

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1000
Number of Logic Elements/Cells	8000
Total RAM Bits	226304
Number of I/O	86
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	132-LFBGA, CSPBGA
Supplier Device Package	132-CSBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-8e-6m132c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-3. Slice Diagram

DI[3:2] for Slice 2 and DI[1:0] for Slice 0 data

WAD [A:D] is a 4bit address from slice 1 LUT input

Table 2-2. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	MO	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCI	Fast Carry-In ¹
Input	Inter-slice signal	FXA	Intermediate signal to generate LUT6 and LUT7
Input	Inter-slice signal	FXB	Intermediate signal to generate LUT6 and LUT7
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	Slice 2 of each PFU is the fast carry chain output ¹

1. See Figure 2-3 for connection details.

2. Requires two PFUs.

Figure 2-4. General Purpose PLL (GPLL) Diagram

Table 2-4 provides a description of the signals in the GPLL blocks.

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock (PIN or logic)
RST	I	"1" to reset PLL counters, VCO, charge pumps and M-dividers
RSTK	I	"1" to reset K-divider
DPHASE [3:0]	I	DPA Phase Adjust input
DDDUTY [3:0]	I	DPA Duty Cycle Select input
WRDEL	I	DPA Fine Delay Adjust input
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (no phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
CLKOK2	0	PLL output to clock tree (CLKOP divided by 3)
LOCK	0	"1" indicates PLL LOCK to CLKI

Clock Dividers

LatticeXP2 devices have two clock dividers, one on the left side and one on the right side of the device. These are intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or ÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock based on the release of its reset signal. The clock dividers can be fed from the CLKOP output from the GPLLs or from the Edge Clocks (ECLK). The clock divider outputs serve as primary clock sources and feed into the clock distribution network. The Reset (RST) control signal resets the input and forces all outputs to low. The RELEASE signal releases outputs to the input clock. For further information on clock dividers, please see TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide. Figure 2-5 shows the clock divider connections.

Primary Clock Routing

The clock routing structure in LatticeXP2 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The primary clocks of each quadrant are generated from muxes located in the center of the device. All the clock sources are connected to these muxes. Figure 2-9 shows the clock routing for one quadrant. Each quadrant mux is identical. If desired, any clock can be routed globally.

Dynamic Clock Select (DCS)

The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent input clock sources without any glitches or runt pulses. This is achieved irrespective of when the select signal is toggled. There are two DCS blocks per quadrant; in total, eight DCS blocks per device. The inputs to the DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 (see Figure 2-9).

Figure 2-10 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information on the DCS, please see TN1126, <u>LatticeXP2 sysCLOCK PLL Design and</u> <u>Usage Guide</u>.

Figure 2-10. DCS Waveforms

Secondary Clock/Control Routing

Secondary clocks in the LatticeXP2 devices are region-based resources. The benefit of region-based resources is the relatively low injection delay and skew within the region, as compared to primary clocks. EBR rows, DSP rows and a special vertical routing channel bound the secondary clock regions. This special vertical routing channel aligns with either the left edge of the center DSP block in the DSP row or the center of the DSP row. Figure 2-11 shows this special vertical routing channel and the eight secondary clock regions for the LatticeXP2-40.

Programmable I/O Cells (PIC)

Each PIC contains two PIOs connected to their respective sysIO buffers as shown in Figure 2-25. The PIO Block supplies the output data (DO) and the tri-state control signal (TO) to the sysIO buffer and receives input from the buffer. Table 2-11 provides the PIO signal list.

Figure 2-25. PIC Diagram

Signals are available on left/right/bottom edges only.
 Selected blocks.

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as "T" and "C") as shown in Figure 2-25. The PAD Labels "T" and "C" distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as inputs.

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-27 shows the Tristate Register Block with the Output Block

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as Dtype or latch. In DDR mode, ONEG1 and OPOS1 are fed into registers on the positive edge of the clock. Then in the next clock the registered OPOS1 is latched. A multiplexer running off the same clock cycle selects the correct register for feeding to the output (D0).

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock signal is selected from general purpose routing, ECLK1, ECLK2 or a DQS signal (from the programmable DQS pin) and is provided to the input register block. The clock can optionally be inverted.

DDR Memory Support

PICs have additional circuitry to allow implementation of high speed source synchronous and DDR memory interfaces.

