

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1554-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description		
	RA0	TTL	CMOS	General Purpose I/O		
	AN0	AN	_	ADC Channel Input		
RA0/AN0/ISCPDAT/ICDDAT	ICSPDAT	ST	CMOS	ICSP™ Data I/O		
	ICDDAT	ST	CMOS	In-Circuit Debug Data		
	RA1	TTL	CMOS	General Purpose I/O		
	AN1	AN	_	ADC Channel Input		
RA1/AN1/VREF+/ICSPCLK/ICDCLK	VREF+	AN	_	ADC Positive Voltage Reference Input		
	ICSPCLK	ST	CMOS	ICSP Programming Clock		
	ICDCLK	ST	CMOS	In-Circuit Debug Clock		
	RA2	TTL	CMOS	General Purpose I/O		
	AN2	AN	_	ADC Channel Input		
RA2/AN2/TOCKI/INT/	TOCKI	ST	—	Timer0 Clock Input		
	INT	ST	_	External Interrupt		
	RA3	TTL	CMOS	General Purpose Input with IOC and WPU		
	Vpp	HV	_	Programming Voltage		
RA3/VPP/SS ⁽¹⁾ /SDA ⁽¹⁾ /SDI ⁽¹⁾ / MCLR	SS	ST	_	Slave Select Input		
	SDA	l ² C	OD	I ² C Data Input/Output		
	SDI	CMOS	_	SPI Data Input		
	MCLR	ST	_	Master Clear with Internal Pull-up		
	RA4	TTL	CMOS	General Purpose I/O		
	AN10	AN	-	ADC Channel Input		
	ADTRIG	ST	_	ADC Conversion Trigger Input		
RA4/AN10/ADTRIG/CLKOUT/	CLKOUT	—	CMOS	Fosc/4 Output		
RX ⁽¹⁾ /DT ⁽¹⁾ /SDO ⁽¹⁾ /T1G	RX	ST	_	USART Asynchronous Input		
	DT	ST	CMOS	USART Synchronous Data		
	SDO	_	CMOS	SPI Data Output		
	T1G	ST	_	Timer1 Gate Input		
	RA5	TTL	CMOS	General Purpose I/O		
	AN20	AN	_	ADC Channel Input		
RA5/AN20/CLKIN/T1CKI	CLKIN	CMOS	_	External Clock Input (EC mode)		
	T1CKI	ST	_	Timer1 Clock Input		
	RC0	TTL	CMOS	General Purpose I/O		
	AN13	AN	_	ADC Channel Input		
RC0/AN13/SCL/SCK	SCL	l ² C	OD	I ² C Clock		
	SCK	ST	CMOS	SPI Clock		

TABLE 1-2: PIC16LF1554 PINOUT DESCRIPTION

Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.

TABLE 1-3: PIC16LF1559 PINOUT DESCRIPTION (CONTINUED)

			-	
Name	Function	Input Type	Output Type	Description
	RC6	TTL	CMOS	General Purpose I/O
RC6/AN14/SS ⁽¹⁾	AN14	AN		ADC Channel Input
	SS	ST		Slave Select Input
	RC7	TTL	CMOS	General Purpose I/O
RC7/AN24/SDO	AN24	AN		ADC Channel Input
	SDO	—	CMOS	SPI Data Output
Legend: AN = Analog input or output	CMOS= CN	/IOS compa	atible input	or output OD = Open-Drain

