



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 32MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                          |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                      |
| Number of I/O              | 11                                                                         |
| Program Memory Size        | 7KB (4K x 14)                                                              |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                |                                                                            |
| RAM Size                   | 256 x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                |
| Data Converters            | A/D 11x10b                                                                 |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 16-VQFN Exposed Pad                                                        |
| Supplier Device Package    | 16-QFN (4x4)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1554-i-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## **Pin Allocation Tables**

| IADLI | - 1.                   |            |                                           | 0-FIN ALL | UCATION | I TADLE (F |                                        | 1554)                                                     |             |         |                    |
|-------|------------------------|------------|-------------------------------------------|-----------|---------|------------|----------------------------------------|-----------------------------------------------------------|-------------|---------|--------------------|
| 0/1   | 14-Pin PDIP/SOIC/TSSOP | 16-Pin QFN | YDC                                       | Reference | Timers  | WMd        | EUSART                                 | dSSW                                                      | Interrupt   | dn-lln4 | Basic              |
| RA0   | 13                     | 12         | AN0                                       | —         | —       | —          | —                                      |                                                           | IOC         | Y       | ICSPDAT/<br>ICDDAT |
| RA1   | 12                     | 11         | AN1                                       | VREF+     | _       | _          | —                                      |                                                           | IOC         | Y       | ICSPCLK<br>ICDCLK  |
| RA2   | 11                     | 10         | AN2                                       | _         | TOCKI   | _          | _                                      |                                                           | INT/<br>IOC | Y       | _                  |
| RA3   | 4                      | 3          |                                           | —         | —       | —          | _                                      | <u>SS</u> (1)<br>SDA <sup>(1)</sup><br>SDI <sup>(1)</sup> | IOC         | Y       | MCLR<br>Vpp        |
| RA4   | 3                      | 2          | AN10<br>ADTRIG                            | —         | T1G     | —          | RX <sup>(1)</sup><br>DT <sup>(1)</sup> | SDO <sup>(1)</sup>                                        | IOC         | Y       | CLKOUT             |
| RA5   | 2                      | 1          | AN20                                      | _         | T1CKI   | _          | —                                      | _                                                         | IOC         | Y       | CLKIN              |
| RC0   | 10                     | 9          | AN13                                      | —         | —       | —          | —                                      | SCL<br>SCK                                                |             | Y       | —                  |
| RC1   | 9                      | 8          | AN23                                      | —         | —       | —          | —                                      | SDA <sup>(1)</sup><br>SDI <sup>(1)</sup>                  | _           | Y       |                    |
| RC2   | 8                      | 7          | AN12<br>AD1GRDB<br>AD2GRDB <sup>(1)</sup> | —         | —       | PWM1       | _                                      | SDO <sup>(1)</sup>                                        |             | Y       | —                  |
| RC3   | 7                      | 6          | AN22<br>AD1GRDB <sup>(1)</sup><br>AD2GRDB | —         | —       | PWM2       | TX <sup>(1)</sup><br>CK <sup>(1)</sup> | <u>SS</u> (1)                                             |             | Y       | —                  |
| RC4   | 6                      | 5          | AN11<br>AD1GRDA<br>AD2GRDA <sup>(1)</sup> | —         | —       | _          | TX <sup>(1)</sup><br>CK <sup>(1)</sup> | _                                                         |             | Y       | —                  |
| RC5   | 5                      | 4          | AN21<br>AD1GRDA <sup>(1)</sup><br>AD2GRDA | _         | _       |            | RX <sup>(1)</sup><br>DT <sup>(1)</sup> |                                                           | _           | Y       | —                  |
| VDD   | 1                      | 16         | _                                         | —         | —       |            | —                                      | _                                                         | _           |         | Vdd                |
| Vss   | 14                     | 13         | _                                         |           |         |            |                                        |                                                           | —           |         | Vss                |

| TABLE 1: | 14-PIN AND 16-PIN ALLOCATION TABLE (PIC16LF1554) |
|----------|--------------------------------------------------|
|          |                                                  |

**Note 1:** Pin functions can be assigned to one of two pin locations via software.

## TABLE 2: 20-PIN ALLOCATION TABLE (PIC16LF1559)

| 0/1 | 20-Pin PDIP/SSOP | 20-Pin QFN/UQFN | ADC                                       | Reference | Timers | MWA  | EUSART   | ASSM                                                          | Interrupt   | Pull-up | Basic              |
|-----|------------------|-----------------|-------------------------------------------|-----------|--------|------|----------|---------------------------------------------------------------|-------------|---------|--------------------|
| RA0 | 19               | 16              | AN0                                       |           | —      |      |          | —                                                             | IOC         | Y       | ICSPDAT/<br>ICDDAT |
| RA1 | 18               | 15              | AN1                                       | VREF+     |        | —    |          | —                                                             | IOC         | Y       | ICSPCLK/<br>ICDCLK |
| RA2 | 17               | 14              | AN2                                       | —         | TOCKI  |      |          | —                                                             | INT/<br>IOC | Y       | _                  |
| RA3 | 4                | 1               | _                                         | _         | —      | _    |          | SDA <sup>(1)</sup><br>SDI <sup>(1)</sup><br>SS <sup>(1)</sup> | IOC         | Y       | MCLR<br>VPP        |
| RA4 | 3                | 20              | AN10<br>ADTRIG                            | _         | T1G    |      | _        |                                                               | IOC         | Y       | CLKOUT             |
| RA5 | 2                | 19              | AN20                                      | —         | T1CKI  | —    | —        | —                                                             | IOC         | Y       | CLKIN              |
| RB4 | 13               | 10              | AN26                                      | —         | —      | _    | _        | SDA <sup>(1)</sup><br>SDI <sup>(1)</sup>                      | IOC         | Y       | _                  |
| RB5 | 12               | 9               | AN16                                      |           | —      |      | RX<br>DT | —                                                             | IOC         | Y       |                    |
| RB6 | 11               | 8               | AN25                                      |           | _      |      |          | SCL<br>SCK                                                    | IOC         | Y       |                    |
| RB7 | 10               | 7               | AN15                                      |           |        | —    | TX<br>CK | —                                                             | IOC         | Y       | _                  |
| RC0 | 16               | 13              | AN13                                      | _         | —      | _    | _        | —                                                             |             | Υ       | _                  |
| RC1 | 15               | 12              | AN23                                      | _         | —      | _    | _        | —                                                             |             | Υ       | _                  |
| RC2 | 14               | 11              | AN12<br>AD1GRDB<br>AD2GRDB <sup>(1)</sup> | _         | _      | PWM1 | —        | _                                                             | _           | Y       | _                  |
| RC3 | 7                | 4               | AN22<br>AD1GRDB <sup>(1)</sup><br>AD2GRDB | _         |        | PWM2 | _        | —                                                             | _           | Y       | _                  |
| RC4 | 6                | 3               | AN11<br>AD1GRDA<br>AD2GRDA <sup>(1)</sup> | _         | —      | _    | _        | —                                                             | —           | Y       | _                  |
| RC5 | 5                | 2               | AN21<br>AD1GRDA <sup>(1)</sup><br>AD2GRDA | _         | _      |      | _        | _                                                             |             | Y       |                    |
| RC6 | 8                | 5               | AN14                                      | —         | —      | —    | —        | <u>SS</u> (1)                                                 | —           | Y       | —                  |
| RC7 | 9                | 6               | AN24                                      | _         | —      | _    | _        | SDO                                                           |             | Y       | _                  |
| Vdd | 1                | 18              | —                                         | —         | —      | —    | —        | —                                                             | —           | —       | Vdd                |
| Vss | 20               | 17              | _                                         | _         |        | _    |          | _                                                             |             |         | Vss                |