PICs have registered elements that support DDR memory interfaces. Interfaces on the left and right edges are designed for DDR memories that support 16 bits of data, whereas interfaces on the top and bottom are designed for memories that support 18 bits of data. One of every 16 PIOs on the left and right and one of every 18 PIOs on the top and bottom contain delay elements to facilitate the generation of DQS signals. The DQS signals feed the DQS buses which span the set of 16 or 18 PIOs. Figure 2-28 and Figure 2-29 show the DQS pin assignments in each set of PIOs.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Additional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. For additional information on using DDR memory support please see TN1138, <u>LatticeXP2 High Speed I/O Interface</u>.

Figure 2-28. DQS Input Routing (Left and Right)

	PIO A		PADA "T"
	PIO B		PADB "C"
	PIO A		PADA "T"
	PIO B	· · · · ·	PADB "C"
	PIO A		PADA "T"
	PIO B	↓+	PADB "C"
	PIO A		PADA "T"
	PIO B	┃┣	PADB "C"
DOG	PIO A	sysIO Buffer	
 ■ DQ5 		Delay	LVDS Pair
+ DQS	PIO B	Delay	LVDS Pair
↓ DQS	PIO B PIO A		PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
	→ PIO B → PIO A → PIO B		PADA "1" LVDS Pair PADB "C" PADA "T" LVDS Pair LVDS Pair PADA "C"
	→ PIO B → PIO A → PIO B → PIO A		PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
			PADA T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair LVDS Pair PADB "C"
			PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"

Figure 2-29. DQS Input Routing (Top and Bottom)

	PIO A		PADA "T"
	PIO B	+	PADB "C"
	PIO A		PADA "T"
	PIO B	· · · · ·	PADB "C"
—	PIO A		PADA "T" LVDS Pair
	PIO B	→	PADB "C"
	PIO A		PADA "T"
<u> </u>	PIO B	→	PADB "C"
	PIO A	syslO Buffer	·
DQS		Palay	
•		Delay	LVDS Pair
	PIO B		LVDS Pair I I PADB "C" I
	PIO B PIO A		LVDS Pair I PADB "C"
	→ PIO B → PIO A → PIO B		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"
	→ PIO B → PIO A → PIO B → PIO A		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
	→ PIO B → PIO A → PIO B → PIO A → PIO B		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "C" PADA "C"
	→ PIO B → PIO A → PIO A → PIO A → PIO A → PIO B → PIO A		LVDS Pair PADA "T" LVDS Pair PADA "T" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "T" LVDS Pair
			LVDS Pair PADA "T" LVDS Pair PADA "T" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"
			LVDS Pair PADA "T" LVDS Pair PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "T" LVDS Pair

Figure 2-31. DQS Local Bus

*DQSXFERDEL shifts ECLK1 by 90% and is not associated with a particular PIO.

Polarity Control Logic

In a typical DDR memory interface design, the phase relationship between the incoming delayed DQS strobe and the internal system clock (during the READ cycle) is unknown. The LatticeXP2 family contains dedicated circuits to transfer data between these domains. To prevent set-up and hold violations, at the domain transfer between DQS (delayed) and the system clock, a clock polarity selector is used. This changes the edge on which the data is registered in the synchronizing registers in the input register block and requires evaluation at the start of each READ cycle for the correct clock polarity.

Prior to the READ operation in DDR memories, DQS is in tristate (pulled by termination). The DDR memory device drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to control the polarity of the clock to the synchronizing registers.

Table 2-13. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Nom.)			
Single-ended Interfaces					
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3			
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3			
LVCMOS25	4mA, 8mA, 12mA, 16mA, 20mA	2.5			
LVCMOS18	4mA, 8mA, 12mA, 16mA	1.8			
LVCMOS15	4mA, 8mA	1.5			
LVCMOS12	2mA, 6mA	1.2			
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—			
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA				
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA				
LVCMOS15, Open Drain	4mA, 8mA	_			
LVCMOS12, Open Drain	2mA, 6mA	_			
PCI33	N/A	3.3			
HSTL18 Class I, II	N/A	1.8			
HSTL15 Class I	N/A	1.5			
SSTL33 Class I, II	N/A	3.3			
SSTL25 Class I, II	N/A	2.5			
SSTL18 Class I, II	N/A	1.8			
Differential Interfaces					
Differential SSTL33, Class I, II	N/A	3.3			
Differential SSTL25, Class I, II	N/A	2.5			
Differential SSTL18, Class I, II	N/A	1.8			
Differential HSTL18, Class I, II	N/A	1.8			
Differential HSTL15, Class I	N/A	1.5			
LVDS ^{1, 2}	N/A	2.5			
MLVDS ¹	N/A	2.5			
BLVDS ¹	N/A	2.5			
LVPECL ¹	N/A	3.3			
RSDS ¹	N/A	2.5			
LVCMOS33D ¹	4mA, 8mA, 12mA, 16mA, 20mA	3.3			

