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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Operating Temperature 0°C ~ 85°C (TJ)
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Figure 2-2. PFU Diagram

Slice 
Slice 0 through Slice 2 contain two 4-input combinatorial Look-Up Tables (LUT4), which feed two registers. Slice 3 
contains two LUT4s and no registers. For PFUs, Slice 0 and Slice 2 can also be configured as distributed memory, 
a capability not available in PFF blocks. Table 2-1 shows the capability of the slices in both PFF and PFU blocks 
along with the operation modes they enable. In addition, each PFU contains logic that allows the LUTs to be com-
bined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset func-
tions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. 
Figure 2-3 shows an overview of the internal logic of the slice. The registers in the slice can be configured as posi-
tive/negative edge triggered or level sensitive clocks. 

Table 2-1. Resources and Modes Available per Slice

Slice 0 through Slice 2 have 14 input signals: 13 signals from routing and one from the carry-chain (from the adja-
cent slice or PFU). There are seven outputs: six to routing and one to carry-chain (to the adjacent PFU). Slice 3 has 
13 input signals from routing and four signals to routing. Table 2-2 lists the signals associated with Slice 0 to Slice 
2.

Slice

PFU BLock PFF Block

Resources Modes Resources Modes

Slice 0 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 1 2 LUT4s and 2 Registers Logic, Ripple, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 2 2 LUT4s and 2 Registers Logic, Ripple, RAM, ROM 2 LUT4s and 2 Registers Logic, Ripple, ROM

Slice 3 2 LUT4s Logic, ROM 2 LUT4s Logic, ROM

Slice 0

LUT4 &
CARRY

LUT4 &
CARRY

D D

Slice 1

LUT4 &
CARRY

LUT4 &
CARRY

Slice 2

LUT4 &
CARRY

LUT4 &
CARRY

From
 Routing

To
 Routing

Slice 3

LUT4 LUT4

D D D D

FF FF FF FF FF FF
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Modes of Operation
Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM. 

Logic Mode
In this mode, the LUTs in each slice are configured as LUT4s. A LUT4 has 16 possible input combinations. Four-
input logic functions are generated by programming the LUT4. Since there are two LUT4s per slice, a LUT5 can be 
constructed within one slice. Larger LUTs such as LUT6, LUT7 and LUT8, can be constructed by concatenating 
two or more slices. Note that a LUT8 requires more than four slices.

Ripple Mode
Ripple mode allows efficient implementation of small arithmetic functions. In ripple mode, the following functions 
can be implemented by each slice: 

• Addition 2-bit 

• Subtraction 2-bit 

• Add/Subtract 2-bit using dynamic control 

• Up counter 2-bit 

• Down counter 2-bit

• Up/Down counter with async clear

• Up/Down counter with preload (sync) 

• Ripple mode multiplier building block

• Multiplier support 

• Comparator functions of A and B inputs
– A greater-than-or-equal-to B
– A not-equal-to B
– A less-than-or-equal-to B

Two carry signals, FCI and FCO, are generated per slice in this mode, allowing fast arithmetic functions to be con-
structed by concatenating slices. 

RAM Mode
In this mode, a 16x4-bit distributed Single Port RAM (SPR) can be constructed using each LUT block in Slice 0 and 
Slice 2 as a 16x1-bit memory. Slice 1 is used to provide memory address and control signals. A 16x2-bit Pseudo 
Dual Port RAM (PDPR) memory is created by using one slice as the read-write port and the other companion slice 
as the read-only port.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the soft-
ware will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 
shows the number of slices required to implement different distributed RAM primitives. For more information on 
using RAM in LatticeXP2 devices, please see TN1137, LatticeXP2 Memory Usage Guide.

Table 2-3. Number of Slices Required For Implementing Distributed RAM 

ROM Mode
ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in the ROM mode. Preloading is accom-
plished through the programming interface during PFU configuration. 

SPR 16X4 PDPR 16X4

Number of slices 3 3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

www.latticesemi.com/dynamic/view_document.cfm?document_id=23976
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Routing
There are many resources provided in the LatticeXP2 devices to route signals individually or as busses with related 
control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) seg-
ments. 

The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) or x6 (spans seven PFU) 
connections. The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. 
The x2 and x6 resources are buffered to allow both short and long connections routing between PFUs. 