Note 1: Pin functions can be assigned to one of two pin locations via software.

## TABLE 1-2: PIC16LF1554 PINOUT DESCRIPTION (CONTINUED)

| Name                                                         | Function | Input<br>Type    | Output<br>Type | Description                        |
|--------------------------------------------------------------|----------|------------------|----------------|------------------------------------|
|                                                              | RC1      | TTL              | CMOS           | General Purpose I/O                |
|                                                              | AN23     | AN               | _              | ADC Channel Input                  |
| RC1/AN23/SDAV7/SDIV7                                         | SDA      | l <sup>2</sup> C | OD             | I <sup>2</sup> C Data Input/Output |
|                                                              | SDI      | CMOS             | _              | SPI Data Input                     |
|                                                              | RC2      | TTL              | CMOS           | General Purpose I/O                |
|                                                              | AN12     | AN               | _              | ADC Channel Input                  |
| RC2/AN12/AD1GRDB <sup>(1)</sup> /AD2GRDB <sup>(1)</sup> /    | AD1GRDB  | —                | CMOS           | ADC1 Guard Ring Output B           |
| PWM1/SDO <sup>(1)</sup>                                      | AD2GRDB  | -                | CMOS           | ADC2 Guard Ring Output B           |
|                                                              | PWM1     |                  | CMOS           | PWM Output                         |
|                                                              | SDO      | —                | CMOS           | SPI Data Output                    |
|                                                              | RC3      | TTL              | CMOS           | General Purpose I/O                |
|                                                              | AN22     | AN               | —              | ADC Channel Input                  |
|                                                              | AD1GRDB  | _                | CMOS           | ADC1 Guard Ring Output B           |
| RC3/AN22/AD1GRDB <sup>(1)</sup> /AD2GRDB <sup>(1)</sup> /    | AD2GRDB  | —                | CMOS           | ADC2 Guard Ring Output B           |
| PWM2/TX <sup>(1)</sup> /CK <sup>(1)</sup> /SS <sup>(1)</sup> | PWM2     | —                | CMOS           | PWM Output                         |
|                                                              | ТΧ       | —                | CMOS           | USART Asynchronous Transmit        |
|                                                              | СК       | ST               | CMOS           | USART Synchronous Clock            |
|                                                              | SS       | ST               | _              | Slave Select Input                 |
|                                                              | RC3      | TTL              | CMOS           | General Purpose I/O                |
|                                                              | AN11     | AN               | —              | ADC Channel Input                  |
| RC4/AN11/AD1GRDA <sup>(1)</sup> /AD2GRDA <sup>(1)</sup> /    | AD1GRDA  | _                | CMOS           | ADC1 Guard Ring Output B           |
| TX <sup>(1)</sup> /CK <sup>(1)</sup>                         | AD2GRDA  |                  | CMOS           | ADC2 Guard Ring Output B           |
|                                                              | ТΧ       | _                | CMOS           | USART Asynchronous Transmit        |
|                                                              | СК       | ST               | CMOS           | USART Synchronous Clock            |
|                                                              | RC5      | TTL              | CMOS           | General Purpose I/O                |
|                                                              | AN21     | AN               | —              | ADC Channel Input                  |
| RC5/AN21/AD1GRDA <sup>(1)</sup> /AD2GRDA <sup>(1)</sup> /    | AD1GRDA  | —                | CMOS           | ADC1 Guard Ring Output B           |
| RX <sup>(1)</sup> /DT <sup>(1)</sup>                         | AD2GRDA  | —                | CMOS           | ADC2 Guard Ring Output B           |
|                                                              | RX       | ST               | —              | USART Asynchronous Input           |
|                                                              | DT       | ST               | CMOS           | USART Synchronous Data             |

 Legend: AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD
 = Open-Drain

 TTL = TTL compatible input
 ST
 = Schmitt Trigger input with CMOS levels
 I<sup>2</sup>C
 = Schmitt Trigger input with I<sup>2</sup>C

 HV = High Voltage
 XTAL
 = Crystal
 levels

Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.