1. Emulated with external resistors.

2. On the left and right edges, LVDS outputs are supported with a dedicated differential output driver on 50% of the I/Os. This solution does not require external resistors at the driver.

Hot Socketing

LatticeXP2 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the LatticeXP2 ideal for many multiple power supply and hot-swap applications.

IEEE 1149.1-Compliant Boundary Scan Testability

All LatticeXP2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access Port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in

Hot Socketing Specifications^{1, 2, 3, 4}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{DK}	Input or I/O Leakage Current	$0 \le V_{IN} \le V_{IH}$ (MAX.)	_	_	+/-1	mA

1. Insensitive to sequence of V_{CC} , V_{CCAUX} and V_{CCIO} . However, assumes monotonic rise/fall rates for V_{CC} , V_{CCAUX} and V_{CCIO} .

2. $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX) or $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).

3. I_{DK} is additive to I_{PU} , I_{PW} or I_{BH} .

4. LVCMOS and LVTTL only.

ESD Performance

Please refer to the <u>LatticeXP2 Product Family Qualification Summary</u> for complete qualification data, including ESD performance.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I., I., ¹	Input or I/O Low Leakage	$0 \le V_{IN} \le V_{CCIO}$	—		10	μΑ
'IL', 'IH		$V_{CCIO} \le V_{IN} \le V_{IH}$ (MAX)	—	_	150	μΑ
I _{PU}	I/O Active Pull-up Current	$0 \le V_{IN} \le 0.7 \ V_{CCIO}$	-30	—	-150	μΑ
I _{PD}	I/O Active Pull-down Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{CCIO}$	30		210	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL}$ (MAX)	30	—	—	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCIO}$	-30	—	—	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	—		210	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$0 \le V_{IN} \le V_{CCIO}$	—	—	-150	μΑ
V _{BHT}	Bus Hold Trip Points		V_{IL} (MAX)	_	V _{IH} (MIN)	V
C1	I/O Capacitance ²	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = 1.2V, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	—	8	—	pf
C2	Dedicated Input Capacitance	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = 1.2V, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	—	6	—	pf

Over Recommended Operating Conditions

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25°C, f = 1.0 MHz.

Supply Current (Standby)^{1, 2, 3, 4}

Symbol	Parameter	Device	Typical⁵	Units
		XP2-5	14	mA
		XP2-8	18	mA
I _{CC}	Core Power Supply Current	XP2-17	24	mA
		XP2-30	35	mA
		XP2-40	45	mA
	Auxiliary Power Supply Current ⁶	XP2-5	15	mA
		XP2-8	15	mA
I _{CCAUX}		XP2-17	15	mA
		XP2-30	16	mA
		XP2-40	16	mA
I _{CCPLL}	PLL Power Supply Current (per PLL)		0.1	mA
I _{CCIO}	Bank Power Supply Current (per bank)		2	mA
I _{CCJ}	V _{CCJ} Power Supply Current		0.25	mA

Over Recommended Operating Conditions

1. For further information on supply current, please see TN1139, Power Estimation and Management for LatticeXP2 Devices.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

3. Frequency 0 MHz.

4. Pattern represents a "blank" configuration data file.

5. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

6. In fpBGA and ftBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual auxiliary supply current is the sum of I_{CCAUX} and I_{CCPLL}. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the auxiliary power supply.