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 1											
080h	INDF0 ⁽¹⁾	Addressing t	his location us	es contents of	FSR0H/FSR0	L to address	data memory	y (not a physi	cal register)	xxxx xxxx	uuuu uuuu
081h	INDF1 ⁽¹⁾	Addressing t	his location us	es contents of	FSR1H/FSR1	L to address	data memory	y (not a physi	cal register)	xxxx xxxx	uuuu uuuu
082h	PCL ⁽¹⁾			Program C	ounter (PC) L	east Significa	int Byte			0000 0000	0000 0000
083h	STATUS ⁽¹⁾	_	—	_	TO	PD	Z	DC	С	1 1000	q quuu
084h	FSR0L ⁽¹⁾			Indirect Da	ita Memory Ad	dress 0 Low	Pointer			0000 0000	uuuu uuuu
085h	FSR0H ⁽¹⁾			Indirect Da	ta Memory Ad	dress 0 High	Pointer			0000 0000	0000 0000
086h	FSR1L ⁽¹⁾			Indirect Da	ita Memory Ad	dress 1 Low	Pointer			0000 0000	uuuu uuuu
087h	FSR1H ⁽¹⁾			Indirect Da	ta Memory Ad	dress 1 High	Pointer			0000 0000	0000 0000
088h	BSR ⁽¹⁾	_	_	_			BSR<4:0>			0 0000	0 0000
089h	WREG ⁽¹⁾				Working Re	egister				0000 0000	uuuu uuuu
08Ah	PCLATH ⁽¹⁾	_		Write But	ffer for the upp	er 7 bits of th	e Program C	ounter		-000 0000	-000 0000
08Bh	INTCON ⁽¹⁾	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
08Ch	TRISA	_	_	TRISA5	TRISA4	_	TRISA2	TRISA1	TRISA0	11 1111	11 1111
08Dh	TRISB ⁽²⁾				Unimplem	ented				_	_
06011	TRISB ⁽³⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_	1111	1111
08Eh	TRISC ⁽²⁾			TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111
UOEII	TRISC ⁽³⁾	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
091h	PIE1	TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE		TMR2IE	TMR1IE	0000 0-00	0000 0-00
092h	PIE2		AD2IE			BCLIE		—	—	-0 0	-0 0
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF		RWDT	RMCLR	RI	POR	BOR	00-1 11qq	00-q qquu
097h	WDTCON				W	/DTPS<4:0>			SWDTEN	01 0110	01 0110
098h	—				Unimplem	ented				—	_
099h	OSCCON	SPLLEN		IRCF<	<3:0>			SCS	<1:0>	0011 1-00	0011 1-00
09Ah	OSCSTAT		PLLSR	_	HFIOFR			LFIOFR	HFIOFS	-0-000	-d-d -d0d
09Bh	ADRESL/ AD1RES0L ⁽⁴⁾			A	DC1 Result Re	gister 0 Low				XXXX XXXX	uuuu uuuu
09Ch	ADRESH/ AD1RES0H ⁽⁴⁾		ADC1 Result Register 0 High							XXXX XXXX	uuuu uuuu
09Dh	ADCON0/ AD1CON0 ⁽⁴⁾	_	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE1	AD10N	-000 0000	-000 0000
09Eh	ADCON1/ ADCOMCON ⁽⁴⁾	ADFM		ADCS<2:0>		_	GO/ DONE_ALL	ADPRE	EF<1:0>	0000 -000	0000 -000
09Fh	ADCON2/ AD1CON2 ⁽⁴⁾	_	1	RIGSEL<2:0>	>	_	_	_	_	-000	-000

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Note

These registers can be accessed from any bank. 1:

PIC16LF1554. 2:

3: PIC16LF1559.