The LatticeXP2 family has an enhanced routing architecture to produce a compact design. The Diamond design 
tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is 
completely automatic, although an interactive routing editor is available to optimize the design. 

sysCLOCK Phase Locked Loops (PLL)
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The LatticeXP2 family supports between 
two and four full featured General Purpose PLLs (GPLL). The architecture of the GPLL is shown in Figure 2-4.

CLKI, the PLL reference frequency, is provided either from the pin or from routing; it feeds into the Input Clock 
Divider block. CLKFB, the feedback signal, is generated from CLKOP (the primary clock output) or from a user 
clock pin/logic. CLKFB feeds into the Feedback Divider and is used to multiply the reference frequency.

Both the input path and feedback signals enter the Voltage Controlled Oscillator (VCO) block. The phase and fre-
quency of the VCO are determined from the input path and feedback signals. A LOCK signal is generated by the 
VCO to indicate that the VCO is locked with the input clock signal.

The output of the VCO feeds into the CLKOP Divider, a post-scalar divider. The duty cycle of the CLKOP Divider 
output can be fine tuned using the Duty Trim block, which creates the CLKOP signal. By allowing the VCO to oper-
ate at higher frequencies than CLKOP, the frequency range of the GPLL is expanded. The output of the CLKOP 
Divider is passed through the CLKOK Divider, a secondary clock divider, to generate lower frequencies for the 
CLKOK output. For applications that require even lower frequencies, the CLKOP signal is passed through a divide-
by-three divider to produce the CLKOK2 output. The CLKOK2 output is provided for applications that use source 
synchronous logic. The Phase/Duty Cycle/Duty Trim block is used to adjust the phase and duty cycle of the CLKOP 
Divider output to generate the CLKOS signal. The phase/duty cycle setting can be pre-programmed or dynamically 
adjusted. 

The clock outputs from the GPLL; CLKOP, CLKOK, CLKOK2 and CLKOS, are fed to the clock distribution network.

For further information on the GPLL please see TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide.

www.latticesemi.com/dynamic/view_document.cfm?document_id=23975
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Figure 2-4. General Purpose PLL (GPLL) Diagram

Table 2-4 provides a description of the signals in the GPLL blocks. 

Table 2-4. GPLL Block Signal Descriptions

Clock Dividers
LatticeXP2 devices have two clock dividers, one on the left side and one on the right side of the device. These are 
intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or 
÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock 
based on the release of its reset signal. The clock dividers can be fed from the CLKOP output from the GPLLs or 
from the Edge Clocks (ECLK). The clock divider outputs serve as primary clock sources and feed into the clock dis-
tribution network. The Reset (RST) control signal resets the input and forces all outputs to low. The RELEASE sig-
nal releases outputs to the input clock. For further information on clock dividers, please see TN1126, LatticeXP2 
sysCLOCK PLL Design and Usage Guide. Figure 2-5 shows the clock divider connections.

Signal I/O Description 

CLKI I Clock input from external pin or routing 

CLKFB I PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock 
(PIN or logic) 

RST I “1” to reset PLL counters, VCO, charge pumps and M-dividers

RSTK I “1” to reset K-divider

DPHASE [3:0] I DPA Phase Adjust input

DDDUTY [3:0] I DPA Duty Cycle Select input

WRDEL I DPA Fine Delay Adjust input

CLKOS O PLL output clock to clock tree (phase shifted/duty cycle changed) 

CLKOP O PLL output clock to clock tree (no phase shift) 

CLKOK O PLL output to clock tree through secondary clock divider 

CLKOK2 O PLL output to clock tree (CLKOP divided by 3)

LOCK O “1” indicates PLL LOCK to CLKI 

CLKFB
Divider

RST

CLKFB

CLKI

LOCK

CLKOP

CLKOS

RSTK

DPHASE

Internal Feedback

DDUTY
WRDEL

CLKOK2

CLKOK

CLKI
Divider

PFD VCO/
LOOP FILTER

CLKOP
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Duty Cycle/
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www.latticesemi.com/dynamic/view_document.cfm?document_id=23975
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Figure 2-12. Secondary Clock Selection

Slice Clock Selection
Figure 2-13 shows the clock selections and Figure 2-14 shows the control selections for Slice0 through Slice2. All 
the primary clocks and the four secondary clocks are routed to this clock selection mux. Other signals, via routing, 
can be used as clock inputs to the slices. Slice controls are generated from the secondary clocks or other signals 
connected via routing.