## TABLE 3-6:PIC16LF1554/1559 MEMORY MAP, BANKS 16-23

|               | BANK 16                      |               | BANK 17                      |               | BANK 18                      |               | BANK 19                      |       | BANK 20                      |       | BANK 21                      |               | BANK 22                      |       | BANK 23                      |
|---------------|------------------------------|---------------|------------------------------|---------------|------------------------------|---------------|------------------------------|-------|------------------------------|-------|------------------------------|---------------|------------------------------|-------|------------------------------|
| 800h          | INDF0                        | 880h          | INDF0                        | 900h          | INDF0                        | 980h          | INDF0                        | A00h  | INDF0                        | A80h  | INDF0                        | B00h          | INDF0                        | B80h  | INDF0                        |
| 801h          | INDF1                        | 881h          | INDF1                        | 901h          | INDF1                        | 981h          | INDF1                        | A01h  | INDF1                        | A81h  | INDF1                        | B01h          | INDF1                        | B81h  | INDF1                        |
| 802h          | PCL                          | 882h          | PCL                          | 902h          | PCL                          | 982h          | PCL                          | A02h  | PCL                          | A82h  | PCL                          | B02h          | PCL                          | B82h  | PCL                          |
| 803h          | STATUS                       | 883h          | STATUS                       | 903h          | STATUS                       | 983h          | STATUS                       | A03h  | STATUS                       | A83h  | STATUS                       | B03h          | STATUS                       | B83h  | STATUS                       |
| 804h          | FSR0L                        | 884h          | FSR0L                        | 904h          | FSR0L                        | 984h          | FSR0L                        | A04h  | FSR0L                        | A84h  | FSR0L                        | B04h          | FSR0L                        | B84h  | FSR0L                        |
| 805h          | FSR0H                        | 885h          | FSR0H                        | 905h          | FSR0H                        | 985h          | FSR0H                        | A05h  | FSR0H                        | A85h  | FSR0H                        | B05h          | FSR0H                        | B85h  | FSR0H                        |
| 806h          | FSR1L                        | 886h          | FSR1L                        | 906h          | FSR1L                        | 986h          | FSR1L                        | A06h  | FSR1L                        | A86h  | FSR1L                        | B06h          | FSR1L                        | B86h  | FSR1L                        |
| 807h          | FSR1H                        | 887h          | FSR1H                        | 907h          | FSR1H                        | 987h          | FSR1H                        | A07h  | FSR1H                        | A87h  | FSR1H                        | B07h          | FSR1H                        | B87h  | FSR1H                        |
| 808h          | BSR                          | 888h          | BSR                          | 908h          | BSR                          | 988h          | BSR                          | A08h  | BSR                          | A88h  | BSR                          | B08h          | BSR                          | B88h  | BSR                          |
| 809h          | WREG                         | 889h          | WREG                         | 909h          | WREG                         | 989h          | WREG                         | A09h  | WREG                         | A89h  | WREG                         | B09h          | WREG                         | B89h  | WREG                         |
| 80Ah          | PCLATH                       | 88Ah          | PCLATH                       | 90Ah          | PCLATH                       | 98Ah          | PCLATH                       | A0Ah  | PCLATH                       | A8Ah  | PCLATH                       | B0Ah          | PCLATH                       | B8Ah  | PCLATH                       |
| 80Bh          | INTCON                       | 88Bh          | INTCON                       | 90Bh          | INTCON                       | 98Bh          | INTCON                       | A0Bh  | INTCON                       | A8Bh  | INTCON                       | B0Bh          | INTCON                       | B8Bh  | INTCON                       |
| 80Ch          | —                            | 88Ch          | —                            | 90Ch          | _                            | 98Ch          | —                            | A0Ch  | _                            | A8Ch  | —                            | B0Ch          | —                            | B8Ch  | _                            |
| 80Dh          | —                            | 88Dh          | —                            | 90Dh          | _                            | 98Dh          | —                            | A0Dh  | _                            | A8Dh  | —                            | B0Dh          | —                            | B8Dh  | _                            |
| 80Eh          | —                            | 88Eh          | —                            | 90Eh          | —                            | 98Eh          | —                            | A0Eh  | —                            | A8Eh  | —                            | B0Eh          | —                            | B8Eh  |                              |
| 80Fh          | —                            | 88Fh          |                              | 90Fh          | _                            | 98Fh          | _                            | A0Fh  | —                            | A8Fh  | _                            | BOFh          | _                            | B8Fh  | —                            |
| 810h          | —                            | 890h          | —                            | 910h          | —                            | 990h          | —                            | A10h  |                              | A90h  | —                            | B10h          | —                            | B90h  | —                            |
| 811h          |                              | 891h          | —                            | 911h          | —                            | 991h          | —                            | A11h  |                              | A91h  | —                            | B11h          | —                            | B91h  | —                            |
| 812h          |                              | 892h          | —                            | 912h          | —                            | 992h          | —                            | A12h  |                              | A92h  | —                            | B12h          | —                            | B92h  | —                            |
| 813h          | —                            | 893n          | —                            | 913h          | _                            | 993h          | _                            | A13h  | _                            | A93h  | —                            | B13h          | _                            | B93n  | —                            |
| 814n          | —                            | 894n          |                              | 914n          | _                            | 994n          |                              | A14n  | _                            | A94n  |                              | B14n          | _                            | B94n  | _                            |
| 8150          |                              | 895n          | —                            | 9150          | _                            | 995n          |                              | A15h  |                              | A95h  | —                            | BISN          | _                            | Bach  | _                            |
| 816N          |                              | 896N          | —                            | 916n          | _                            | 996n          |                              | A160  | _                            | A960  | —                            | B160          | _                            | B96n  | _                            |
| 01/11<br>010h | —                            | 09711<br>000h |                              | 91711<br>019b | _                            | 99711<br>009h |                              | A170  | _                            | A9711 |                              | D10h          |                              | B9/II |                              |
| 01011<br>910h | —                            | 800h          |                              | 91011<br>010h | _                            | 99011<br>000h |                              | A 10h |                              | Agon  |                              | DIOII<br>D10h |                              | B00h  | —                            |
| 01911<br>914b | —                            | 80Ab          |                              | 01Ab          |                              | 00Ab          |                              | A130  |                              | A9911 |                              |               |                              | D9911 |                              |
| 81Rh          |                              | 80Rh          |                              | 01Rh          |                              | 00Rh          |                              | A1Rh  |                              | AGRh  |                              | B1Rh          |                              | BORh  |                              |
| 81Ch          |                              | 89Ch          |                              | 91Ch          |                              | 99Ch          |                              | A1Ch  |                              | A9Ch  |                              | B1Ch          |                              | B9Ch  |                              |
| 81Dh          |                              | 89Dh          |                              | 91Dh          |                              | 99Dh          |                              | A1Dh  |                              | A9Dh  |                              | B1Dh          |                              | B9Dh  | _                            |
| 81Fh          | _                            | 89Fh          |                              | 91Fh          | _                            | 99Fh          |                              | A1Fh  | _                            | A9Fh  |                              | B1Fh          | _                            | B9Fh  | _                            |
| 81Fh          | _                            | 89Fh          | _                            | 91Fh          | _                            | 99Fh          | _                            | A1Fh  | _                            | A9Fh  | _                            | B1Fh          | _                            | B9Fh  | _                            |
| 820h          |                              | 8A0h          |                              | 920h          |                              | 9A0h          |                              | A20h  |                              | AA0h  |                              | B20h          |                              | BA0h  |                              |
|               | Unimplemented<br>Read as '0' |       | Unimplemented<br>Read as '0' |       | Unimplemented<br>Read as '0' |               | Unimplemented<br>Read as '0' |       | Unimplemented<br>Read as '0' |
| 86Fh          |                              | 8EFh          |                              | 96Fh          |                              | 9EFh          |                              | A6Fh  |                              | AEFh  |                              | B6Fh          |                              | BEFh  |                              |
| 870h          |                              | 8F0h          |                              | 970h          |                              | 9F0h          |                              | A70h  |                              | AF0h  |                              | B70h          |                              | BF0h  |                              |
|               | Accesses                     |               | Accesses                     |               | Accesses                     |               | Accesses                     |       | Accesses                     |       | Accesses                     |               | Accesses                     |       | Accesses                     |
| 87Fh          | 70n – 7Fn                    | 8FFh          | /∪n – /⊦n                    | 97Fh          | 70n – 7Fn                    | 9FFh          | 70n – 7Fn                    | A7Fh  | /∪n – /⊢n                    | AFFh  | 70n – 7⊢n                    | B7Fh          | 70n – 7Fn                    | BFFh  | /∪n – /⊢n                    |