These registers/bits are available at two address locations, in Bank 1 and Bank 14. 4:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other
Bank 31											Resets
F80h	INDF0 ⁽¹⁾	Addressing t	his location us	es contents of	ESROH/ESRO	I to address	data memor	v (not a nhvs	ical register)	XXXX XXXX	uuuu uuuu
F81h	INDF1 ⁽¹⁾	0		es contents of					0 /	XXXX XXXX	uuuu uuuu
F82h	PCL ⁽¹⁾	/ duressing t			Counter (PC) L			y (not a phys		0000 0000	0000 0000
F83h	STATUS ⁽¹⁾	_	_				7	DC	С	1 1000	q quuu
F84h	FSR0L ⁽¹⁾			Indirect Da	ata Memory Ac	. 5	-	80	Ū	0000 0000	uuuu uuuu
F85h	FSR0H ⁽¹⁾				ita Memory Ad					0000 0000	0000 0000
F86h	FSR1L ⁽¹⁾				ata Memory Ac	0				0000 0000	uuuu uuuu
F87h	FSR1H ⁽¹⁾				ita Memory Ad					0000 0000	0000 0000
F88h	BSR ⁽¹⁾		_			arcos i riigii	BSR<4:0>			0 0000	0 0000
F89h	WREG ⁽¹⁾				Working R	enister	0011-4.02			0000 0000	uuuu uuuu
F8Ah	PCLATH ⁽¹⁾			Write Bu	ffer for the upp	•	Program (ounter		-000 0000	-000 0000
F8Bh	INTCON ⁽¹⁾	GIE	PEIE	TMR0IE			TMR0IF	INTF	IOCIF	0000 0000	0000 0000
F8Ch	_	UIL			Unimplem		TWITCH		10011		
_	_				Unimplem	enteu					
FE2h											
FE3h					Unimplem	ented	1		1		_
FE4h	STATUS SHAD	—	_	—	—	—	Z	DC	С	xxx	uuu
FE5h	WREG_SHAD			Working R	egister Norma	l (Non-ICD) S	Shadow			xxxx xxxx	uuuu uuuu
FE6h	BSR_SHAD	—		—	Bank	Select Regis	ster Normal (I	Non-ICD) Sha	adow	x xxxx	u uuuu
FE7h	PCLATH SHAD	—		Program Cou	nter Latch Hig	h Register No	ormal (Non-IC	CD) Shadow		-xxx xxxx	uuuu uuuu
FE8h	FSR0L_SHAD		Indirect Da	ata Memory Ad	ddress 0 Low I	Pointer Norm	al (Non-ICD)	Shadow		xxxx xxxx	uuuu uuuu
FE9h	FSR0H_SHAD		Indirect Da	ata Memory Ac	dress 0 High	Pointer Norm	al (Non-ICD)	Shadow		xxxx xxxx	uuuu uuuu
FEAh	FSR1L_SHAD		Indirect Da	ata Memory Ad	ddress 1 Low I	Pointer Norm	al (Non-ICD)	Shadow		xxxx xxxx	uuuu uuuu
FEBh	FSR1H_SHAD		Indirect Data Memory Address 1 High Pointer Normal (Non-ICD) Shadow							xxxx xxxx	uuuu uuuu
FECh	_				Unimplem	ented				_	—
FEDh	STKPTR	—	—	—		Curr	ent Stack poi	nter		1 1111	1 1111
FEEh	TOSL				Top of Stack	Low byte				xxxx xxxx	uuuu uuuu
FEFh	TOSH	—			Top of	Stack High b	yte			-xxx xxxx	-uuu uuuu

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: These registers can be accessed from any bank.

2: PIC16LF1554.

3: PIC16LF1559.

4: These registers/bits are available at two address locations, in Bank 1 and Bank 14.

6.12 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	х	1	1	Power-on Reset
0	0	1	1	1	0	х	0	x	Illegal, TO is set on POR
0	0	1	1	1	0	x	x	0	Illegal, \overline{PD} is set on \overline{POR}
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and the Global Interrupt Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

REGISTER					REGISTER 1		
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE		TMR2IE	TMR1IE
bit 7							bit
Lonondi							
Legend:	- h:t		L 14		we are to all hit are ad	(0)	
R = Readabl		W = Writable		•	mented bit, read		
u = Bit is und	0	x = Bit is unk		-n/n = value	at POR and BOI	R/Value at all c	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared				
bit 7	TMR1GIE: T	ïmer1 Gate Inte	errupt Enable	bit			
	1 = Enables	the Timer1 gate	e acquisition in	nterrupt			
	0 = Disables	the Timer1 gat	e acquisition i	nterrupt			
bit 6	AD1IE: Anal	og-to-Digital Co	onverter (ADC	1) Interrupt Er	nable bit		
		the ADC interru					
	0 = Disables	the ADC interr	upt				
bit 5	RCIE: USAR	RT Receive Inte	rrupt Enable b	bit			
		the USART rec	•				
		the USART re	-				
bit 4		T Transmit Inte	•				
		the USART tra the USART tra	•				
bit 3	SSP1IE: Syr	nchronous Seria	al Port (MSSP) Interrupt Ena	able bit		
	1 = Enables	the MSSP inter	rupt				
	0 = Disables	the MSSP inte	rrupt				
bit 2	Unimpleme	nted: Read as '	0'				
bit 1	TMR2IE: TM	IR2 to PR2 Mat	ch Interrupt E	nable bit			
		the Timer2 to F					
	0 = Disables	the Timer2 to I	PR2 match int	errupt			
bit 0	TMR1IE: Tin	ner1 Overflow I	nterrupt Enabl	le bit			
		the Timer1 ove					
	0 = Disables	the Timer1 ove	erflow interrup	t			
Note: B	it PEIE of the IN	ITCON register	must be				

set to enable any peripheral interrupt.