If none of the signals are selected for both clock and control, then the default value of the mux output is 1. Slice 3 
does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-13. Slice0 through Slice2 Clock Selection
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Secondary Clock Feedlines: 8 PIOs + 16 Routing 
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For further information on the sysMEM EBR block, please see TN1137, LatticeXP2 Memory Usage Guide. 

EBR Asynchronous Reset
EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the 
reset is applied and released a clock cycle after the low-to-high transition of the reset signal, as shown in Figure 2-18. 
The GSR input to the EBR is always asynchronous.

Figure 2-18. EBR Asynchronous Reset (Including GSR) Timing Diagram

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after 
the EBR read and write clock inputs are in a steady state condition for a minimum of 1/fMAX (EBR clock). The reset 
release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during 
device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM and ROM implementations. 

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.

sysDSP™ Block 
The LatticeXP2 family provides a sysDSP block making it ideally suited for low cost, high performance Digital Sig-
nal Processing (DSP) applications. Typical functions used in these applications include Bit Correlators, Fast Fourier 
Transform (FFT) functions, Finite Impulse Response (FIR) Filter, Reed-Solomon Encoder/Decoder, Turbo Encoder/
Decoder and Convolutional Encoder/Decoder. These complex signal processing functions use similar building 
blocks such as multiply-adders and multiply-accumulators. 

sysDSP Block Approach Compare to General DSP 
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with 
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by 
higher clock speeds. The LatticeXP2 family, on the other hand, has many DSP blocks that support different data-
widths. This allows the designer to use highly parallel implementations of DSP functions. The designer can opti-
mize the DSP performance vs. area by choosing appropriate levels of parallelism. Figure 2-19 compares the fully 
serial and the mixed parallel and serial implementations. 

Reset  

Clock 

Clock 
Enable 

www.latticesemi.com/dynamic/view_document.cfm?document_id=23976
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• In the ‘Signed/Unsigned’ options the operands can be switched between signed and unsigned on every cycle.

• In the ‘Add/Sub’ option the Accumulator can be switched between addition and subtraction on every cycle.

• The loading of operands can switch between parallel and serial operations. 

MULT sysDSP Element 
This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, A and B, 
are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers. 
Figure 2-20 shows the MULT sysDSP element. 

Figure 2-20. MULT sysDSP Element
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IPexpress™
The user can access the sysDSP block via the Lattice IPexpress tool, which provides the option to configure each 
DSP module (or group of modules), or by direct HDL instantiation. In addition, Lattice has partnered with The Math-
Works® to support instantiation in the Simulink® tool, a graphical simulation environment. Simulink works with Dia-
mond to dramatically shorten the DSP design cycle in Lattice FPGAs. 

Optimized DSP Functions 
Lattice provides a library of optimized DSP IP functions. Some of the IP cores planned for the LatticeXP2 DSP 
include the Bit Correlator, FFT functions, FIR Filter, Reed-Solomon Encoder/Decoder, Turbo Encoder/Decoder and 
Convolutional Encoder/Decoder. Please contact Lattice to obtain the latest list of available DSP IP cores. 

Resources Available in the LatticeXP2 Family 
Table 2-8 shows the maximum number of multipliers for each member of the LatticeXP2 family. Table 2-9 shows the 
maximum available EBR RAM Blocks and Serial TAG Memory bits in each LatticeXP2 device. EBR blocks, 
together with Distributed RAM can be used to store variables locally for fast DSP operations. 

Table 2-8. Maximum Number of DSP Blocks in the LatticeXP2 Family 

Table 2-9. Embedded SRAM/TAG Memory in the LatticeXP2 Family

LatticeXP2 DSP Performance
Table 2-10 lists the maximum performance in Millions of MAC (MMAC) operations per second for each member of 
the LatticeXP2 family. 

Table 2-10. DSP Performance

For further information on the sysDSP block, please see TN1140, LatticeXP2 sysDSP Usage Guide. 

