conditions¹

		Typical		
Parameter	Description	Ζο = 45 Ω	Ζο = 90 Ω	Units
V _{CCIO}	Output Driver Supply (+/- 5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
R _S	Driver Series Resistor (+/- 1%)	90.00	90.00	Ω
R _{TL}	Driver Parallel Resistor (+/- 1%)	45.00	90.00	Ω
R _{TR}	Receiver Termination (+/- 1%)	45.00	90.00	Ω
V _{OH}	Output High Voltage (After R _{TL})	1.38	1.48	V
V _{OL}	Output Low Voltage (After R _{TL})	1.12	1.02	V
V _{OD}	Output Differential Voltage (After R _{TL})	0.25	0.46	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	11.24	10.20	mA

Over Recommended Operating Conditions


1. For input buffer, see LVDS table.

LVPECL

The LatticeXP2 devices support the differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals.

Figure 3-3. Differential LVPECL

Table 3-3. LVPECL DC Conditions¹

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/-5%)	3.30	V
Z _{OUT}	Driver Impedance	10	Ω
R _S	Driver Series Resistor (+/-1%)	93	Ω
R _P	Driver Parallel Resistor (+/-1%)	196	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage (After R _P)	2.05	V
V _{OL}	Output Low Voltage (After R _P)	1.25	V
V _{OD}	Output Differential Voltage (After R _P)	0.80	V
V _{CM}	Output Common Mode Voltage	1.65	V
Z _{BACK}	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	12.11	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

LatticeXP2 External Switching Characteristics (Continued)

			-	7	-	6	-	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		XP2-5	0.00	—	0.00	—	0.00	—	ns
		XP2-8	0.00	—	0.00	—	0.00	—	ns
t _{H_DELPLL}	Clock to Data Hold - PIO Input Register with Input Data Delay	XP2-17	0.00	—	0.00	—	0.00	—	ns
		XP2-30	0.00	—	0.00	—	0.00	—	ns
		XP2-40	0.00	—	0.00	—	0.00		ns
DDR ² and DDI	R2 ³ I/O Pin Parameters		•	•		•	•		•
t _{DVADQ}	Data Valid After DQS (DDR Read)	XP2	_	0.29	—	0.29	—	0.29	UI
t _{DVEDQ}	Data Hold After DQS (DDR Read)	XP2	0.71	—	0.71	—	0.71	_	UI
t _{DQVBS}	Data Valid Before DQS	XP2	0.25	—	0.25	—	0.25	—	UI
t _{DQVAS}	Data Valid After DQS	XP2	0.25	—	0.25	—	0.25		UI
f _{MAX_DDR}	DDR Clock Frequency	XP2	95	200	95	166	95	133	MHz
f _{MAX_DDR2}	DDR Clock Frequency	XP2	133	200	133	200	133	166	MHz
Primary Clock	(
f _{MAX_PRI}	Frequency for Primary Clock Tree	XP2	_	420	—	357	—	311	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	XP2	1	—	1	—	1	_	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Bank	XP2	_	160	—	160	—	160	ps
Edge Clock (E	CLK1 and ECLK2)		•	•		•	•		•
fMAX_ECLK	Frequency for Edge Clock	XP2	—	420	—	357	—	311	MHz
^t w_eclk	Clock Pulse Width for Edge Clock	XP2	1	—	1	—	1	—	ns
t _{SKEW_ECLK}	Edge Clock Skew Within an Edge of the Device	XP2	-	130	_	130	—	130	ps