				I I KEQOEO		-	
U-0	R/W-0/0	U-0	U-0	R/W-0/0	U-0	U-0	U-0
	AD2IF	—		BCLIF	—	—	
bit 7							bit 0
Lowende							
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is ur	nchanged	x = Bit is unkn	own	-n/n = Value a	at POR and BOF	R/Value at all of	ther Resets
'1' = Bit is s	et	'0' = Bit is clea	ared				
bit 7	Unimpleme	nted: Read as 'o)'				
bit 6	AD2IF: ADC	2 Interrupt Flag	bit				
	1 = Interrupt						
	0 = Interrupt	is not pending					
bit 5-4	Unimpleme	nted: Read as ')'				
bit 3	BCLIF: MSS	P Bus Collision	Interrupt Fla	ıg bit			
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 2-0	Unimpleme	nted: Read as 'd)'				

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Interrupt Enable bit, GIE of the INTCON
	register. User software should ensure the
	appropriate interrupt flag bits are clear prior
	to enabling an interrupt.

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	77
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			166
PIE1	TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE	_	TMR2IE	TMR1IE	78
PIE2	_	AD2IE	_	_	BCLIE	_	_	—	79
PIR1	TMR1GIF	AD1IF	RCIF	TXIF	SSP1IF		TMR2IF	TMR1IF	80
PIR2		AD2IF			BCLIF			_	81

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PMAC)R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **PMADR<7:0>**: Specifies the Least Significant bits for program memory address

REGISTER 10-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—				PMADR<14:8	>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 **PMADR<14:8>**: Specifies the Most Significant bits for program memory address

13.3 Register Definitions: FVR Control

REGISTE		ON: FIXED V					
R/W-0/0	0 R-q/q	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
FVREN	FVRRDY	TSEN	TSRNG		—	ADFV	R<1:0>
bit 7							bit 0
Levende							
Legend: R = Reada	able bit	W = Writable	hit		montod bit road	1 00 (0)	
					mented bit, read at POR and BC		thar Deceta
	inchanged	x = Bit is unk					liner Resels
'1' = Bit is	set	'0' = Bit is cle	ared	q = value de	pends on condi	tion	
bit 7	1 = Fixed Vo	ed Voltage Refe oltage Referenc oltage Referenc	e is enabled	bit			
bit 6	1 = Fixed Vo	xed Voltage Re bltage Referenc bltage Referenc	e output is rea	ady for use	enabled		
bit 5	1 = Tempera	erature Indicato ature Indicator i ature Indicator i	s enabled)			
bit 4	1 = VOUT = '	nperature Indica VDD - 4VT (High VDD - 2VT (Low	n Range)	election bit ⁽¹⁾			
bit 3-2	Unimpleme	nted: Read as '	0'				
bit 1-0	11 = ADC Fi 10 = ADC Fi 01 = ADC Fi	>: ADC Fixed V xed Voltage Re xed Voltage Re xed Voltage Re xed Voltage Re	ference Perip ference Perip ference Perip	heral output is heral output is heral output is	off 2x (2.048V) ⁽²⁾ 1x (1.024V)		
Note 1:	See Section 14.0	"Temperature	Indicator Mo	odule" for addi	tional information	on.	
2:	Fixed Voltage Ref	ference output of	cannot exceed	VDD.			

REGISTER 13-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

TABLE 13-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	—	ADFV	R<1:0>	124

Legend: Shaded cells are unused by the Fixed Voltage Reference module.

				OONTINOL			
U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
—		TRIGSEL<2:0>(1)		—	—	_
bit 7				•	•	•	bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set '0' = Bit is cleared							
bit 7	Unimpleme	nted: Read as ')'				
bit 6-4	TRIGSEL<2	::0>: Auto-Conve	ersion Trigger	Selection bits			
	000 = No A	uto Conversion T	rigger selecte	ed			
	001 = Rese						
	010 = Rese						
		0 Overflow ⁽²⁾					
		1 Overflow ⁽²⁾	2)				
		2 Match to PR2	2)				
		RIG Rising Edge					
	111 = ADTF	RIG Falling Edge					
bit 3-0	Unimpleme	nted: Read as ')'				
Note 1: See	Section 16.	1.11 "Hardware	CVD Registe	er Mapping" fo	r more informat	tion.	

