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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Number of LABs/CLBs 1000

Number of Logic Elements/Cells 8000

Total RAM Bits 226304

Number of I/O 86

Number of Gates -

Voltage - Supply 1.14V ~ 1.26V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 132-LFBGA, CSPBGA

Supplier Device Package 132-CSBGA (8x8)
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Figure 2-3. Slice Diagram

Table 2-2. Slice Signal Descriptions

Function Type Signal Names Description 

Input Data signal A0, B0, C0, D0 Inputs to LUT4 

Input Data signal A1, B1, C1, D1 Inputs to LUT4 

Input Multi-purpose M0 Multipurpose Input 

Input Multi-purpose M1 Multipurpose Input 

Input Control signal CE Clock Enable 

Input Control signal LSR Local Set/Reset 

Input Control signal CLK System Clock 

Input Inter-PFU signal FCI Fast Carry-In1 

Input Inter-slice signal FXA Intermediate signal to generate LUT6 and LUT7

Input Inter-slice signal FXB Intermediate signal to generate LUT6 and LUT7

Output Data signals F0, F1 LUT4 output register bypass signals 

Output Data signals Q0, Q1 Register outputs 

Output Data signals OFX0 Output of a LUT5 MUX 

Output Data signals OFX1 Output of a LUT6, LUT7, LUT82 MUX depending on the slice 

Output Inter-PFU signal FCO Slice 2 of each PFU is the fast carry chain output1

1. See Figure 2-3 for connection details. 
2. Requires two PFUs. 
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For Slices 0 and 2, memory control signals are generated from Slice 1 as follows:
         WCK is CLK
         WRE is from LSR
         DI[3:2] for Slice 2 and DI[1:0] for Slice 0 data
         WAD [A:D] is a 4bit address from slice 1 LUT input

* Not in Slice 3
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Figure 2-6. Primary Clock Sources for XP2-17
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Secondary Clock/Control Sources 
LatticeXP2 devices derive secondary clocks (SC0 through SC7) from eight dedicated clock input pads and the rest 
from routing. Figure 2-7 shows the secondary clock sources.

Figure 2-7. Secondary Clock Sources
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Figure 2-12. Secondary Clock Selection

Slice Clock Selection
Figure 2-13 shows the clock selections and Figure 2-14 shows the control selections for Slice0 through Slice2. All 
the primary clocks and the four secondary clocks are routed to this clock selection mux. Other signals, via routing, 
can be used as clock inputs to the slices. Slice controls are generated from the secondary clocks or other signals 
connected via routing.

If none of the signals are selected for both clock and control, then the default value of the mux output is 1. Slice 3 
does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-13. Slice0 through Slice2 Clock Selection
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Figure 2-16. FlashBAK Technology

Memory Cascading 
Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools 
cascade memory transparently, based on specific design inputs. 

Single, Dual and Pseudo-Dual Port Modes 
In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory 
array. The output data of the memory is optionally registered at the output. 

EBR memory supports two forms of write behavior for single port or dual port operation: 

1. Normal – Data on the output appears only during a read cycle. During a write cycle, the data (at the current 
address) does not appear on the output. This mode is supported for all data widths. 

2. Write Through – A copy of the input data appears at the output of the same port during a write cycle. This 
mode is supported for all data widths. 

Memory Core Reset 
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-
nously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A 
and Port B respectively. GSRN, the global reset signal, resets both ports. The output data latches and associated 
resets for both ports are as shown in Figure 2-17. 

Figure 2-17. Memory Core Reset
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For further information on the sysMEM EBR block, please see TN1137, LatticeXP2 Memory Usage Guide. 

EBR Asynchronous Reset
EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the 
reset is applied and released a clock cycle after the low-to-high transition of the reset signal, as shown in Figure 2-18. 
The GSR input to the EBR is always asynchronous.

Figure 2-18. EBR Asynchronous Reset (Including GSR) Timing Diagram

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after 
the EBR read and write clock inputs are in a steady state condition for a minimum of 1/fMAX (EBR clock). The reset 
release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during 
device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM and ROM implementations. 