Over Recommended Operating Conditions

1. General timing numbers based on LVCMOS 2.5, 12mA, 0pf load.

2. DDR timing numbers based on SSTL25.

3. DDR2 timing numbers based on SSTL18.

LatticeXP2 Family Timing Adders^{1, 2, 3, 4}

Buffer Type	Description	-7	-6	-5	Units
Input Adjusters					
LVDS25	LVDS	-0.26	-0.11	0.04	ns
BLVDS25	BLVDS	-0.26	-0.11	0.04	ns
MLVDS	LVDS	-0.26	-0.11	0.04	ns
RSDS	RSDS	-0.26	-0.11	0.04	ns
LVPECL33	LVPECL	-0.26	-0.11	0.04	ns
HSTL18_I	HSTL_18 class I	-0.23	-0.08	0.07	ns
HSTL18_II	HSTL_18 class II	-0.23	-0.08	0.07	ns
HSTL18D_I	Differential HSTL 18 class I	-0.28	-0.13	0.02	ns
HSTL18D_II	Differential HSTL 18 class II	-0.28	-0.13	0.02	ns
HSTL15_I	HSTL_15 class I	-0.23	-0.09	0.06	ns
HSTL15D_I	Differential HSTL 15 class I	-0.28	-0.13	0.01	ns
SSTL33_I	SSTL_3 class I	-0.20	-0.04	0.12	ns
SSTL33_II	SSTL_3 class II	-0.20	-0.04	0.12	ns
SSTL33D_I	Differential SSTL_3 class I	-0.27	-0.11	0.04	ns
SSTL33D_II	Differential SSTL_3 class II	-0.27	-0.11	0.04	ns
SSTL25_I	SSTL_2 class I	-0.21	-0.06	0.10	ns
SSTL25_II	SSTL_2 class II	-0.21	-0.06	0.10	ns
SSTL25D_I	Differential SSTL_2 class I	-0.27	-0.12	0.03	ns
SSTL25D_II	Differential SSTL_2 class II	-0.27	-0.12	0.03	ns
SSTL18_I	SSTL_18 class I	-0.23	-0.08	0.07	ns
SSTL18_II	SSTL_18 class II	-0.23	-0.08	0.07	ns
SSTL18D_I	Differential SSTL_18 class I	-0.28	-0.13	0.02	ns
SSTL18D_II	Differential SSTL_18 class II	-0.28	-0.13	0.02	ns
LVTTL33	LVTTL	-0.09	0.05	0.18	ns
LVCMOS33	LVCMOS 3.3	-0.09	0.05	0.18	ns
LVCMOS25	LVCMOS 2.5	0.00	0.00	0.00	ns
LVCMOS18	LVCMOS 1.8	-0.23	-0.07	0.09	ns
LVCMOS15	LVCMOS 1.5	-0.20	-0.02	0.16	ns
LVCMOS12	LVCMOS 1.2	-0.35	-0.20	-0.04	ns
PCI33	3.3V PCI	-0.09	0.05	0.18	ns
Output Adjusters		I		1	
LVDS25E	LVDS 2.5 E ⁵	-0.25	0.02	0.30	ns
LVDS25	LVDS 2.5	-0.25	0.02	0.30	ns
BLVDS25	BLVDS 2.5	-0.28	0.00	0.28	ns
MLVDS	MLVDS 2.5 ⁵	-0.28	0.00	0.28	ns
RSDS	RSDS 2.5 ⁵	-0.25	0.02	0.30	ns
LVPECL33	LVPECL 3.3 ⁵	-0.37	-0.10	0.18	ns
HSTL18_I	HSTL_18 class I 8mA drive	-0.17	0.13	0.43	ns
HSTL18_II	HSTL_18 class II	-0.29	0.00	0.29	ns
HSTL18D_I	Differential HSTL 18 class I 8mA drive	-0.17	0.13	0.43	ns
HSTL18D_II	Differential HSTL 18 class II	-0.29	0.00	0.29	ns

Over Recommended Operating Conditions

LatticeXP2 Family Timing Adders^{1, 2, 3, 4} (Continued)