Device DSP Block 9x9 Multiplier 18x18 Multiplier 36x36 Multiplier 

XP2-5 3 24 12 3

XP2-8 4 32 16 4

XP2-17 5 40 20 5

XP2-30 7 56 28 7

XP2-40 8 64 32 8

Device EBR SRAM Block 
Total EBR SRAM 

(Kbits) 
TAG Memory

(Bits)

XP2-5 9 166 632

XP2-8 12 221 768

XP2-17 15 276 2184

XP2-30 21 387 2640

XP2-40 48 885 3384

Device DSP Block 
DSP Performance 

MMAC

XP2-5 3 3,900

XP2-8 4 5,200

XP2-17 5 6,500

XP2-30 7 9,100

XP2-40 8 10,400

www.latticesemi.com/dynamic/view_document.cfm?document_id=23978
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Table 2-11. PIO Signal List 

PIO 
The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic 
block. These blocks contain registers for operating in a variety of modes along with necessary clock and selection 
logic.

Input Register Block 
The input register blocks for PIOs contain delay elements and registers that can be used to condition high-speed 
interface signals, such as DDR memory interfaces and source synchronous interfaces, before they are passed to 
the device core. Figure 2-26 shows the diagram of the input register block.

Input signals are fed from the sysIO buffer to the input register block (as signal DI). If desired, the input signal can 
bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and, 
in selected blocks, the input to the DQS delay block. If an input delay is desired, designers can select either a fixed 
delay or a dynamic delay DEL[3:0]. The delay, if selected, reduces input register hold time requirements when 
using a global clock. 

The input block allows three modes of operation. In the Single Data Rate (SDR) mode, the data is registered, by 
one of the registers in the SDR Sync register block, with the system clock. In DDR mode two registers are used to 
sample the data on the positive and negative edges of the DQS signal which creates two data streams, D0 and D2. 
D0 and D2 are synchronized with the system clock before entering the core. Further information on this topic can 
be found in the DDR Memory Support section of this data sheet.

By combining input blocks of the complementary PIOs and sharing registers from output blocks, a gearbox function 
can be implemented, that takes a double data rate signal applied to PIOA and converts it as four data streams, 
IPOS0A, IPOS1A, IPOS0B and IPOS1B. Figure 2-26 shows the diagram using this gearbox function. For more 
information on this topic, please see TN1138, LatticeXP2 High Speed I/O Interface.

Name Type Description 

CE Control from the core Clock enables for input and output block flip-flops

CLK Control from the core System clocks for input and output blocks

ECLK1, ECLK2 Control from the core Fast edge clocks

LSR Control from the core Local Set/Reset

GSRN Control from routing Global Set/Reset (active low)

INCK2 Input to the core Input to Primary Clock Network or PLL reference inputs

DQS Input to PIO DQS signal from logic (routing) to PIO

INDD Input to the core Unregistered data input to core

INFF Input to the core Registered input on positive edge of the clock (CLK0)

IPOS0, IPOS1 Input to the core Double data rate registered inputs to the core

QPOS01, QPOS11 Input to the core Gearbox pipelined inputs to the core

QNEG01, QNEG11 Input to the core Gearbox pipelined inputs to the core

OPOS0, ONEG0, 
OPOS2, ONEG2 Output data from the core Output signals from the core for SDR and DDR operation

OPOS1 ONEG1 Tristate control from the core Signals to Tristate Register block for DDR operation

DEL[3:0] Control from the core Dynamic input delay control bits

TD Tristate control from the core Tristate signal from the core used in SDR operation

DDRCLKPOL Control from clock polarity bus Controls the polarity of the clock (CLK0) that feed the DDR input block

DQSXFER Control from core Controls signal to the Output block 

1. Signals available on left/right/bottom only.
2. Selected I/O.

www.latticesemi.com/dynamic/view_document.cfm?document_id=23977
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shows the diagram using this gearbox function. For more information on this topic, see TN1138, LatticeXP2 High 
Speed I/O Interface.

Figure 2-27. Output and Tristate Block
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Table 2-12. Supported Input Standards

Input Standard VREF (Nom.) VCCIO
1 (Nom.) 