Programming and Erase Flash Supply Current^{1, 2, 3, 4, 5}

Over Recommended Operating Conditions

Symbol	Parameter	Device	Typical (25°C, Max. Supply) ⁶	Units
		XP2-5	17	mA
		XP2-8	21	mA
I _{CC}	Core Power Supply Current	XP2-17	28	mA
		XP2-30	36	mA
		XP2-40	50	mA
		XP2-5	64	mA
		XP2-8	66	mA
I _{CCAUX}	Auxiliary Power Supply Current ⁷	XP2-17	83	mA
		XP2-30	87	mA
		XP2-40	88	mA
I _{CCPLL}	PLL Power Supply Current (per PLL)		0.1	mA
I _{CCIO}	Bank Power Supply Current (per Bank)		5	mA
I _{CCJ}	V _{CCJ} Power Supply Current ⁸		14	mA

1. For further information on supply current, please see TN1139, Power Estimation and Management for LatticeXP2 Devices.

2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.

3. Frequency 0 MHz (excludes dynamic power from FPGA operation).

4. A specific configuration pattern is used that scales with the size of the device; consists of 75% PFU utilization, 50% EBR, and 25% I/O configuration.

5. Bypass or decoupling capacitor across the supply.

6. $T_J = 25^{\circ}C$, power supplies at nominal voltage.

 In fpBGA and ftBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual auxiliary supply current is the sum of I_{CCAUX} and I_{CCPLL}. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the auxiliary power supply.

8. When programming via JTAG.

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-7 Timing	Units
Basic Functions		
16-bit Decoder	4.4	ns
32-bit Decoder	5.2	ns
64-bit Decoder	5.6	ns
4:1 MUX	3.7	ns
8:1 MUX	3.9	ns
16:1 MUX	4.3	ns
32:1 MUX	4.5	ns

Register-to-Register Performance

Function	-7 Timing	Units
Basic Functions		
16-bit Decoder	521	MHz
32-bit Decoder	537	MHz
64-bit Decoder	484	MHz
4:1 MUX	744	MHz
8:1 MUX	678	MHz
16:1 MUX	616	MHz
32:1 MUX	529	MHz
8-bit Adder	570	MHz
16-bit Adder	507	MHz
64-bit Adder	293	MHz
16-bit Counter	541	MHz
32-bit Counter	440	MHz
64-bit Counter	321	MHz
64-bit Accumulator	261	MHz
Embedded Memory Functions		
512x36 Single Port RAM, EBR Output Registers	315	MHz
1024x18 True-Dual Port RAM (Write Through or Normal, EBR Output Registers)	315	MHz
1024x18 True-Dual Port RAM (Write Through or Normal, PLC Output Registers)	231	MHz
Distributed Memory Functions		
16x4 Pseudo-Dual Port RAM (One PFU)	760	MHz
32x2 Pseudo-Dual Port RAM	455	MHz
64x1 Pseudo-Dual Port RAM	351	MHz
DSP Functions		
18x18 Multiplier (All Registers)	342	MHz
9x9 Multiplier (All Registers)	342	MHz
36x36 Multiply (All Registers)	330	MHz
18x18 Multiply/Accumulate (Input and Output Registers)	218	MHz
18x18 Multiply-Add/Sub-Sum (All Registers)	292	MHz

LatticeXP2 External Switching Characteristics (Continued)