PIC16LF1554/1559

## TABLE 3-7: PIC16LF1554/1559 MEMORY MAP, BANKS 24-31

|      | BANK 24       |      | BANK 25       |      | BANK 26       |      | BANK 27       |      | BANK 28       |      | BANK 29       |      | BANK 30       |      | BANK 31           |
|------|---------------|------|---------------|------|---------------|------|---------------|------|---------------|------|---------------|------|---------------|------|-------------------|
| C00h | INDF0         | C80h | INDF0         | D00h | INDF0         | D80h | INDF0         | E00h | INDF0         | E80h | INDF0         | F00h | INDF0         | F80h | INDF0             |
| C01h | INDF1         | C81h | INDF1         | D01h | INDF1         | D81h | INDF1         | E01h | INDF1         | E81h | INDF1         | F01h | INDF1         | F81h | INDF1             |
| C02h | PCL           | C82h | PCL           | D02h | PCL           | D82h | PCL           | E02h | PCL           | E82h | PCL           | F02h | PCL           | F82h | PCL               |
| C03h | STATUS        | C83h | STATUS        | D03h | STATUS        | D83h | STATUS        | E03h | STATUS        | E83h | STATUS        | F03h | STATUS        | F83h | STATUS            |
| C04h | FSR0L         | C84h | FSR0L         | D04h | FSR0L         | D84h | FSR0L         | E04h | FSR0L         | E84h | FSR0L         | F04h | FSR0L         | F84h | FSR0L             |
| C05h | FSR0H         | C85h | FSR0H         | D05h | FSR0H         | D85h | FSR0H         | E05h | FSR0H         | E85h | FSR0H         | F05h | FSR0H         | F85h | FSR0H             |
| C06h | FSR1L         | C86h | FSR1L         | D06h | FSR1L         | D86h | FSR1L         | E06h | FSR1L         | E86h | FSR1L         | F06h | FSR1L         | F86h | FSR1L             |
| C07h | FSR1H         | C87h | FSR1H         | D07h | FSR1H         | D87h | FSR1H         | E07h | FSR1H         | E87h | FSR1H         | F07h | FSR1H         | F87h | FSR1H             |
| C08h | BSR           | C88h | BSR           | D08h | BSR           | D88h | BSR           | E08h | BSR           | E88h | BSR           | F08h | BSR           | F88h | BSR               |
| C09h | WREG          | C89h | WREG          | D09h | WREG          | D89h | WREG          | E09h | WREG          | E89h | WREG          | F09h | WREG          | F89h | WREG              |
| C0Ah | PCLATH        | C8Ah | PCLATH        | D0Ah | PCLATH        | D8Ah | PCLATH        | E0Ah | PCLATH        | E8Ah | PCLATH        | F0Ah | PCLATH        | F8Ah | PCLATH            |
| C0Bh | INTCON        | C8Bh | INTCON        | D0Bh | INTCON        | D8Bh | INTCON        | E0Bh | INTCON        | E8Bh | INTCON        | F0Bh | INTCON        | F8Bh | INTCON            |
| C0Ch | —             | C8Ch | —             | D0Ch | —             | D8Ch | —             | E0Ch | —             | E8Ch | —             | F0Ch | —             | F8Ch |                   |
| C0Dh | —             | C8Dh | _             | D0Dh | —             | D8Dh | _             | E0Dh | _             | E8Dh | —             | F0Dh | —             | F8Dh |                   |
| C0Eh | —             | C8Eh | _             | D0Eh | —             | D8Eh | _             | E0Eh | _             | E8Eh | —             | F0Eh | —             | F8Eh |                   |
| C0Fh | —             | C8Fh | _             | D0Fh | —             | D8Fh | _             | E0Fh | _             | E8Fh | —             | F0Fh | _             | F8Fh |                   |
| C10h | —             | C90h | _             | D10h | —             | D90h | _             | E10h | _             | E90h | —             | F10h | _             | F90h |                   |
| C11h | —             | C91h | _             | D11h | —             | D91h | _             | E11h | _             | E91h | —             | F11h | _             | F91h |                   |
| C12h | —             | C92h | —             | D12h | —             | D92h | —             | E12h | —             | E92h | —             | F12h | —             | F92h |                   |
| C13h | —             | C93h | _             | D13h | —             | D93h | _             | E13h | _             | E93h | —             | F13h | _             | F93h |                   |
| C14h | —             | C94h | —             | D14h | —             | D94h | —             | E14h | —             | E94h | —             | F14h | —             | F94h |                   |
| C15h | —             | C95h | —             | D15h | —             | D95h | —             | E15h | —             | E95h | —             | F15h | —             | F95h |                   |
| C16h | —             | C96h | —             | D16h | —             | D96h | —             | E16h | —             | E96h | —             | F16h | —             | F96h |                   |
| C17h | —             | C97h | —             | D17h | —             | D97h | —             | E17h | —             | E97h | —             | F17h | —             | F97h | Soo Table 3.0 for |
| C18h | —             | C98h | _             | D18h | _             | D98h | _             | E18h | _             | E98h | —             | F18h | _             | F98h | register manning  |
| C19h | —             | C99h | _             | D19h | _             | D99h | _             | E19h | _             | E99h | —             | F19h | _             | F99h | details           |
| C1Ah | —             | C9Ah | _             | D1Ah | _             | D9Ah | _             | E1Ah | _             | E9Ah | —             | F1Ah | _             | F9Ah | uotano            |
| C1Bh | —             | C9Bh | _             | D1Bh | _             | D9Bh | _             | E1Bh | _             | E9Bh | —             | F1Bh | _             | F9Bh |                   |
| C1Ch | —             | C9Ch | _             | D1Ch | _             | D9Ch | _             | E1Ch | _             | E9Ch | —             | F1Ch | _             | F9Ch |                   |
| C1Dh | —             | C9Dh | _             | D1Dh | _             | D9Dh | _             | E1Dh | _             | E9Dh | —             | F1Dh | _             | F9Dh |                   |
| C1Eh | —             | C9Eh | _             | D1Eh | _             | D9Eh | _             | E1Eh | _             | E9Eh | —             | F1Eh | _             | F9Eh |                   |
| C1Fh | —             | C9Fh | —             | D1Fh | _             | D9Fh |               | E1Fh | —             | E9Fh | _             | F1Fh | —             | F9Fh |                   |
| C20h |               | CA0h |               | D20h |               | DA0h |               | E20h |               | EA0h |               | F20h |               | FA0h |                   |
|      |               |      |               |      |               |      |               |      |               |      |               |      |               |      |                   |
|      | Unimplemented |      |                   |
|      | Read as '0'   |      |                   |
|      |               |      |               |      |               |      |               |      |               |      |               |      |               |      |                   |
| C6Fh |               | CEFh |               | D6Fh |               | DEFh |               | E6Fh |               | EEFh |               | F6Fh |               | FEFh |                   |
| C70h |               | CF0h |               | D70h |               | DF0h |               | E70h |               | EF0h |               | F70h |               | F0h  |                   |
|      | Accesses          |
|      | 70h – 7Fh         |
| CFFh |               | CFFh |               | D7Fh |               | DFFh |               | E7Fh |               | EFFh |               | F7Fh |               | FFFh |                   |