REGISTER 16-6: AADxCON2: HARDWARE CVD CONTROL REGISTER 2⁽¹⁾

See Section 16.1.11 "Hardware CVD Register Mapping" for more information. 1:

2: Signal used to set the corresponding interrupt flag.

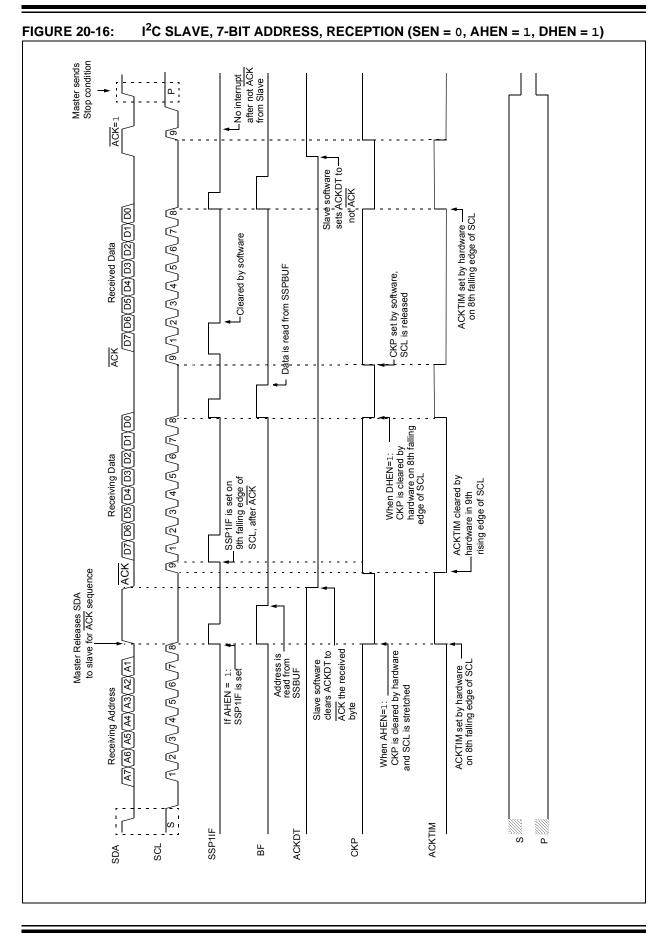
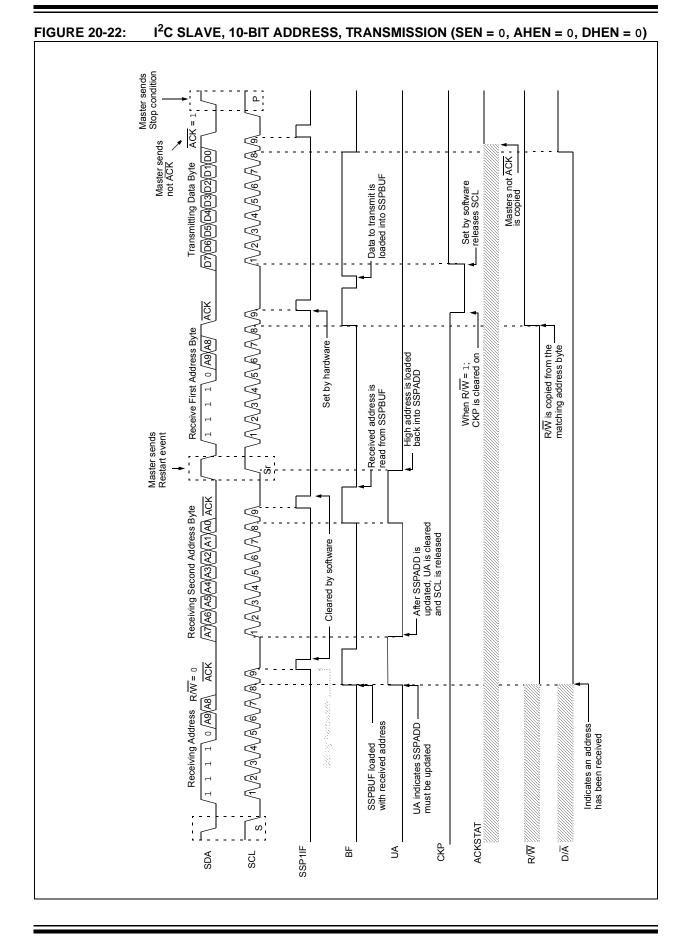