			-	7	-6		-	-5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		XP2-5	1.00		1.30	_	1.60		ns
		XP2-8	1.00	_	1.30	_	1.60	_	ns
t _{HE}	Clock to Data Hold - PIO Input Register	XP2-17	1.00		1.30	_	1.60		ns
		XP2-30	1.20		1.60	_	1.90		ns
		XP2-40	1.20		1.60		1.90		ns
		XP2-5	1.00		1.30	_	1.60		ns
		XP2-8	1.00		1.30	_	1.60		ns
t _{SU_DELE} Clock to Data Setup - PIO In Register with Data Input Dela	Clock to Data Setup - PIO Input Begister with Data Input Delay	XP2-17	1.00		1.30	_	1.60		ns
		XP2-30	1.20		1.60		1.90		ns
		XP2-40	1.20		1.60		1.90		ns
	Clock to Data Setup - PIO Input Register with Data Input Delay Clock to Data Hold - PIO Input Register with Input Data Delay Clock to Data Hold - PIO Input Register with Input Data Delay Clock Frequency of I/O and PFU Register Pin Parameters (using Primary Clock with Register Clock to Output - PIO Output Register Clock to Output - PIO Output Register Clock to Data Setup - PIO Input	XP2-5	0.00		0.00		0.00		ns
		XP2-8	0.00	—	0.00	—	0.00	—	ns
t _{H_DELE} Clock to Data I Register with I f _{MAX_IOE} Clock Frequen Register General I/O Pin Parameters (1)	Clock to Data Hold - PIO Input Begister with Input Data Delay	XP2-17	0.00	—	0.00	—	0.00	—	ns
		XP2-30	0.00		0.00		0.00		ns
		XP2-40	0.00		0.00		0.00		ns
f _{MAX_IOE}	Clock Frequency of I/O and PFU Register	XP2	_	420	_	357	_	311	MHz
General I/O Pir	Parameters (using Primary Clo	ck with PLL)1	1	1	1	1	1	
		XP2-5	—	3.00	—	3.30	—	3.70	ns
		XP2-8		3.00		3.30		3.70	ns
t _{COPLL}	Clock to Output - PIO Output	XP2-17		3.00		3.30		3.70	ns
		XP2-30	_	3.00		3.30		3.70	ns
		XP2-40		3.00		3.30		3.70	ns
		XP2-5	1.00		1.20		1.40		ns
		XP2-8	1.00		1.20		1.40		ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	XP2-17	1.00		1.20		1.40		ns
		XP2-30	1.00		1.20		1.40		ns
		XP2-40	1.00		1.20	_	1.40		ns
		XP2-5	0.90		1.10		1.30		ns
		XP2-8	0.90		1.10		1.30		ns
t _{HPLL}	Clock to Data Hold - PIO Input	XP2-17	0.90		1.10		1.30		ns
		XP2-30	1.00	—	1.20	—	1.40	—	ns
		XP2-40	1.00	—	1.20	—	1.40	—	ns
		XP2-5	1.90	—	2.10	—	2.30	—	ns
		XP2-8	1.90		2.10	—	2.30	_	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Begister with Data Input Delay	XP2-17	1.90	—	2.10	—	2.30	—	ns
	lingibion with Data input Delay	XP2-30	2.00	—	2.20	—	2.40	—	ns
		XP2-40	2.00	—	2.20	—	2.40	—	ns

Over Recommended Operating Conditions

LatticeXP2 External Switching Characteristics (Continued)

			-	7	-	6	-	5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		XP2-5	0.00	—	0.00		0.00		ns
Clask to		XP2-8	0.00	—	0.00		0.00		ns
t _{H_DELPLL}	Register with Input Data Delay	XP2-17	0.00	—	0.00		0.00		ns
		XP2-30	0.00	—	0.00	_	0.00	_	ns
		XP2-40	0.00	—	0.00	_	0.00	_	ns
DDR ² and DDF	2 ³ I/O Pin Parameters								
t _{DVADQ}	Data Valid After DQS (DDR Read)	XP2	—	0.29	—	0.29	—	0.29	UI
t _{DVEDQ}	Data Hold After DQS (DDR Read)	XP2	0.71	—	0.71	_	0.71	—	UI
t _{DQVBS}	Data Valid Before DQS	XP2	0.25	—	0.25		0.25		UI
t _{DQVAS}	Data Valid After DQS	XP2	0.25	—	0.25		0.25		UI
f _{MAX_DDR}	DDR Clock Frequency	XP2	95	200	95	166	95	133	MHz
f _{MAX_DDR2}	DDR Clock Frequency	XP2	133	200	133	200	133	166	MHz
Primary Clock									
f _{MAX_PRI}	Frequency for Primary Clock Tree	XP2	—	420	—	357	—	311	MHz
t _{W_PRI}	Clock Pulse Width for Primary Clock	XP2	1	—	1	_	1	_	ns
t _{SKEW_PRI}	Primary Clock Skew Within a Bank	XP2	_	160	_	160	_	160	ps
Edge Clock (E	CLK1 and ECLK2)								
f _{MAX_ECLK}	Frequency for Edge Clock	XP2	_	420		357		311	MHz
tw_eclk	Clock Pulse Width for Edge Clock	XP2	1	_	1	_	1	_	ns
tskew_eclk	Edge Clock Skew Within an Edge of the Device	XP2	—	130	—	130	—	130	ps