Legend: = Unimplemented data memory locations, read as '0'.

### FIGURE 10-6: FLASH PROGRAM MEMORY WRITE FLOWCHART



## 10.5 Write Verify

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

### FIGURE 10-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART



| R/W-x/u         | R/W-x/u | R/W-x/u         | R/W-x/u | U-0                                                   | U-0 | U-0 | U-0   |  |  |  |  |  |
|-----------------|---------|-----------------|---------|-------------------------------------------------------|-----|-----|-------|--|--|--|--|--|
| LATB7           | LATB6   | LATB5           | LATB4   | —                                                     | —   | —   | —     |  |  |  |  |  |
| bit 7           |         |                 |         |                                                       |     |     | bit 0 |  |  |  |  |  |
|                 |         |                 |         |                                                       |     |     |       |  |  |  |  |  |
| Legend:         |         |                 |         |                                                       |     |     |       |  |  |  |  |  |
| R = Readable    | bit     | W = Writable    | bit     | U = Unimplemented bit, read as '0'                    |     |     |       |  |  |  |  |  |
| u = Bit is unch | anged   | x = Bit is unkr | nown    | -n/n = Value at POR and BOR/Value at all other Resets |     |     |       |  |  |  |  |  |

### REGISTER 11-9: LATB: PORTB DATA LATCH REGISTER

| bit 7-4 | LATB<7:4>: RB<7:4> Output Latch Value bits <sup>(1)</sup> |
|---------|-----------------------------------------------------------|
|---------|-----------------------------------------------------------|

bit 3-0 Unimplemented: Read as '0'

' = Bit is set

1

**Note 1:** Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

### REGISTER 11-10: ANSELB: PORTB ANALOG SELECT REGISTER

'0' = Bit is cleared

| R/W-1/1 | R/W-1/1 | R/W-1/1 | R/W-1/1 | U-0 | U-0 | U-0 | U-0   |
|---------|---------|---------|---------|-----|-----|-----|-------|
| ANSB7   | ANSB6   | ANSB5   | ANSB4   | —   | —   | —   | —     |
| bit 7   |         |         |         |     |     |     | bit 0 |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-4 **ANSB<7:4>:** Analog Select between Analog or Digital Function on pins RB<5:4>, respectively 1 = Analog input. Pin is assigned as analog input<sup>(1)</sup>. Digital input buffer disabled.

- 0 = Digital I/O. Pin is assigned to port or digital special function.
- bit 3-0 Unimplemented: Read as '0'
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

| U-0              | R/W-0/0  | R/W-0/0                      | R/W-0/0         | R/W-0/0            | R/W-0/0          | R/W-0/0        | R/W-0/0      |
|------------------|----------|------------------------------|-----------------|--------------------|------------------|----------------|--------------|
|                  |          |                              |                 | ADxPRE<6:0         | >                |                |              |
| bit 7            |          |                              |                 |                    |                  |                | bit 0        |
|                  |          |                              |                 |                    |                  |                |              |
| Legend:          |          |                              |                 |                    |                  |                |              |
| R = Readable     | bit      | W = Writable                 | bit             | U = Unimple        | mented bit, read | d as '0'       |              |
| u = Bit is unch  | nanged   | x = Bit is unkr              | nown            | -n/n = Value       | at POR and BC    | R/Value at all | other Resets |
| '1' = Bit is set |          | '0' = Bit is clea            | ared            |                    |                  |                |              |
|                  |          |                              |                 |                    |                  |                |              |
| bit 7            | Unimplem | ented: Read as '             | 0'              |                    |                  |                |              |
| bit 6-0          | ADxPRE<  | 6:0>: Precharge <sup>-</sup> | Fime Select b   | its <sup>(1)</sup> |                  |                |              |
|                  | 111 1111 | = Precharge for              | 127 instruction | n cycles           |                  |                |              |
|                  | 111 1110 | = Precharge for              | 126 instructio  | n cycles           |                  |                |              |
|                  | •        |                              |                 |                    |                  |                |              |
|                  | •        |                              |                 |                    |                  |                |              |
|                  | 000 0001 | = Precharge for              | 1 instruction c | cycle (Fosc/4)     |                  |                |              |
|                  | 000 0000 | = ADC precharge              | e time is disal | oled               |                  |                |              |
|                  |          |                              |                 |                    |                  |                |              |

### REGISTER 16-9: AADxPRE: HARDWARE CVD PRECHARGE CONTROL REGISTER

**Note 1:** When the FRC clock is selected as the conversion clock source, it is also the clock used for the precharge and acquisition times.