Buffer Type	Description	-7	-6	-5	Units
HSTL15_I	HSTL_15 class I 4mA drive	0.32	0.69	1.06	ns
HSTL15D_I	Differential HSTL 15 class I 4mA drive	0.32	0.69	1.06	ns
SSTL33_I	SSTL_3 class I	-0.25	0.05	0.35	ns
SSTL33_II	SSTL_3 class II	-0.31	-0.02	0.27	ns
SSTL33D_I	Differential SSTL_3 class I	-0.25	0.05	0.35	ns
SSTL33D_II	Differential SSTL_3 class II	-0.31	-0.02	0.27	ns
SSTL25_I	SSTL_2 class I 8mA drive	-0.25	0.02	0.30	ns
SSTL25_II	SSTL_2 class II 16mA drive	-0.28	0.00	0.28	ns
SSTL25D_I	Differential SSTL_2 class I 8mA drive	-0.25	0.02	0.30	ns
SSTL25D_II	Differential SSTL_2 class II 16mA drive	-0.28	0.00	0.28	ns
SSTL18_I	SSTL_1.8 class I	-0.17	0.13	0.43	ns
SSTL18_II	SSTL_1.8 class II 8mA drive	-0.18	0.12	0.42	ns
SSTL18D_I	Differential SSTL_1.8 class I	-0.17	0.13	0.43	ns
SSTL18D_II	Differential SSTL_1.8 class II 8mA drive	-0.18	0.12	0.42	ns
LVTTL33_4mA	LVTTL 4mA drive	-0.37	-0.05	0.26	ns
LVTTL33_8mA	LVTTL 8mA drive	-0.45	-0.18	0.10	ns
LVTTL33_12mA	LVTTL 12mA drive	-0.52	-0.24	0.04	ns
LVTTL33_16mA	LVTTL 16mA drive	-0.43	-0.14	0.14	ns
LVTTL33_20mA	LVTTL 20mA drive	-0.46	-0.18	0.09	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive, fast slew rate	-0.37	-0.05	0.26	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive, fast slew rate	-0.45	-0.18	0.10	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive, fast slew rate	-0.52	-0.24	0.04	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive, fast slew rate	-0.43	-0.14	0.14	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive, fast slew rate	-0.46	-0.18	0.09	ns
LVCMOS25_4mA	LVCMOS 2.5 4mA drive, fast slew rate	-0.42	-0.15	0.13	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive, fast slew rate	-0.48	-0.21	0.05	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive, fast slew rate	0.00	0.00	0.00	ns
LVCMOS25_16mA	LVCMOS 2.5 16mA drive, fast slew rate	-0.45	-0.18	0.08	ns
LVCMOS25_20mA	LVCMOS 2.5 20mA drive, fast slew rate	-0.49	-0.22	0.04	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive, fast slew rate	-0.46	-0.18	0.10	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive, fast slew rate	-0.52	-0.25	0.02	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive, fast slew rate	-0.56	-0.30	-0.03	ns
LVCMOS18_16mA	LVCMOS 1.8 16mA drive, fast slew rate	-0.50	-0.24	0.03	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive, fast slew rate	-0.45	-0.17	0.11	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive, fast slew rate	-0.53	-0.26	0.00	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive, fast slew rate	-0.46	-0.19	0.08	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive, fast slew rate	-0.55	-0.29	-0.02	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive, slow slew rate	0.98	1.41	1.84	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive, slow slew rate	0.74	1.16	1.58	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive, slow slew rate	0.56	0.97	1.38	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive, slow slew rate	0.77	1.19	1.61	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive, slow slew rate	0.57	0.98	1.40	ns