Over Recommended Operating Conditions

1. General timing numbers based on LVCMOS 2.5, 12mA, 0pf load.

2. DDR timing numbers based on SSTL25.

3. DDR2 timing numbers based on SSTL18.

LatticeXP2 Family Timing Adders^{1, 2, 3, 4} (Continued)

Buffer Type	Description	-7	-6	-5	Units
HSTL15_I	HSTL_15 class I 4mA drive	0.32	0.69	1.06	ns
HSTL15D_I	Differential HSTL 15 class I 4mA drive	0.32	0.69	1.06	ns
SSTL33_I	SSTL_3 class I	-0.25	0.05	0.35	ns
SSTL33_II	SSTL_3 class II	-0.31	-0.02	0.27	ns
SSTL33D_I	Differential SSTL_3 class I	-0.25	0.05	0.35	ns
SSTL33D_II	Differential SSTL_3 class II	-0.31	-0.02	0.27	ns
SSTL25_I	SSTL_2 class I 8mA drive	-0.25	0.02	0.30	ns
SSTL25_II	SSTL_2 class II 16mA drive	-0.28	0.00	0.28	ns
SSTL25D_I	Differential SSTL_2 class I 8mA drive	-0.25	0.02	0.30	ns
SSTL25D_II	Differential SSTL_2 class II 16mA drive	-0.28	0.00	0.28	ns
SSTL18_I	SSTL_1.8 class I	-0.17	0.13	0.43	ns
SSTL18_II	SSTL_1.8 class II 8mA drive	-0.18	0.12	0.42	ns
SSTL18D_I	Differential SSTL_1.8 class I	-0.17	0.13	0.43	ns
SSTL18D_II	Differential SSTL_1.8 class II 8mA drive	-0.18	0.12	0.42	ns
LVTTL33_4mA	LVTTL 4mA drive	-0.37	-0.05	0.26	ns
LVTTL33_8mA	LVTTL 8mA drive	-0.45	-0.18	0.10	ns
LVTTL33_12mA	LVTTL 12mA drive	-0.52	-0.24	0.04	ns
LVTTL33_16mA	LVTTL 16mA drive	-0.43	-0.14	0.14	ns
LVTTL33_20mA	LVTTL 20mA drive	-0.46	-0.18	0.09	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive, fast slew rate	-0.37	-0.05	0.26	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive, fast slew rate	-0.45	-0.18	0.10	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive, fast slew rate	-0.52	-0.24	0.04	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive, fast slew rate	-0.43	-0.14	0.14	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive, fast slew rate	-0.46	-0.18	0.09	ns
LVCMOS25_4mA	LVCMOS 2.5 4mA drive, fast slew rate	-0.42	-0.15	0.13	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive, fast slew rate	-0.48	-0.21	0.05	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive, fast slew rate	0.00	0.00	0.00	ns
LVCMOS25_16mA	LVCMOS 2.5 16mA drive, fast slew rate	-0.45	-0.18	0.08	ns
LVCMOS25_20mA	LVCMOS 2.5 20mA drive, fast slew rate	-0.49	-0.22	0.04	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive, fast slew rate	-0.46	-0.18	0.10	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive, fast slew rate	-0.52	-0.25	0.02	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive, fast slew rate	-0.56	-0.30	-0.03	ns
LVCMOS18_16mA	LVCMOS 1.8 16mA drive, fast slew rate	-0.50	-0.24	0.03	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive, fast slew rate	-0.45	-0.17	0.11	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive, fast slew rate	-0.53	-0.26	0.00	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive, fast slew rate	-0.46	-0.19	0.08	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive, fast slew rate	-0.55	-0.29	-0.02	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive, slow slew rate	0.98	1.41	1.84	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive, slow slew rate	0.74	1.16	1.58	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive, slow slew rate	0.56	0.97	1.38	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive, slow slew rate	0.77	1.19	1.61	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive, slow slew rate	0.57	0.98	1.40	ns

Over Recommended Operating Conditions

Flash Download Time (from On-Chip Flash to SRAM)