## REGISTER 16-10: AADxACQ: HARDWARE CVD ACQUISITION TIME CONTROL REGISTER

| U-0   | R/W-0/0 | R/W-0/0 | R/W-0/0 | R/W-0/0     | R/W-0/0 | R/W-0/0 | R/W-0/0 |
|-------|---------|---------|---------|-------------|---------|---------|---------|
| _     |         |         | 4       | AADxACQ<6:0 | )>      |         |         |
| bit 7 |         |         |         |             |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

| bit 7   | Unimplemented: Read as '0'                                                                                                                                   |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 6-0 | AADxACQ<6:0>: Acquisition/Charge Share Time Select bits <sup>(1)</sup>                                                                                       |
|         | 111 1111 = Acquisition/charge share for 127 instruction cycles                                                                                               |
|         | 111 1110 = Acquisition/charge share for 126 instruction cycles                                                                                               |
|         | •                                                                                                                                                            |
|         | •                                                                                                                                                            |
|         | •                                                                                                                                                            |
|         | <ul> <li>000 0001 = Acquisition/charge share for one instruction cycle (Fosc/4)</li> <li>000 0000 = ADC Acquisition/charge share time is disabled</li> </ul> |
| Note 1: | When the FRC clock is selected as the conversion clock source, it is also the clock used for the                                                             |

**Note 1:** When the FRC clock is selected as the conversion clock source, it is also the clock used for the precharge and acquisition times.

## 18.6 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- · PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

**Note:** The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

## 18.7 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting.

### FIGURE 18-2: TIMER1 INCREMENTING EDGE



### 18.7.1 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 11.1 "Alternate Pin Function"** for more information.

## 20.5.2 SLAVE RECEPTION

When the  $R/\overline{W}$  bit of a matching received address byte is clear, the  $R/\overline{W}$  bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPSTAT register is set, or bit SSPOV of the SSPCON1 register is set. The BOEN bit of the SSPCON3 register modifies this operation. For more information see Register 20-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSP1IF, must be cleared by software.

When the SEN bit of the SSPCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPCON1 register, except sometimes in 10-bit mode. See **Section 20.2.3 "SPI Master Mode"** for more detail.

### 20.5.2.1 7-Bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an  $I^2C$  Slave in 7-bit Addressing mode. Figure 20-14 and Figure 20-15 are used as visual references for this description.

This is a step by step process of what typically must be done to accomplish  $\mathsf{I}^2\mathsf{C}$  communication.

- 1. Start bit detected.
- 2. S bit of SSPSTAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- 3. Matching address with  $R/\overline{W}$  bit clear is received.
- The slave pulls SDA low sending an ACK to the master, and sets SSP1IF bit.
- 5. Software clears the SSP1IF bit.
- 6. Software reads received address from SSPBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDA low sending an ACK to the master, and sets SSP1IF bit.
- 10. Software clears SSP1IF.
- 11. Software reads the received byte from SSPBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the Master.
- 13. Master sends Stop condition, setting P bit of SSPSTAT, and the bus goes idle.

## 20.5.2.2 7-Bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the 8th falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus<sup>™</sup> that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for  $I^2C$  communication. Figure 20-16 displays a module using both address and data holding. Figure 20-17 includes the operation with the SEN bit of the SSPCON2 register set.

- 1. S bit of SSPSTAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSP1IF is set and CKP cleared after the 8th falling edge of SCL.
- 3. Slave clears the SSP1IF.
- Slave can look at the ACKTIM bit of the SSPCON3 register to determine if the SSP1IF was after or before the ACK.
- 5. Slave reads the address value from SSPBUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSP1IF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSP1IF.
- Note: SSP1IF is still set after the 9th falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to Master is SSP1IF not set
- 11. SSP1IF set and CKP cleared after 8th falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt-on-Stop Detect is disabled, the slave will only know by polling the P bit of the SSPSTAT register.

### 20.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an  $I^2C$  Slave in 10-bit Addressing mode.

Figure 20-20 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish  $I^2C$  communication.

- 1. Bus starts Idle.
- 2. Master sends Start condition; S bit of SSPSTAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with  $R/\overline{W}$  bit clear; UA bit of the SSPSTAT register is set.
- 4. Slave sends ACK and SSP1IF is set.
- 5. Software clears the SSP1IF bit.
- 6. Software reads received address from SSPBUF clearing the BF flag.
- 7. Slave loads low address into SSPADD, releasing SCL.
- 8. Master sends matching low address byte to the Slave; UA bit is set.

**Note:** Updates to the SSPADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSP1IF is set.

**Note:** If the low address does not match, SSP1IF and UA are still set so that the slave software can set SSPADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSP1IF.
- 11. Slave reads the received matching address from SSPBUF clearing BF.
- 12. Slave loads high address into SSPADD.
- 13. Master clocks a data byte to the slave and clocks out the slaves ACK on the 9th SCL pulse; SSP1IF is set.
- 14. If SEN bit of SSPCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSP1IF.
- 16. Slave reads the received byte from SSPBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

## 20.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPADD register

using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 20-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 20-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

## 21.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 21-9 for the timing of the Break character sequence.

### 21.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

#### Write to TXREG Dummy Write **BRG** Output (Shift Clock) TX (pin) Start bit bit 0 bit 1 bit 11 Stop bit Break TXIF bit (Transmit Interrupt Flag) TRMT bit (Transmit Shift Empty Flag) SENDB Sampled Here Auto Cleared SENDB (send Break control bit)

## FIGURE 21-9: SEND BREAK CHARACTER SEQUENCE

## 21.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 21.4.3** "**Auto-Wake-up on Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCON register before placing the EUSART in Sleep mode.

### 21.5.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

| Note: | If the RX/DT function is on an analog pin, |
|-------|--------------------------------------------|
|       | the corresponding ANSELx bit must be       |
|       | cleared for the receiver to function.      |

## 21.5.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

| Note: | If the device is configured as a slave and |               |       |          |     |
|-------|--------------------------------------------|---------------|-------|----------|-----|
|       | the TX/CK funct                            | tion is on ar | n ana | log pin, | the |
|       | corresponding<br>cleared.                  | ANSELx        | bit   | must     | be  |

## 21.5.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

### 21.5.1.8 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set, the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