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
AADxCAP	—	—	_	—		ADDxCAF	P<3:0>	160	
AAD1CON0	—	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE1	AD10N	150
AAD2CON0	—	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE2	AD2ON	151
AADCON1/ ADCOMCON	ADFM		ADCS<2:0>	•	_	GO/DONE_ALL	ADPRE	F<1:0>	154
AADxCON2	—	Т	RIGSEL<2:0	>	_	_	—	_	155
AADxCON3	ADxEPPOL	ADxIPPOL	_	_	_	_	ADxIPEN	ADxDSEN	156
AADxGRD	GRDxBOE	GRDxAOE	GRDxPOL	_	_	_	—	_	159
AADxPRE	—				ADxPRE<6	:0>			158
AADxRES0H			/	ADC Result 0	Register Hi	igh			161
AADxRES0L		ADC Result 0 Register Low							161
AADxRES1H		ADC Result 1 Register High							162
AADxRES1L				ADC Result 1	Register Lo	w			162
AADSTAT	—	AD2CONV	AD2ST	G<1:0>	_	AD1CONV	AD1ST	G<1:0>	157
AADxACQ	—			ŀ	ADxACQ<6	6:0>			158
ANSELA	—	—	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	109
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	_	_	—	_	113
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	117
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFVI	R<1:0>	124
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	77
PIE1	TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE	—	TMR2IE	TMR1IE	78
PIE2	—	AD2IE	_	_	BCLIE	—	—	—	79
PIR1	TMR1GIF	AD1IF	RCIF	TXIF	SSP1IF		TMR2IF	TMR1IF	80
PIR2	—	AD2IF	_	_	BCLIF	_	_	_	81
TRISA	—	—	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	108
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	—	—	112
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	116

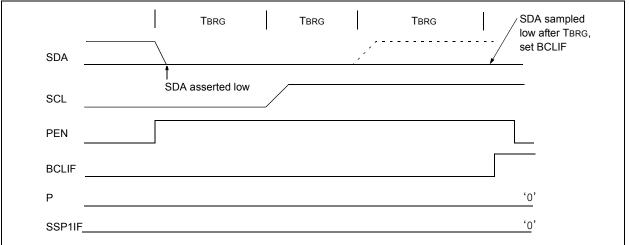
TABLE 16-2:	SUMMARY OF REGISTERS ASSOCIATED WITH HARDWARE CVD
-------------	---


Legend: — = unimplemented read as '0'. Shaded cells are not used for hardware CVD module.

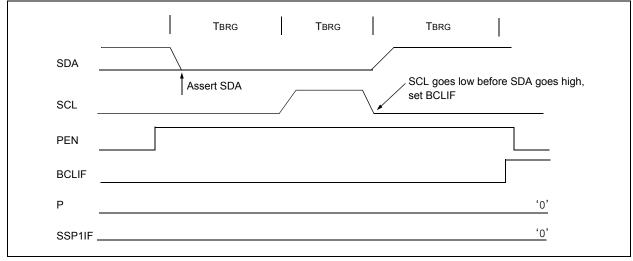
Note 1: Unimplemented, read as '1'.

FIGURE 18-6: TIMER1 G	ATE SINGLE-PULSE AND TOGGLE COMBINED MODE	
TMR1GE		
T1GPOL		
T1GSPM		
T1GTM	Cleared by hardv	vare on
DONE Cour	et by software falling edge of T1	GVAL
t1g_in	ing edge of T1G	
т1СКІ		
T1GV <u>AL</u>		
Timer1 N	<u>N+1</u> <u>N+2</u> <u>N+3</u> <u>N+4</u>	
TMR1GIF Cleared by	Set by hardware on Clear software falling edge of T1GVAL Clear	ed by vare

© 2014-2016 Microchip Technology Inc.


20.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 20-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 20-39).