Over Recommended Operating Conditions

Symbol	Parar	neter	Min.	Тур.	Max.	Units
		XP2-5	—	1.8	2.1	ms
	PROGRAMN Low-to-	XP2-8	—	1.9	2.3	ms
	High. Transition to Done	XP2-17	—	1.7	2.0	ms
High	High.	XP2-30	—	2.0	2.1	ms
t		XP2-40	—	2.0	2.3	ms
'REFRESH		XP2-5	—	1.8	2.1	ms
	Power-up refresh when	XP2-8	—	1.9	2.3	ms
	PROGRAMN is pulled up to V_{CC} ($V_{CC}=V_{CC}$ Min)	XP2-17	—	1.7	2.0	ms
		XP2-30	—	2.0	2.1	ms
		XP2-40		2.0	2.3	ms

Flash Program Time

Over Recommended Operating Conditions

			Program Time	
Device	Flash Density		Тур.	Units
	2-5 1 2M	TAG	1.0	ms
XF2-5	1.2101	Main Array	1.1	S
XP2-8 2	2.0M	TAG	1.0	ms
		Main Array	1.4	S
VP0 17	2.6M	TAG	1.0	ms
AF2-17	3.0101	Main Array	1.8	S
	6.014	TAG	2.0	ms
XP2-30 6.0W	0.0101	Main Array	3.0	S
VP2 40	8 OM	TAG	2.0	ms
XP2-40	8.0101	Main Array	4.0	S

Flash Erase Time

Over Recommended Operating Conditions

			Erase Time	
Device	Flash Density		Тур.	Units
XP2-5	1.2M	TAG	1.0	s
XI 2-3	1.2101	Main Array	3.0	s
XP2-8 2.0M	2.0M	TAG	1.0	S
	2.0101	Main Array	4.0	s
VD2 17	3.6M	TAG	1.0	s
XI 2-17		Main Array	5.0	S
XD2-30	6 OM	TAG	2.0	s
XF2-30	0.01	Main Array	7.0	S
	8.0M	TAG	2.0	S
XI 2-40	0.00	Main Array	9.0	S

PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin

PICs Associated with DQS Strobe	PIO Within PIC	DDR Strobe (DQS) and Data (DQ) Pins
For Left and Right Edges	of the Device	
D[Edge] [n 4]	А	DQ
r[Euge] [11-4]	В	DQ
D[Edga] [n 2]	А	DQ
r[Euge] [II-3]	В	DQ
D[Edgo] [n 2]	А	DQ
	В	DQ
P[Edge] [n-1]	А	DQ
	В	DQ
P[Edge] [n]	А	[Edge]DQSn
	В	DQ
P[Edge] [n+1]	А	DQ
	В	DQ
P[Edge] [n+2]	А	DQ
.[_090][]	В	DQ
P[Edge] [n+3]	А	DQ
	В	DQ
For Top and Bottom Edge	es of the Device	
P[Edge] [n-4]	А	DQ
	В	DQ
P[Edge] [n-3]	A	DQ
	В	DQ
P[Edge] [n-2]	A	DQ
. [=090] [=]	В	DQ
P[Edge] [n-1]	A	DQ
. [=090][]	В	DQ
P[Edge] [n]	A	[Edge]DQSn
. [====================================	В	DQ
P[Edge] [n+1]	A	DQ
. [=a90][]	В	DQ
P[Edge] [n+2]	A	DQ
. [=390] [5]	В	DQ
P[Edge] [n+3]	A	DQ
	В	DQ
P[Edge] [n+4]	A	DQ
. [=390][]	В	DQ

Notes:

1. "n" is a row PIC number.

^{2.} The DDR interface is designed for memories that support one DQS strobe up to 16 bits of data for the left and right edges and up to 18 bits of data for the top and bottom edges. In some packages, all the potential DDR data (DQ) pins may not be available. PIC numbering definitions are provided in the "Signal Names" column of the Signal Descriptions table.

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FTN256C	1.2V	-5	Lead-Free ftBGA	256	COM	30
LFXP2-30E-6FTN256C	1.2V	-6	Lead-Free ftBGA	256	COM	30
LFXP2-30E-7FTN256C	1.2V	-7	Lead-Free ftBGA	256	COM	30
LFXP2-30E-5FN484C	1.2V	-5	Lead-Free fpBGA	484	COM	30
LFXP2-30E-6FN484C	1.2V	-6	Lead-Free fpBGA	484	COM	30
LFXP2-30E-7FN484C	1.2V	-7	Lead-Free fpBGA	484	COM	30
LFXP2-30E-5FN672C	1.2V	-5	Lead-Free fpBGA	672	COM	30
LFXP2-30E-6FN672C	1.2V	-6	Lead-Free fpBGA	672	COM	30
LFXP2-30E-7FN672C	1.2V	-7	Lead-Free fpBGA	672	COM	30