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

sysDSP™ Block 
The LatticeXP2 family provides a sysDSP block making it ideally suited for low cost, high performance Digital Sig-
nal Processing (DSP) applications. Typical functions used in these applications include Bit Correlators, Fast Fourier 
Transform (FFT) functions, Finite Impulse Response (FIR) Filter, Reed-Solomon Encoder/Decoder, Turbo Encoder/
Decoder and Convolutional Encoder/Decoder. These complex signal processing functions use similar building 
blocks such as multiply-adders and multiply-accumulators. 

sysDSP Block Approach Compare to General DSP 
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with 
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by 
higher clock speeds. The LatticeXP2 family, on the other hand, has many DSP blocks that support different data-
widths. This allows the designer to use highly parallel implementations of DSP functions. The designer can opti-
mize the DSP performance vs. area by choosing appropriate levels of parallelism. Figure 2-19 compares the fully 
serial and the mixed parallel and serial implementations. 

Reset  

Clock 

Clock 
Enable 

www.latticesemi.com/dynamic/view_document.cfm?document_id=23976
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MAC sysDSP Element 
In this case, the two operands, A and B, are multiplied and the result is added with the previous accumulated value. 
This accumulated value is available at the output. The user can enable the input and pipeline registers but the out-
put register is always enabled. The output register is used to store the accumulated value. The Accumulators in the 
DSP blocks in LatticeXP2 family can be initialized dynamically. A registered overflow signal is also available. The 
overflow conditions are provided later in this document. Figure 2-21 shows the MAC sysDSP element. 

Figure 2-21. MAC sysDSP
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MULTADDSUB sysDSP Element 
In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multi-
plier operation of operands A1 and B1. The user can enable the input, output and pipeline registers. Figure 2-22 
shows the MULTADDSUB sysDSP element. 

Figure 2-22. MULTADDSUB
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Table 2-11. PIO Signal List 

PIO 
The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic 
block. These blocks contain registers for operating in a variety of modes along with necessary clock and selection 
logic.

Input Register Block 
The input register blocks for PIOs contain delay elements and registers that can be used to condition high-speed 
interface signals, such as DDR memory interfaces and source synchronous interfaces, before they are passed to 
the device core. Figure 2-26 shows the diagram of the input register block.

Input signals are fed from the sysIO buffer to the input register block (as signal DI). If desired, the input signal can 
bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and, 
in selected blocks, the input to the DQS delay block. If an input delay is desired, designers can select either a fixed 
delay or a dynamic delay DEL[3:0]. The delay, if selected, reduces input register hold time requirements when 
using a global clock. 

The input block allows three modes of operation. In the Single Data Rate (SDR) mode, the data is registered, by 
one of the registers in the SDR Sync register block, with the system clock. In DDR mode two registers are used to 
sample the data on the positive and negative edges of the DQS signal which creates two data streams, D0 and D2. 
D0 and D2 are synchronized with the system clock before entering the core. Further information on this topic can 
be found in the DDR Memory Support section of this data sheet.

By combining input blocks of the complementary PIOs and sharing registers from output blocks, a gearbox function 
can be implemented, that takes a double data rate signal applied to PIOA and converts it as four data streams, 
IPOS0A, IPOS1A, IPOS0B and IPOS1B. Figure 2-26 shows the diagram using this gearbox function. For more 
information on this topic, please see TN1138, LatticeXP2 High Speed I/O Interface.