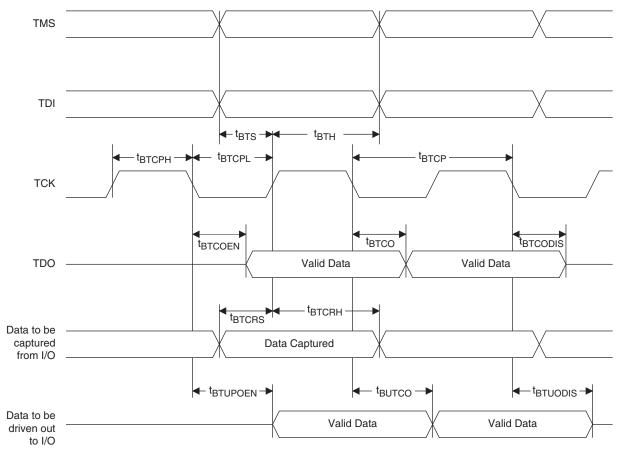
Over Recommended Operating Conditions

sysCLOCK PLL Timing

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)		10	—	435	MHz
f _{OUT}	Output Clock Frequency (CLKOP, CLKOS)		10	_	435	MHz
f	K-Divider Output Frequency	CLKOK	0.078	—	217.5	MHz
f _{OUT2}	R-Divider Output Frequency	CLKOK2	3.3		145	MHz
f _{VCO}	PLL VCO Frequency		435		870	MHz
f _{PFD}	Phase Detector Input Frequency		10		435	MHz
AC Characte	eristics	•			•	
t _{DT}	Output Clock Duty Cycle	Default duty cycle selected ³	45	50	55	%
t _{CPA}	Coarse Phase Adjust		-5	0	5	%
t _{PH} ⁴	Output Phase Accuracy		-5	0	5	%
		f _{OUT} > 400 MHz	_		±50	ps
t _{OPJIT} 1	Output Clock Period Jitter	100 MHz < f _{OUT} < 400 MHz	_		±125	ps
		f _{OUT} < 100 MHz	_		0.025	UIPP
t _{SK}	Input Clock to Output Clock Skew	N/M = integer			±240	ps
t _{OPW}	Output Clock Pulse Width	At 90% or 10%	1		—	ns
• 2	PLL Lock-in Time	25 to 435 MHz	_		50	μs
t _{LOCK} ²		10 to 25 MHz	_		100	μs
t _{IPJIT}	Input Clock Period Jitter		—		±200	ps
t _{FBKDLY}	External Feedback Delay				10	ns
t _{HI}	Input Clock High Time	90% to 90%	0.5		—	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	—	—	ns
t _{RSTKW}	Reset Signal Pulse Width (RSTK)		10	—	—	ns
t _{RSTW}	Reset Signal Pulse Width (RST)		500	—	—	ns

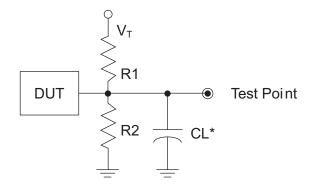
Over Recommended Operating Conditions

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock.


2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.

3. Using LVDS output buffers.

4. Relative to CLKOP.



Switching Test Conditions

Figure 3-11 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-6.

Figure 3-11. Output Test Load, LVTTL and LVCMOS Standards

*CL Includes Test Fixture and Probe Capacitance

 Table 3-6. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	R ₂	CL	Timing Ref.	VT
				LVCMOS 3.3 = 1.5V	—
				LVCMOS 2.5 = $V_{CCIO}/2$	—
LVTTL and other LVCMOS settings (L -> H, H -> L)	x	œ	0pF	LVCMOS 1.8 = V _{CCIO} /2	—
				LVCMOS 1.5 = $V_{CCIO}/2$	—
				LVCMOS 1.2 = V _{CCIO} /2	—
LVCMOS 2.5 I/O (Z -> H)	∞	1MΩ		V _{CCIO} /2	—
LVCMOS 2.5 I/O (Z -> L)	1MΩ	∞		V _{CCIO} /2	V _{CCIO}
LVCMOS 2.5 I/O (H -> Z)	∞	100		V _{OH} - 0.10	—
LVCMOS 2.5 I/O (L -> Z)	100	∞		V _{OL} + 0.10	V _{CCIO}

Note: Output test conditions for all other interfaces are determined by the respective standards.

Pin Information Summary (Cont.)