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5FN484C	1.2V	-5	Lead-Free fpBGA	484	COM	40
LFXP2-40E-6FN484C	1.2V	-6	Lead-Free fpBGA	484	COM	40
LFXP2-40E-7FN484C	1.2V	-7	Lead-Free fpBGA	484	COM	40
LFXP2-40E-5FN672C	1.2V	-5	Lead-Free fpBGA	672	COM	40
LFXP2-40E-6FN672C	1.2V	-6	Lead-Free fpBGA	672	COM	40
LFXP2-40E-7FN672C	1.2V	-7	Lead-Free fpBGA	672	COM	40

Industrial

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-5E-5MN132I	1.2V	-5	Lead-Free csBGA	132	IND	5
LFXP2-5E-6MN132I	1.2V	-6	Lead-Free csBGA	132	IND	5
LFXP2-5E-5TN144I	1.2V	-5	Lead-Free TQFP	144	IND	5
LFXP2-5E-6TN144I	1.2V	-6	Lead-Free TQFP	144	IND	5
LFXP2-5E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	5
LFXP2-5E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	5
LFXP2-5E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	5
LFXP2-5E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	5

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-8E-5MN132I	1.2V	-5	Lead-Free csBGA	132	IND	8
LFXP2-8E-6MN132I	1.2V	-6	Lead-Free csBGA	132	IND	8
LFXP2-8E-5TN144I	1.2V	-5	Lead-Free TQFP	144	IND	8
LFXP2-8E-6TN144I	1.2V	-6	Lead-Free TQFP	144	IND	8
LFXP2-8E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	8
LFXP2-8E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	8
LFXP2-8E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	8
LFXP2-8E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	8

Conventional Packaging

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-5E-5M132C	1.2V	-5	csBGA	132	COM	5
LFXP2-5E-6M132C	1.2V	-6	csBGA	132	COM	5
LFXP2-5E-7M132C	1.2V	-7	csBGA	132	COM	5
LFXP2-5E-5FT256C	1.2V	-5	ftBGA	256	COM	5
LFXP2-5E-6FT256C	1.2V	-6	ftBGA	256	COM	5
LFXP2-5E-7FT256C	1.2V	-7	ftBGA	256	COM	5

Commercial

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-8E-5M132C	1.2V	-5	csBGA	132	COM	8
LFXP2-8E-6M132C	1.2V	-6	csBGA	132	COM	8
LFXP2-8E-7M132C	1.2V	-7	csBGA	132	COM	8
LFXP2-8E-5FT256C	1.2V	-5	ftBGA	256	COM	8
LFXP2-8E-6FT256C	1.2V	-6	ftBGA	256	COM	8
LFXP2-8E-7FT256C	1.2V	-7	ftBGA	256	COM	8

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-17E-5FT256C	1.2V	-5	ftBGA	256	COM	17
LFXP2-17E-6FT256C	1.2V	-6	ftBGA	256	COM	17
LFXP2-17E-7FT256C	1.2V	-7	ftBGA	256	COM	17
LFXP2-17E-5F484C	1.2V	-5	fpBGA	484	COM	17
LFXP2-17E-6F484C	1.2V	-6	fpBGA	484	COM	17
LFXP2-17E-7F484C	1.2V	-7	fpBGA	484	COM	17

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FT256C	1.2V	-5	ftBGA	256	COM	30
LFXP2-30E-6FT256C	1.2V	-6	ftBGA	256	COM	30
LFXP2-30E-7FT256C	1.2V	-7	ftBGA	256	COM	30
LFXP2-30E-5F484C	1.2V	-5	fpBGA	484	COM	30
LFXP2-30E-6F484C	1.2V	-6	fpBGA	484	COM	30
LFXP2-30E-7F484C	1.2V	-7	fpBGA	484	COM	30
LFXP2-30E-5F672C	1.2V	-5	fpBGA	672	COM	30
LFXP2-30E-6F672C	1.2V	-6	fpBGA	672	COM	30
LFXP2-30E-7F672C	1.2V	-7	fpBGA	672	COM	30