## 21.5.1.9 Synchronous Master Reception Set-up:

- 1. Initialize the SPBRGH, SPBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSELx bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

| DECFSZ           | Decrement f, Skip if 0                                                                                                                                                                                                                                                                                                               |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] DECFSZ f,d                                                                                                                                                                                                                                                                                                          |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                                                                                                                                                                                      |
| Operation:       | (f) - 1 $\rightarrow$ (destination);<br>skip if result = 0                                                                                                                                                                                                                                                                           |
| Status Affected: | None                                                                                                                                                                                                                                                                                                                                 |
| Description:     | The contents of register 'f' are decre-<br>mented. If 'd' is '0', the result is placed<br>in the W register. If 'd' is '1', the result<br>is placed back in register 'f'.<br>If the result is '1', the next instruction is<br>executed. If the result is '0', then a<br>NOP is executed instead, making it a<br>2-cycle instruction. |

| GOTO             | Unconditional Branch                                                                                                                                                                    |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] GOTO k                                                                                                                                                                 |
| Operands:        | $0 \le k \le 2047$                                                                                                                                                                      |
| Operation:       | k → PC<10:0><br>PCLATH<6:3> → PC<14:11>                                                                                                                                                 |
| Status Affected: | None                                                                                                                                                                                    |
| Description:     | GOTO is an unconditional branch. The<br>11-bit immediate value is loaded into<br>PC bits <10:0>. The upper bits of PC<br>are loaded from PCLATH<4:3>. GOTO<br>is a 2-cycle instruction. |

| INCFSZ           | Increment f, Skip if 0                                                                                                                                                                                                                                                                                                          |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] INCFSZ f,d                                                                                                                                                                                                                                                                                                              |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                                                                                                                                                                              |
| Operation:       | (f) + 1 $\rightarrow$ (destination),<br>skip if result = 0                                                                                                                                                                                                                                                                      |
| Status Affected: | None                                                                                                                                                                                                                                                                                                                            |
| Description:     | The contents of register 'f' are incre-<br>mented. If 'd' is '0', the result is placed<br>in the W register. If 'd' is '1', the result<br>is placed back in register 'f'.<br>If the result is '1', the next instruction is<br>executed. If the result is '0', a NOP is<br>executed instead, making it a 2-cycle<br>instruction. |

| IORLW            | Inclusive OR literal with W                                                                                        |
|------------------|--------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] IORLW k                                                                                           |
| Operands:        | $0 \leq k \leq 255$                                                                                                |
| Operation:       | (W) .OR. $k \rightarrow$ (W)                                                                                       |
| Status Affected: | Z                                                                                                                  |
| Description:     | The contents of the W register are<br>OR'ed with the 8-bit literal 'k'. The<br>result is placed in the W register. |

| INCF             | Increment f                                                                                                                                                               |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] INCF f,d                                                                                                                                                          |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                        |
| Operation:       | (f) + 1 $\rightarrow$ (destination)                                                                                                                                       |
| Status Affected: | Z                                                                                                                                                                         |
| Description:     | The contents of register 'f' are incre-<br>mented. If 'd' is '0', the result is placed<br>in the W register. If 'd' is '1', the result<br>is placed back in register 'f'. |

| IORWF            | Inclusive OR W with f                                                                                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] IORWF f,d                                                                                                                                                 |
| Operands:        | $\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$                                                                                                                |
| Operation:       | (W) .OR. (f) $\rightarrow$ (destination)                                                                                                                                   |
| Status Affected: | Z                                                                                                                                                                          |
| Description:     | Inclusive OR the W register with regis-<br>ter 'f'. If 'd' is '0', the result is placed in<br>the W register. If 'd' is '1', the result is<br>placed back in register 'f'. |

| SWAPF            | Swap Nibbles in f                                                                                                                                                                |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ label ] SWAPF f,d                                                                                                                                                              |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                                |
| Operation:       | $(f<3:0>) \rightarrow (destination<7:4>),$<br>$(f<7:4>) \rightarrow (destination<3:0>)$                                                                                          |
| Status Affected: | None                                                                                                                                                                             |
| Description:     | The upper and lower nibbles of regis-<br>ter 'f' are exchanged. If 'd' is '0', the<br>result is placed in the W register. If 'd'<br>is '1', the result is placed in register 'f' |

| XORLW            | Exclusive OR literal with W                                                                                   |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:          | [ <i>label</i> ] XORLW k                                                                                      |  |  |  |  |  |
| Operands:        | $0 \le k \le 255$                                                                                             |  |  |  |  |  |
| Operation:       | (W) .XOR. $k \rightarrow (W)$                                                                                 |  |  |  |  |  |
| Status Affected: | Z                                                                                                             |  |  |  |  |  |
| Description:     | The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register. |  |  |  |  |  |

| TRIS             | Load TRIS Register with W                                                                                                                            |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] TRIS f                                                                                                                                       |
| Operands:        | $5 \le f \le 7$                                                                                                                                      |
| Operation:       | (W) $\rightarrow$ TRIS register 'f'                                                                                                                  |
| Status Affected: | None                                                                                                                                                 |
| Description:     | Move data from W register to TRIS<br>register.<br>When 'f' = 5, TRISA is loaded.<br>When 'f' = 6, TRISB is loaded.<br>When 'f' = 7, TRISC is loaded. |

| XORWF            | Exclusive OR W with f                                                                                                                                                           |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:          | [label] XORWF f,d                                                                                                                                                               |  |  |  |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                                 |  |  |  |  |  |
| Operation:       | (W) .XOR. (f) $\rightarrow$ (destination)                                                                                                                                       |  |  |  |  |  |
| Status Affected: | Z                                                                                                                                                                               |  |  |  |  |  |
| Description:     | Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. |  |  |  |  |  |