Name Type Description 

CE Control from the core Clock enables for input and output block flip-flops

CLK Control from the core System clocks for input and output blocks

ECLK1, ECLK2 Control from the core Fast edge clocks

LSR Control from the core Local Set/Reset

GSRN Control from routing Global Set/Reset (active low)

INCK2 Input to the core Input to Primary Clock Network or PLL reference inputs

DQS Input to PIO DQS signal from logic (routing) to PIO

INDD Input to the core Unregistered data input to core

INFF Input to the core Registered input on positive edge of the clock (CLK0)

IPOS0, IPOS1 Input to the core Double data rate registered inputs to the core

QPOS01, QPOS11 Input to the core Gearbox pipelined inputs to the core

QNEG01, QNEG11 Input to the core Gearbox pipelined inputs to the core

OPOS0, ONEG0, 
OPOS2, ONEG2 Output data from the core Output signals from the core for SDR and DDR operation

OPOS1 ONEG1 Tristate control from the core Signals to Tristate Register block for DDR operation

DEL[3:0] Control from the core Dynamic input delay control bits

TD Tristate control from the core Tristate signal from the core used in SDR operation

DDRCLKPOL Control from clock polarity bus Controls the polarity of the clock (CLK0) that feed the DDR input block

DQSXFER Control from core Controls signal to the Output block 

1. Signals available on left/right/bottom only.
2. Selected I/O.

www.latticesemi.com/dynamic/view_document.cfm?document_id=23977
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LatticeXP2 devices contain two types of sysIO buffer pairs. 

1. Top and Bottom (Banks 0, 1, 4 and 5) sysIO Buffer Pairs (Single-Ended Outputs Only)
The sysIO buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of 
single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be con-
figured as a differential input. 

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

Only the I/Os on the top and bottom banks have programmable PCI clamps. 

2. Left and Right (Banks 2, 3, 6 and 7) sysIO Buffer Pairs (50% Differential and 100% Single-Ended Outputs)
The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two 
sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the ref-
erenced input buffers can also be configured as a differential input. 

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential I/O, and the comp pad is associated with the negative side of the differential I/O. 

LVDS differential output drivers are available on 50% of the buffer pairs on the left and right banks. 

Typical sysIO I/O Behavior During Power-up 
The internal power-on-reset (POR) signal is deactivated when VCC, VCCCONFIG (VCCIO7) and VCCAUX have reached 
satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s respon-
sibility to ensure that all other VCCIO banks are active with valid input logic levels to properly control the output logic 
states of all the I/O banks that are critical to the application. During power up and before the FPGA core logic 
becomes active, all user I/Os will be high-impedance with weak pull-up. Please refer to TN1136, LatticeXP2 sysIO 
Usage Guide for additional information.

The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buf-
fers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended 
that the I/O buffers be powered-up prior to the FPGA core fabric. VCCIO supplies should be powered-up before or 
together with the VCC and VCCAUX supplies. 

Supported sysIO Standards 
The LatticeXP2 sysIO buffer supports both single-ended and differential standards. Single-ended standards can be 
further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2V, 1.5V, 
1.8V, 2.5V and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration options 
for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other 
single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, 
MLVDS, BLVDS, LVPECL, RSDS, differential SSTL and differential HSTL. Tables 2-12 and 2-13 show the I/O stan-
dards (together with their supply and reference voltages) supported by LatticeXP2 devices. For further information 
on utilizing the sysIO buffer to support a variety of standards please see TN1136, LatticeXP2 sysIO Usage Guide. 

www.latticesemi.com/dynamic/view_document.cfm?document_id=24546
www.latticesemi.com/dynamic/view_document.cfm?document_id=24546
www.latticesemi.com/dynamic/view_document.cfm?document_id=24546


2-41

Architecture
LatticeXP2 Family Data Sheet

Density Shifting 
The LatticeXP2 family is designed to ensure that different density devices in the same family and in the same pack-
age have the same pinout. Furthermore, the architecture ensures a high success rate when performing design 
migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower uti-
lization design targeted for a high-density device to a lower density device. However, the exact details of the final 
resource utilization will impact the likely success in each case. 
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Absolute Maximum Ratings1, 2, 3