Single Ended Interfaces 

LVTTL — —

LVCMOS33 — —

LVCMOS25 — —

LVCMOS18 — 1.8 

LVCMOS15 — 1.5 

LVCMOS12 — —

PCI33 — —

HSTL18 Class I, II 0.9 —

HSTL15 Class I 0.75 —

SSTL33 Class I, II 1.5 —

SSTL25 Class I, II 1.25 —

SSTL18 Class I, II  0.9 —

Differential Interfaces 

Differential SSTL18 Class I, II — —

Differential SSTL25 Class I, II — —

Differential SSTL33 Class I, II — —

Differential HSTL15 Class I — —

Differential HSTL18 Class I, II — —

LVDS, MLVDS, LVPECL, BLVDS, RSDS — —

1. When not specified, VCCIO can be set anywhere in the valid operating range (page 3-1). 
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Table 2-13. Supported Output Standards 

Hot Socketing
LatticeXP2 devices have been carefully designed to ensure predictable behavior during power-up and power-
down. Power supplies can be sequenced in any order. During power-up and power-down sequences, the I/Os 
remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage 
into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. 
These capabilities make the LatticeXP2 ideal for many multiple power supply and hot-swap applications. 

IEEE 1149.1-Compliant Boundary Scan Testability 
All LatticeXP2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access 
Port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan 
path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in 

Output Standard Drive VCCIO (Nom.) 

Single-ended Interfaces 

LVTTL 4mA, 8mA, 12mA, 16mA, 20mA 3.3 

LVCMOS33  4mA, 8mA, 12mA 16mA, 20mA 3.3 

LVCMOS25 4mA, 8mA, 12mA, 16mA, 20mA 2.5 

LVCMOS18 4mA, 8mA, 12mA, 16mA 1.8 

LVCMOS15 4mA, 8mA 1.5 

LVCMOS12 2mA, 6mA 1.2 

LVCMOS33, Open Drain  4mA, 8mA, 12mA 16mA, 20mA —

LVCMOS25, Open Drain 4mA, 8mA, 12mA 16mA, 20mA —

LVCMOS18, Open Drain 4mA, 8mA, 12mA 16mA —

LVCMOS15, Open Drain 4mA, 8mA —

LVCMOS12, Open Drain 2mA, 6mA —

PCI33 N/A 3.3 

HSTL18 Class I, II N/A 1.8 

HSTL15 Class I N/A 1.5 

SSTL33 Class I, II N/A 3.3 

SSTL25 Class I, II N/A 2.5 

SSTL18 Class I, II N/A  1.8 

Differential Interfaces 

Differential SSTL33, Class I, II N/A 3.3 

Differential SSTL25, Class I, II N/A 2.5 

Differential SSTL18, Class I, II N/A 1.8 

Differential HSTL18, Class I, II N/A 1.8 

Differential HSTL15, Class I N/A 1.5 

LVDS1, 2 N/A 2.5 

MLVDS1 N/A 2.5 

BLVDS1 N/A 2.5 

LVPECL1 N/A 3.3 

RSDS1 N/A 2.5 

LVCMOS33D1 4mA, 8mA, 12mA, 16mA, 20mA 3.3 

1. Emulated with external resistors. 
2. On the left and right edges, LVDS outputs are supported with a dedicated differential output driver on 50% of the I/Os. This 

solution does not require external resistors at the driver.
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Density Shifting 
The LatticeXP2 family is designed to ensure that different density devices in the same family and in the same pack-
age have the same pinout. Furthermore, the architecture ensures a high success rate when performing design 
migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower uti-
lization design targeted for a high-density device to a lower density device. However, the exact details of the final 
resource utilization will impact the likely success in each case. 
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tHE
Clock to Data Hold - PIO Input 
Register