			XP	2-5		XP2-8 XP2-17 XP2-30				XP2-40							
Pin Type		132 csBGA	144 TQFP	208 PQFP	256 ftBGA	132 csBGA	144 TQFP	208 PQFP	256 ftBGA	208 PQFP	256 ftBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	484 fpBGA	672 fpBGA
	Bank0	18	20	20	26	18	20	20	28	20	28	52	28	52	70	52	70
	Bank1	4	6	18	18	4	6	18	22	18	22	36	22	36	54	36	70
	Bank2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PCI capable I/Os Bonding Out per	Bank3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bank	Bank4	8	8	18	18	8	8	18	26	18	26	36	26	38	54	38	70
	Bank5	14	18	20	24	14	18	20	24	20	24	52	24	53	70	53	70
	Bank6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1. Minimum requirement to implement a fully functional 8-bit wide DDR bus. Available DDR interface consists of at least 12 I/Os (1 DQS + 1 DQSB + 8 DQs + 1 DM + Bank VREF1).

Logic Signal Connections

Package pinout information can be found under "Data Sheets" on the LatticeXP2 product page of the Lattice website a www.latticesemi.com/products/fpga/xp2 and in the Lattice Diamond design software.

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Lattice <u>Thermal Management</u> document to find the device/ package specific thermal values.

For Further Information

- TN1139, Power Estimation and Management for LatticeXP2 Devices
- Power Calculator tool is included with the Lattice Diamond design tool or as a standalone download from www.latticesemi.com/products/designsoftware

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FTN256C	1.2V	-5	Lead-Free ftBGA	256	COM	30
LFXP2-30E-6FTN256C	1.2V	-6	Lead-Free ftBGA	256	COM	30
LFXP2-30E-7FTN256C	1.2V	-7	Lead-Free ftBGA	256	COM	30
LFXP2-30E-5FN484C	1.2V	-5	Lead-Free fpBGA	484	COM	30
LFXP2-30E-6FN484C	1.2V	-6	Lead-Free fpBGA	484	COM	30
LFXP2-30E-7FN484C	1.2V	-7	Lead-Free fpBGA	484	COM	30
LFXP2-30E-5FN672C	1.2V	-5	Lead-Free fpBGA	672	COM	30
LFXP2-30E-6FN672C	1.2V	-6	Lead-Free fpBGA	672	COM	30
LFXP2-30E-7FN672C	1.2V	-7	Lead-Free fpBGA	672	COM	30

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5FN484C	1.2V	-5	Lead-Free fpBGA	484	COM	40
LFXP2-40E-6FN484C	1.2V	-6	Lead-Free fpBGA	484	COM	40
LFXP2-40E-7FN484C	1.2V	-7	Lead-Free fpBGA	484	COM	40
LFXP2-40E-5FN672C	1.2V	-5	Lead-Free fpBGA	672	COM	40
LFXP2-40E-6FN672C	1.2V	-6	Lead-Free fpBGA	672	COM	40
LFXP2-40E-7FN672C	1.2V	-7	Lead-Free fpBGA	672	COM	40

Industrial

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-5E-5MN132I	1.2V	-5	Lead-Free csBGA	132	IND	5
LFXP2-5E-6MN132I	1.2V	-6	Lead-Free csBGA	132	IND	5
LFXP2-5E-5TN144I	1.2V	-5	Lead-Free TQFP	144	IND	5
LFXP2-5E-6TN144I	1.2V	-6	Lead-Free TQFP	144	IND	5
LFXP2-5E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	5
LFXP2-5E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	5
LFXP2-5E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	5
LFXP2-5E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	5

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-8E-5MN132I	1.2V	-5	Lead-Free csBGA	132	IND	8
LFXP2-8E-6MN132I	1.2V	-6	Lead-Free csBGA	132	IND	8
LFXP2-8E-5TN144I	1.2V	-5	Lead-Free TQFP	144	IND	8
LFXP2-8E-6TN144I	1.2V	-6	Lead-Free TQFP	144	IND	8
LFXP2-8E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	8
LFXP2-8E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	8
LFXP2-8E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	8
LFXP2-8E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	8

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5F484I	1.2V	-5	fpBGA	484	IND	40
LFXP2-40E-6F484I	1.2V	-6	fpBGA	484	IND	40
LFXP2-40E-5F672I	1.2V	-5	fpBGA	672	IND	40
LFXP2-40E-6F672I	1.2V	-6	fpBGA	672	IND	40