Recommended Operating Conditions

On-Chip Flash Memory Specifications

Supply Voltage VCC . . . . . . . . . . . . . . . . . . . -0.5 to 1.32V

Supply Voltage VCCAUX . . . . . . . . . . . . . . . . -0.5 to 3.75V

Supply Voltage VCCJ . . . . . . . . . . . . . . . . . . -0.5 to 3.75V

Supply Voltage VCCPLL
4. . . . . . . . . . . . . . . . -0.5 to 3.75V

Output Supply Voltage VCCIO . . . . . . . . . . . -0.5 to 3.75V

Input or I/O Tristate Voltage Applied5. . . . . . -0.5 to 3.75V

Storage Temperature (Ambient)  . . . . . . . . . -65 to 150°C

Junction Temperature Under Bias (Tj) . . . . . . . . . +125°C
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the 

device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
2. Compliance with the Lattice Thermal Management document is required.
3. All voltages referenced to GND.
4. VCCPLL only available on csBGA, PQFP and TQFP packages.
5. Overshoot and undershoot of -2V to (VIHMAX + 2) volts is permitted for a duration of <20 ns.

Symbol Parameter Min. Max. Units

VCC Core Supply Voltage 1.14 1.26 V

VCCAUX
4, 5 Auxiliary Supply Voltage 3.135 3.465 V

VCCPLL
1 PLL Supply Voltage 3.135 3.465 V

VCCIO
2, 3, 4 I/O Driver Supply Voltage 1.14 3.465 V

VCCJ
2 Supply Voltage for IEEE 1149.1 Test Access Port 1.14 3.465 V

tJCOM Junction Temperature, Commercial Operation 0 85 °C

tJIND Junction Temperature, Industrial Operation -40 100 °C

1. VCCPLL only available on csBGA, PQFP and TQFP packages.
2. If VCCIO or VCCJ is set to 1.2 V, they must be connected to the same power supply as VCC. If VCCIO or VCCJ is set to 3.3V, they must be con-

nected to the same power supply as VCCAUX. 
3. See recommended voltages by I/O standard in subsequent table.
4. To ensure proper I/O behavior, VCCIO must be turned off at the same time or earlier than VCCAUX.
5. In fpBGA and ftBGA packages, the PLLs are connected to, and powered from, the auxiliary power supply.

Symbol Parameter Max. Units

NPROGCYC
Flash Programming Cycles per tRETENTION

1 10,000
Cycles

Flash Functional Programming Cycles 100,000

1. The minimum data retention, tRETENTION, is 20 years.

 LatticeXP2 Family Data Sheet
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Initialization Supply Current1, 2, 3, 4, 5

Over Recommended Operating Conditions

Symbol Parameter Device
Typical 

(25°C, Max. Supply)6 Units 

ICC Core Power Supply Current

XP2-5 20 mA

XP2-8 21 mA

XP2-17 44 mA

XP2-30 58 mA

XP2-40 62 mA

ICCAUX Auxiliary Power Supply Current7

XP2-5 67 mA

XP2-8 74 mA

XP2-17 112 mA

XP2-30 124 mA

XP2-40 130 mA

ICCPLL PLL Power Supply Current (per PLL) 1.8 mA

ICCIO Bank Power Supply Current (per Bank) 6.4 mA

ICCJ VCCJ Power Supply Current 1.2 mA

1. For further information on supply current, please see TN1139, Power Estimation and Management for LatticeXP2 Devices. 
2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the VCCIO or GND. 
3. Frequency 0 MHz. 
4. Does not include additional current from bypass or decoupling capacitor across the supply.
5. A specific configuration pattern is used that scales with the size of the device; consists of 75% PFU utilization, 50% EBR, and 25% I/O con-

figuration. 
6. TJ = 25°C, power supplies at nominal voltage.
7. In fpBGA and ftBGA packages the PLLs are connected to and powered from the auxiliary power supply. For these packages, the actual 

auxiliary supply current is the sum of ICCAUX and ICCPLL. For csBGA, PQFP and TQFP packages the PLLs are powered independent of the 
auxiliary power supply.

www.latticesemi.com/dynamic/view_document.cfm?document_id=24561
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MLVDS
The LatticeXP2 devices support the differential MLVDS standard. This standard is emulated using complementary 
LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is 
supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for 
MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors. 

Figure 3-5. MLVDS (Reduced Swing Differential Standard)

Table 3-5. MLVDS DC Conditions1 

For further information on LVPECL, RSDS, MLVDS, BLVDS and other differential interfaces please see details of 
additional technical information at the end of this data sheet.