XP2-5 1.00 — 1.30 — 1.60 — ns

XP2-8 1.00 — 1.30 — 1.60 — ns

XP2-17 1.00 — 1.30 — 1.60 — ns

XP2-30 1.20 — 1.60 — 1.90 — ns

XP2-40 1.20 — 1.60 — 1.90 — ns

tSU_DELE
Clock to Data Setup - PIO Input 
Register with Data Input Delay

XP2-5 1.00 — 1.30 — 1.60 — ns

XP2-8 1.00 — 1.30 — 1.60 — ns

XP2-17 1.00 — 1.30 — 1.60 — ns

XP2-30 1.20 — 1.60 — 1.90 — ns

XP2-40 1.20 — 1.60 — 1.90 — ns

tH_DELE
Clock to Data Hold - PIO Input 
Register with Input Data Delay

XP2-5 0.00 — 0.00 — 0.00 — ns

XP2-8 0.00 — 0.00 — 0.00 — ns

XP2-17 0.00 — 0.00 — 0.00 — ns

XP2-30 0.00 — 0.00 — 0.00 — ns

XP2-40 0.00 — 0.00 — 0.00 — ns

fMAX_IOE
Clock Frequency of I/O and PFU 
Register XP2 — 420 — 357 — 311 MHz

General I/O Pin Parameters (using Primary Clock with PLL)1 

tCOPLL
Clock to Output - PIO Output 
Register

XP2-5 —  3.00 — 3.30 — 3.70 ns

XP2-8 —  3.00 — 3.30 — 3.70 ns

XP2-17 —  3.00 — 3.30 — 3.70 ns

XP2-30 —  3.00 — 3.30 — 3.70 ns

XP2-40 —  3.00 — 3.30 — 3.70 ns

tSUPLL
Clock to Data Setup - PIO Input 
Register

XP2-5 1.00 — 1.20 — 1.40 — ns

XP2-8 1.00 — 1.20 — 1.40 — ns

XP2-17 1.00 — 1.20 — 1.40 — ns

XP2-30 1.00 — 1.20 — 1.40 — ns

XP2-40 1.00 — 1.20 — 1.40 — ns

tHPLL
Clock to Data Hold - PIO Input 
Register

XP2-5 0.90 — 1.10 — 1.30 — ns

XP2-8 0.90 — 1.10 — 1.30 — ns

XP2-17 0.90 — 1.10 — 1.30 — ns

XP2-30 1.00 — 1.20 — 1.40 — ns

XP2-40 1.00 — 1.20 — 1.40 — ns

tSU_DELPLL
Clock to Data Setup - PIO Input 
Register with Data Input Delay

XP2-5 1.90 — 2.10 — 2.30 — ns

XP2-8 1.90 — 2.10 — 2.30 — ns

XP2-17 1.90 — 2.10 — 2.30 — ns

XP2-30 2.00 — 2.20 — 2.40 — ns

XP2-40 2.00 — 2.20 — 2.40 — ns

LatticeXP2 External Switching Characteristics (Continued)
Over Recommended Operating Conditions

Parameter Description Device

-7 -6 -5

UnitsMin. Max. Min. Max. Min. Max.
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tH_DELPLL
Clock to Data Hold - PIO Input 
Register with Input Data Delay

XP2-5 0.00 — 0.00 — 0.00 — ns

XP2-8 0.00 — 0.00 — 0.00 — ns

XP2-17 0.00 — 0.00 — 0.00 — ns

XP2-30 0.00 — 0.00 — 0.00 — ns

XP2-40 0.00 — 0.00 — 0.00 — ns

DDR2 and DDR23 I/O Pin Parameters 

tDVADQ
Data Valid After DQS 
(DDR Read) XP2 — 0.29 — 0.29 — 0.29 UI

tDVEDQ
Data Hold After DQS 
(DDR Read) XP2 0.71 — 0.71 — 0.71 — UI

tDQVBS Data Valid Before DQS XP2 0.25 — 0.25 — 0.25 — UI

tDQVAS Data Valid After DQS XP2 0.25 — 0.25 — 0.25 — UI

fMAX_DDR DDR Clock Frequency XP2 95 200 95 166 95 133 MHz

fMAX_DDR2 DDR Clock Frequency XP2 133 200 133 200 133 166 MHz

Primary Clock

fMAX_PRI
Frequency for Primary Clock 
Tree XP2 — 420 — 357 — 311 MHz

tW_PRI
Clock Pulse Width for Primary 
Clock XP2 1 — 1 — 1 — ns

tSKEW_PRI
Primary Clock Skew Within a 
Bank XP2 — 160 — 160 — 160 ps

Edge Clock (ECLK1 and ECLK2)

fMAX_ECLK Frequency for Edge Clock XP2 — 420 — 357 — 311 MHz

tW_ECLK
Clock Pulse Width for Edge 
Clock XP2 1 — 1 — 1 — ns

tSKEW_ECLK
Edge Clock Skew Within an 
Edge of the Device XP2 — 130 — 130 — 130 ps

1. General timing numbers based on LVCMOS 2.5, 12mA, 0pf load.
2. DDR timing numbers based on SSTL25.
3. DDR2 timing numbers based on SSTL18.