FIGURE 20-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 20-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

20.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in both I^2C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPADD register (Register 20-6). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

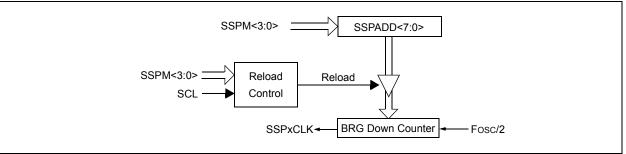

An internal signal "Reload" in Figure 20-40 triggers the value from SSPADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 20-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

EQUATION 20-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 20-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 20-4: MSSP CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FcLock (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz ⁽¹⁾
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: Refer to the I/O port electrical and timing specifications in Table 25-9 and Figure 25-5 to ensure the system is designed to support the I/O timing requirements.

20.7.1 ALTERNATE PIN LOCATIONS

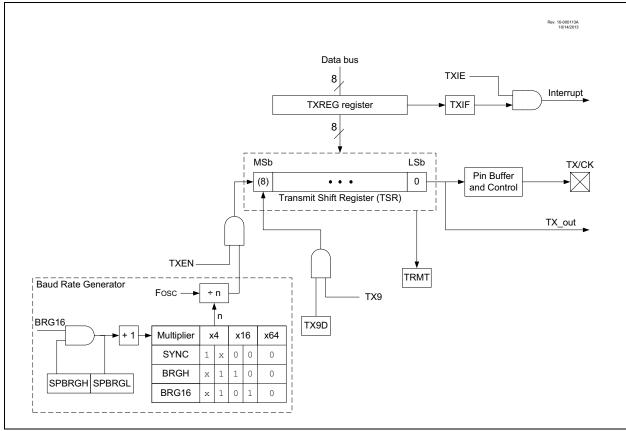
This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 11.1 "Alternate Pin Function"** for more information.

21.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as ADC or DAC integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- · Two-character input buffer
- · One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- · Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- · Sleep operation


The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 21-1 and Figure 21-2.

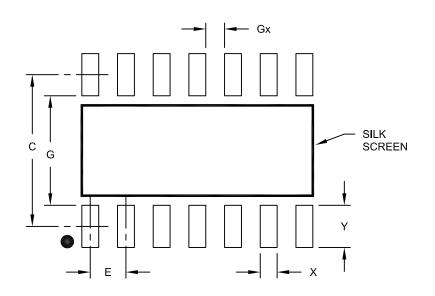
The EUSART transmit output (TX_out) is available to the TX/CK pin and internally to the following peripherals:

Configurable Logic Cell (CLC)

FIGURE 21-1: EUSART TRANSMIT BLOCK DIAGRAM

TABLE 25-18: I²C BUS DATA REQUIREMENTS

Standard	operating	,		-,			1
Param. No.	Symbol	Charact	eristic	Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5TCY	_		
SP101*	TLOW	Clock low time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5TCY	_		
SP102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall	100 kHz mode	—	250	ns	
		time	400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold	100 kHz mode	0		ns	
		time	400 kHz mode	0	0.9	μS	
SP107*	TSU:DAT	Data input setup	100 kHz mode	250		ns	(Note 2)
		time	400 kHz mode	100		ns	
SP109*	ΤΑΑ	Output valid from	100 kHz mode	_	3500	ns	(Note 1)
		clock	400 kHz mode	—	_	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmis- sion can start
SP111	Св	Bus capacitive loadi	ng	_	400	pF	


* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

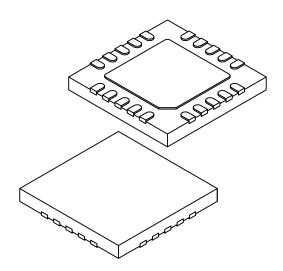
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		5.40		
Contact Pad Width	X			0.60	
Contact Pad Length	Y			1.50	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	3.90			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Number of Terminals	N	20			
Pitch	е	0.50 BSC			
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.127 REF			
Overall Width	E	4.00 BSC			
Exposed Pad Width	E2	2.60	2.70	2.80	
Overall Length	D	4.00 BSC			
Exposed Pad Length	D2	2.60	2.70	2.80	
Terminal Width	b	0.20	0.25	0.30	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-255A Sheet 2 of 2