Parameter Description

Typical

UnitsZo=50 Zo=70

VCCIO Output Driver Supply (+/-5%) 2.50 2.50 V

ZOUT Driver Impedance 10.00 10.00 

RS Driver Series Resistor (+/-1%) 35.00 35.00 

RTL Driver Parallel Resistor (+/-1%) 50.00 70.00 

RTR Receiver Termination (+/-1%) 50.00 70.00 

VOH Output High Voltage (After RTL) 1.52 1.60 V

VOL Output Low Voltage (After RTL) 0.98 0.90 V

VOD Output Differential Voltage (After RTL) 0.54 0.70 V

VCM Output Common Mode Voltage 1.25 1.25 V

IDC DC Output Current 21.74 20.00 mA

1. For input buffer, see LVDS table.
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Derating Timing Tables
Logic timing provided in the following sections of this data sheet and the Diamond design tools are worst case num-
bers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be much 
better than the values given in the tables. The Diamond design tool can provide logic timing numbers at a particular 
temperature and voltage.

DSP IP Functions

16-Tap Fully-Parallel FIR Filter 198 MHz

1024-pt FFT 221 MHz

8X8 Matrix Multiplication 196 MHz

1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with device, design and tool version. 
The tool uses internal parameters that have been characterized but are not tested on every device.

Register-to-Register Performance  (Continued)
 Function -7 Timing Units
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sysCLOCK PLL Timing
Over Recommended Operating Conditions

Parameter Description Conditions Min. Typ. Max. Units

fIN Input Clock Frequency (CLKI, CLKFB) 10 — 435 MHz

fOUT
Output Clock Frequency (CLKOP, 
CLKOS) 10 — 435 MHz

fOUT2 K-Divider Output Frequency
CLKOK 0.078 — 217.5 MHz

CLKOK2 3.3 — 145 MHz

fVCO PLL VCO Frequency  435 — 870 MHz

fPFD Phase Detector Input Frequency 10 — 435 MHz

AC Characteristics

tDT Output Clock Duty Cycle Default duty cycle selected 3 45 50 55 %

tCPA Coarse Phase Adjust -5 0 5 %

tPH
4 Output Phase Accuracy -5 0 5 %

tOPJIT
1 Output Clock Period Jitter

fOUT > 400 MHz — — ±50 ps

100 MHz < fOUT < 400 MHz — — ±125 ps

 fOUT < 100 MHz — — 0.025 UIPP

tSK Input Clock to Output Clock Skew N/M = integer — — ±240 ps

tOPW Output Clock Pulse Width At 90% or 10% 1 — — ns

tLOCK
2 PLL Lock-in Time

25 to 435 MHz — — 50 µs

10 to 25 MHz — — 100 µs

tIPJIT Input Clock Period Jitter — — ±200 ps

tFBKDLY External Feedback Delay — — 10 ns

tHI Input Clock High Time 90% to 90% 0.5 — — ns

tLO Input Clock Low Time 10% to 10% 0.5 — — ns

tRSTKW Reset Signal Pulse Width (RSTK) 10 — — ns

tRSTW Reset Signal Pulse Width (RST) 500 — — ns

1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock. 
2. Output clock is valid after tLOCK for PLL reset and dynamic delay adjustment. 
3. Using LVDS output buffers. 
4. Relative to CLKOP.
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Switching Test Conditions
Figure 3-11 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, 
voltage, and other test conditions are shown in Table 3-6. 

Figure 3-11. Output Test Load, LVTTL and LVCMOS Standards

Table 3-6. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition R1 R2 CL Timing Ref. VT

LVTTL and other LVCMOS settings (L -> H, H -> L)   0pF

LVCMOS 3.3 = 1.5V —

LVCMOS 2.5 = VCCIO/2 —

LVCMOS 1.8 = VCCIO/2 —

LVCMOS 1.5 = VCCIO/2 —

LVCMOS 1.2 = VCCIO/2 —

LVCMOS 2.5 I/O (Z -> H)  1M VCCIO/2 —

LVCMOS 2.5 I/O (Z -> L) 1M  VCCIO/2 VCCIO

LVCMOS 2.5 I/O (H -> Z)  100 VOH - 0.10 —

LVCMOS 2.5 I/O (L -> Z) 100  VOL + 0.10 VCCIO

Note: Output test conditions for all other interfaces are determined by the respective standards.