LatticeXP2 External Switching Characteristics (Continued)
Over Recommended Operating Conditions

Parameter Description Device

-7 -6 -5

UnitsMin. Max. Min. Max. Min. Max.
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Figure 3-8. Write Through (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

A0 A1 A0

D0 D1
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tACCESS tACCESS tACCESS
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D2 D3 D4
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or Write

Three consecutive writes to A0
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WEA
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CLKA

tACCESS
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LatticeXP2 sysCONFIG Port Timing Specifications
Over Recommended Operating Conditions

Parameter Description Min Max Units

sysCONFIG POR, Initialization and Wake Up

tICFG Minimum Vcc to INITN High — 50 ms

tVMC Time from tICFG to valid Master CCLK — 2 µs

tPRGMRJ PROGRAMN Pin Pulse Rejection — 12 ns

tPRGM PROGRAMN Low Time to Start Configuration 50 — ns

tDINIT
1 PROGRAMN High to INITN High Delay — 1 ms

tDPPINIT Delay Time from PROGRAMN Low to INITN Low — 50 ns

tDPPDONE Delay Time from PROGRAMN Low to DONE Low — 50 ns

tIODISS User I/O Disable from PROGRAMN Low — 35 ns

tIOENSS User I/O Enabled Time from CCLK Edge During Wake-up Sequence — 25 ns

tMWC Additional Wake Master Clock Signals after DONE Pin High 0 — Cycles

sysCONFIG SPI Port (Master)

tCFGX INITN High to CCLK Low — 1 µs

tCSSPI INITN High to CSSPIN Low — 2 µs

tCSCCLK CCLK Low before CSSPIN Low 0 — ns

tSOCDO CCLK Low to Output Valid — 15 ns

tCSPID CSSPIN[0:1] Low to First CCLK Edge Setup Time 2cyc 600+6cyc ns

fMAXSPI Max CCLK Frequency — 20 MHz

tSUSPI SOSPI Data Setup Time Before CCLK 7 — ns

tHSPI SOSPI Data Hold Time After CCLK 10 — ns

sysCONFIG SPI Port (Slave)

fMAXSPIS Slave CCLK Frequency — 25 MHz

tRF Rise and Fall Time 50  — mV/ns

tSTCO Falling Edge of CCLK to SOSPI Active  — 20 ns

tSTOZ Falling Edge of CCLK to SOSPI Disable  — 20 ns

tSTSU Data Setup Time (SISPI) 8  — ns

tSTH Data Hold Time (SISPI) 10  — ns

tSTCKH CCLK Clock Pulse Width, High 0.02 200 µs

tSTCKL CCLK Clock Pulse Width, Low 0.02 200 µs

tSTVO Falling Edge of CCLK to Valid SOSPI Output  — 20 ns

tSCS CSSPISN High Time  25  — ns

tSCSS CSSPISN Setup Time  25  — ns

tSCSH CSSPISN Hold Time  25  — ns

1. Re-toggling the PROGRAMN pin is not permitted until the INITN pin is high. Avoid consecutive toggling of PROGRAMN.
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Part Number Voltage Grade Package Pins Temp. LUTs (k)

LFXP2-17E-5QN208I 1.2V -5 Lead-Free PQFP 208 IND 17

LFXP2-17E-6QN208I 1.2V -6 Lead-Free PQFP 208 IND 17

LFXP2-17E-5FTN256I 1.2V -5 Lead-Free ftBGA 256 IND 17

LFXP2-17E-6FTN256I 1.2V -6 Lead-Free ftBGA 256 IND 17

LFXP2-17E-5FN484I 1.2V -5 Lead-Free fpBGA 484 IND 17

LFXP2-17E-6FN484I 1.2V -6 Lead-Free fpBGA 484 IND 17

Part Number Voltage Grade Package Pins Temp. LUTs (k)