## 25.3 DC Characteristics

### TABLE 25-1: SUPPLY VOLTAGE

| PIC16LF1554/1559 |                                | $\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$ |      |                                  |     |        |                                                     |  |
|------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------|-----|--------|-----------------------------------------------------|--|
| Param.<br>No.    | Sym.                           | Characteristic                                                                                                                                                                                                                                                | Min. | Min. Typ.† Max. Units Conditions |     |        |                                                     |  |
| D001             | Vdd                            | Supply Voltage (VDDMIN, VDDMAX)                                                                                                                                                                                                                               |      |                                  |     |        |                                                     |  |
|                  |                                |                                                                                                                                                                                                                                                               | 1.8  |                                  | 3.6 | V      | Fosc ≤ 16 MHz:                                      |  |
|                  |                                |                                                                                                                                                                                                                                                               | 2.5  |                                  | 3.6 | V      | $FOSC \leq 32 MHz$                                  |  |
| D002*            | Vdr                            | RAM Data Retention Voltage <sup>(1)</sup>                                                                                                                                                                                                                     | 1.5  |                                  | —   | V      | Device in Sleep mode                                |  |
| D002A*           | VPOR*                          | Power-on Reset Release Voltage                                                                                                                                                                                                                                | -    | 1.6                              | _   | V      |                                                     |  |
| D002B*           | VPORR*                         | Power-on Reset Rearm Voltage                                                                                                                                                                                                                                  | —    | 0.8                              |     | V      |                                                     |  |
| D003             | VADFVR                         | Fixed Voltage Reference Voltage                                                                                                                                                                                                                               | -7   | _                                | 6   | %      | $1.024V, VDD \ge 2.5V, 85^{\circ}C$ (Note 2)        |  |
|                  |                                | for ADC, Initial Accuracy                                                                                                                                                                                                                                     | -8   |                                  | 6   |        | 1.024V, VDD $\geq$ 2.5V, 125°C (Note 2)             |  |
|                  |                                |                                                                                                                                                                                                                                                               | -7   |                                  | 6   |        | $2.048V, VDD \ge 2.5V, 85^{\circ}C$                 |  |
|                  |                                |                                                                                                                                                                                                                                                               | -8   |                                  | 6   |        | $2.048V, VDD \ge 2.5V, 125^{\circ}C$                |  |
| D003C*           | TCVFVR                         | Temperature Coefficient, Fixed<br>Voltage Reference                                                                                                                                                                                                           | —    | -130                             | —   | ppm/°C |                                                     |  |
| D003D*           | $\Delta VFVR/$<br>$\Delta VIN$ | Line Regulation, Fixed Voltage<br>Reference                                                                                                                                                                                                                   | _    | 0.270                            | _   | %/V    |                                                     |  |
| D004*            | SVDD                           | VDD Rise Rate to ensure internal<br>Power-on Reset signal                                                                                                                                                                                                     | 0.05 |                                  |     | V/ms   | See Section 6.1 "Power-on Reset (POR)" for details. |  |

\* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: For proper operation, the minimum value of the ADC positive voltage reference must be 1.8V or greater. When selecting the FVR or the VREF+ pin as the source of the ADC positive voltage reference, be aware that the voltage must be 1.8V or greater.







| TABLE 25-9: | CLKOUT | AND I/O | TIMING | PARAMETERS | 3 |
|-------------|--------|---------|--------|------------|---|
|             |        |         |        |            | - |

| Standard Operating Conditions (unless otherwise stated)<br>Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |          |                                                              |               |       |      |       |                |  |
|--------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------|---------------|-------|------|-------|----------------|--|
| Param.<br>No.                                                                                                            | Sym.     | Characteristic                                               | Min.          | Тур.† | Max. | Units | Conditions     |  |
| OS11                                                                                                                     | TosH2ckL | Fosc↑ to CLKOUT↓ <sup>(1)</sup>                              | _             | _     | 70   | ns    | VDD = 3.3-3.6V |  |
| OS12                                                                                                                     | TosH2ckH | Fosc↑ to CLKOUT↑ <sup>(1)</sup>                              | —             |       | 72   | ns    | VDD = 3.3-3.6V |  |
| OS13                                                                                                                     | TckL2ioV | CLKOUT↓ to Port out valid <sup>(1)</sup>                     | —             |       | 20   | ns    |                |  |
| OS14                                                                                                                     | TioV2ckH | Port input valid before CLKOUT↑ <sup>(1)</sup>               | Tosc + 200 ns |       | _    | ns    |                |  |
| OS15                                                                                                                     | TosH2ioV | Fosc↑ (Q1 cycle) to Port out valid                           | —             | 50    | 70*  | ns    | VDD = 3.3-3.6V |  |
| OS16                                                                                                                     | TosH2iol | Fosc↑ (Q2 cycle) to Port input invalid<br>(I/O in hold time) | 50            | _     | _    | ns    | VDD = 3.3-3.6V |  |
| OS17                                                                                                                     | TioV2osH | Port input valid to Fosc↑ (Q2 cycle)<br>(I/O in setup time)  | 20            |       |      | ns    |                |  |
| OS18*                                                                                                                    | TioR     | Port output rise time                                        | —             | 15    | 32   | ns    | VDD = 2.0V     |  |
| OS19*                                                                                                                    | TioF     | Port output fall time                                        | —             | 28    | 55   | ns    | VDD = 2.0V     |  |
| OS20*                                                                                                                    | Tinp     | INT pin input high or low time                               | 25            |       |      | ns    |                |  |
| OS21*                                                                                                                    | Tioc     | Interrupt-on-change new input level time                     | 25            | —     | —    | ns    |                |  |

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EC mode where CLKOUT output is 4 x Tosc.

### TABLE 25-10: RESET, WATCHDOG TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

| Standard Operating Conditions (unless otherwise stated)<br>Operating Temperature -40°C $\leq$ TA $\leq$ +125°C |        |                                                             |              |              |              |          |                                          |  |
|----------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------|--------------|--------------|--------------|----------|------------------------------------------|--|
| Param.<br>No.                                                                                                  | Sym.   | Characteristic                                              | Min.         | Тур.†        | Max.         | Units    | Conditions                               |  |
| 30                                                                                                             | TMCL   | MCLR Pulse Width (low)                                      | 2<br>5       |              |              | μS<br>μS | -40°C to +85°C<br>+85°C to +125°C        |  |
| 31                                                                                                             | TWDTLP | Low-Power Watchdog Timer<br>Time-out Period                 | 10           | 16           | 27           | ms       | VDD = 3.3V-3.6V,<br>1:512 Prescaler used |  |
| 33*                                                                                                            | TPWRT  | Power-up Timer Period,<br>PWRTE = 0                         | 40           | 65           | 140          | ms       |                                          |  |
| 34*                                                                                                            | Tioz   | I/O high-impedance from MCLR<br>Low or Watchdog Timer Reset | —            | _            | 2.0          | μS       |                                          |  |
| 35                                                                                                             | VBOR   | Brown-out Reset Voltage <sup>(1)</sup>                      | 2.55<br>1.80 | 2.70<br>1.90 | 2.85<br>2.05 | V<br>V   | BORV = 0<br>BORV = 1                     |  |
| 36*                                                                                                            | VHYST  | Brown-out Reset Hysteresis                                  | 0            | 25           | 50           | mV       | -40°C to +85°C                           |  |
| 37*                                                                                                            | TBORDC | Brown-out Reset DC Response<br>Time                         | 1            | 3            | 5            | μS       | $VDD \leq VBOR$                          |  |

\* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1  $\mu$ F and 0.01  $\mu$ F values in parallel are recommended.





## 20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]



Microchip Technology Drawing C04-255A Sheet 1 of 2