DUT

VT

R1

R2 CL*

Test Point

*CL Includes Test Fixture and Probe Capacitance
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PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin
PICs Associated with 

DQS Strobe PIO Within PIC
DDR Strobe (DQS) and 

Data (DQ) Pins

For Left and Right Edges of the Device

P[Edge] [n-4] 
A DQ 

B DQ 

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ

B DQ 

P[Edge] [n] 
A [Edge]DQSn

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

P[Edge] [n+3] 
A DQ 

B DQ 

For Top and Bottom Edges of the Device

P[Edge] [n-4] 
A DQ 

B DQ 

P[Edge] [n-3] 
A DQ 

B DQ 

P[Edge] [n-2] 
A DQ 

B DQ 

P[Edge] [n-1] 
A DQ 

B DQ 

P[Edge] [n] 
A [Edge]DQSn 

B DQ 

P[Edge] [n+1] 
A DQ 

B DQ 

P[Edge] [n+2] 
A DQ 

B DQ 

P[Edge] [n+3] 
A DQ 

B DQ 

P[Edge] [n+4] 
A DQ 

B DQ 

Notes:
1. “n” is a row PIC number. 
2. The DDR interface is designed for memories that support one DQS strobe up to 16 bits 

of data for the left and right edges and up to 18 bits of data for the top and bottom 
edges. In some packages, all the potential DDR data (DQ) pins may not be available. 
PIC numbering definitions are provided in the “Signal Names” column of the Signal 
Descriptions table.
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Pin Information Summary 

Pin Type

XP2-5 XP2-8 XP2-17 XP2-30 XP2-40

132 
csBGA

144 
TQFP

208 
PQFP

256
ftBGA

132 
csBGA

144 
TQFP

208 
PQFP

256
ftBGA

208 
PQFP

256 
ftBGA

484 
fpBGA

256 
ftBGA

484 
fpBGA

672 
fpBGA

484 
fpBGA

672 
fpBGA

Single Ended User I/O 86 100 146 172 86 100 146 201 146 201 358 201 363 472 363 540

Differential Pair 
User I/O

Normal 35 39 57 66 35 39 57 77 57 77 135 77 137 180 137 204

Highspeed 8 11 16 20 8 11 16 23 16 23 44 23 44 56 44 66

Configuration

TAP 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Muxed 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Dedicated 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Non Configura-
tion

Muxed 5 5 7 7 7 7 9 9 11 11 21 7 11 13 11 13

Dedicated 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Vcc 6 4 9 6 6 4 9 6 9 6 16 6 16 20 16 20

Vccaux 4 4 4 4 4 4 4 4 4 4 8 4 8 8 8 8

VCCPLL 2 2 2 - 2 2 2 - 4 - - - - - - -

VCCIO

Bank0 2 2 2 2 2 2 2 2 2 2 4 2 4 4 4 4

Bank1 1 1 2 2 1 1 2 2 2 2 4 2 4 4 4 4

Bank2 2 2 2 2 2 2 2 2 2 2 4 2 4 4 4 4

Bank3 1 1 2 2 1 1 2 2 2 2 4 2 4 4 4 4

Bank4 1 1 2 2 1 1 2 2 2 2 4 2 4 4 4 4

Bank5 2 2 2 2 2 2 2 2 2 2 4 2 4 4 4 4

Bank6 1 1 2 2 1 1 2 2 2 2 4 2 4 4 4 4

Bank7 2 2 2 2 2 2 2 2 2 2 4 2 4 4 4 4

GND, GND0-GND7 15 15 20 20 15 15 22 20 22 20 56 20 56 64 56 64

NC - - 4 31 - - 2 2 - 2 7 2 2 69 2 1

Single Ended/ 
Differential I/O 
per Bank

Bank0 18/9 20/10 20/10 26/13 18/9 20/10 20/10 28/14 20/10 28/14 52/26 28/14 52/26 70/35 52/26 70/35