LFXP2-30E-5FTN256I 1.2V -5 Lead-Free ftBGA 256 IND 30

LFXP2-30E-6FTN256I 1.2V -6 Lead-Free ftBGA 256 IND 30

LFXP2-30E-5FN484I 1.2V -5 Lead-Free fpBGA 484 IND 30

LFXP2-30E-6FN484I 1.2V -6 Lead-Free fpBGA 484 IND 30

LFXP2-30E-5FN672I 1.2V -5 Lead-Free fpBGA 672 IND 30

LFXP2-30E-6FN672I 1.2V -6 Lead-Free fpBGA 672 IND 30

Part Number Voltage Grade Package Pins Temp. LUTs (k)

LFXP2-40E-5FN484I 1.2V -5 Lead-Free fpBGA 484 IND 40

LFXP2-40E-6FN484I 1.2V -6 Lead-Free fpBGA 484 IND 40

LFXP2-40E-5FN672I 1.2V -5 Lead-Free fpBGA 672 IND 40

LFXP2-40E-6FN672I 1.2V -6 Lead-Free fpBGA 672 IND 40
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Part Number Voltage Grade Package Pins Temp. LUTs (k)

LFXP2-40E-5F484I 1.2V -5 fpBGA 484 IND 40

LFXP2-40E-6F484I 1.2V -6 fpBGA 484 IND 40

LFXP2-40E-5F672I 1.2V -5 fpBGA 672 IND 40

LFXP2-40E-6F672I 1.2V -6 fpBGA 672 IND 40
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April 2008
(cont.)

01.4
(cont.)

DC and Switching 
Characteristics (cont.)

Updated Flash Download Time (From On-Chip Flash to SRAM) Table

Updated Flash Program Time Table

Updated Flash Erase Time Table

Updated FlashBAK (from EBR to Flash) Table

Updated Hot Socketing Specifications Table footnotes

Pinout Information Updated Signal Descriptions Table

June 2008 01.5 Architecture Removed Read-Before-Write sysMEM EBR mode.

Clarification of the operation of the secondary clock regions.

DC and Switching 
Characteristics

Removed Read-Before-Write sysMEM EBR mode.

Pinout Information Updated DDR Banks Bonding Out per I/O Bank section of Pin Informa-
tion Summary Table. 

August 2008 01.6 — Data sheet status changed from preliminary to final.

Architecture Clarification of the operation of the secondary clock regions.

DC and Switching
Characteristics

Removed “8W” specification from Hot Socketing Specifications table.

Removed "8W" footnote from DC Electrical Characteristics table.

Updated Register-to-Register Performance table.

Ordering Information Removed  “8W” option from Part Number Description.

Removed XP2-17 “8W” OPNs.

April 2011 01.7 DC and Switching 
Characteristics

Recommended Operating Conditions table, added footnote 5.

On-Chip Flash Memory Specifications table, added footnote 1.

BLVDS DC Conditions, corrected column title to be Z0 = 90 ohms. 

sysCONFIG Port Timing Specifications table, added footnote 1 for 
tDINIT.

January 2012 01.8 Multiple Added support for Lattice Diamond design software.

Architecture Corrected information regarding SED support.

DC and Switching 
Characteristics

Added reference to ESD Performance Qualification Summary informa-
tion.

May 2013 01.9 All Updated document with new corporate logo.

Architecture Architecture Overview – Added information on the state of the
register on power up and after configuration.

Added information regarding SED support.

DC and Switching 
Characteristics

Removed Input Clock Rise/Fall Time 1ns max from the sysCLOCK PLL 
Timing table.

Ordering Information Updated topside mark in Ordering Information diagram.

March 2014 02.0 Architecture Updated Typical sysIO I/O Behavior During Power-up section. Added 
information on POR signal deactivation.

August 2014 02.1 Architecture Updated Typical sysIO I/O Behavior During Power-up section. 
Described user I/Os during power up and before FPGA core logic is 
active.

September 2014 2.2 DC and Switching 
Characteristics

Updated Switching Test Conditions section. Re-linked missing figure.

Date Version Section Change Summary