Bank1 4/2 6/3 18/9 18/9 4/2 6/3 18/9 22/11 18/9 22/11 36/18 22/11 36/18 54/27 36/18 70/35

Bank2 16/8 18/9 18/9 22/11 16/8 18/9 18/9 26/13 18/9 26/13 46/23 26/13 46/23 56/28 46/23 64/32

Bank3 4/2 4/2 16/8 20/10 4/2 4/2 16/8 24/12 16/8 24/12 44/22 24/12 46/23 56/28 46/23 66/33

Bank4 8/4 8/4 18/9 18/9 8/4 8/4 18/9 26/13 18/9 26/13 36/18 26/13 38/19 54/27 38/19 70/35

Bank5 14/7 18/9 20/10 24/12 14/7 18/9 20/10 24/12 20/10 24/12 52/26 24/12 53/26 70/35 53/26 70/35

Bank6 6/3 8/4 18/9 22/11 6/3 8/4 18/9 27/13 18/9 27/13 46/23 27/13 46/23 56/28 46/23 66/33

Bank7 16/8 18/9 18/9 22/11 16/8 18/9 18/9 24/12 18/9 24/12 46/23 24/12 46/23 56/28 46/23 64/32

True LVDS Pairs 
Bonding Out per 
Bank

Bank0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bank1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bank2 3 4 4 5 3 4 4 6 4 6 11 6 11 14 11 16

Bank3 1 1 4 5 1 1 4 6 4 6 11 6 11 14 11 17

Bank4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bank5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bank6 1 2 4 5 1 2 4 6 4 6 11 6 11 14 11 17

Bank7 3 4 4 5 3 4 4 5 4 5 11 5 11 14 11 16

DDR Banks 
Bonding Out per 
I/O Bank1

Bank0 1 1 1 1 1 1 1 1 1 1 3 1 2 4 2 4

Bank1 0 0 1 1 0 0 1 1 1 1 2 1 2 3 2 4

Bank2 1 1 1 1 1 1 1 1 1 1 2 1 3 3 3 4

Bank3 0 0 1 1 0 0 1 1 1 1 2 1 3 3 3 4

Bank4 0 0 1 1 0 0 1 1 1 1 2 1 2 3 2 4

Bank5 1 1 1 1 1 1 1 1 1 1 3 1 2 4 2 4

Bank6 0 0 1 1 0 0 1 1 1 1 2 1 3 3 3 4

Bank7 1 1 1 1 1 1 1 1 1 1 2 1 3 3 3 4
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Part Number Description

LFXP2 – XX E – X  XXXXX  X

Grade
    C = Commercial
    I = Industrial    

Logic Capacity
     5 = 5K LUTs
     8 = 8K LUTs
     17 = 17K LUTs
     30 = 30K LUTs
     40 = 40K LUTs

     Supply Voltage
   E = 1.2V

Speed
    5 = Slowest
    6 
    7 = Fastest 

Package
    M132 = 132-ball csBGA
    FT256 = 256-ball ftBGA
    F484 = 484-ball fpBGA
    F672 = 672-ball fpBGA

    MN132 = 132-ball Lead-Free csBGA
    TN144 = 144-pin Lead-Free TQFP
    QN208 = 208-pin Lead-Free PQFP
    FTN256 = 256-ball Lead-Free ftBGA
    FN484 = 484-ball Lead-Free fpBGA
    FN672 = 672-ball Lead-Free fpBGA

Device Family
    XP2
 

Ordering Information
The LatticeXP2 devices are marked with a single temperature grade, either Commercial or Industrial, as shown 
below.

LFXP2-17E
7FT256C
Datecode

LFXP2-17E
6FT256I

Datecode

LatticeXP2 Family Data Sheet
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