

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1554-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16LF1554/1559

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 2											
100h	INDF0 ⁽¹⁾	Addressing t	his location us	es contents of	FSR0H/FSR0)L to address	data memor	y (not a physi	ical register)	xxxx xxxx	uuuu uuuu
101h	INDF1 ⁽¹⁾	Addressing t	his location us	es contents of	FSR1H/FSR1	L to address	data memor	y (not a physi	ical register)	xxxx xxxx	uuuu uuuu
102h	PCL ⁽¹⁾			Program C	Counter (PC) L	east Significa	ant Byte			0000 0000	0000 0000
103h	STATUS ⁽¹⁾	—	—	—	TO	PD	Z	DC	С	1 1000	q quuu
104h	FSR0L ⁽¹⁾			Indirect Da	ata Memory Ac	Idress 0 Low	Pointer			0000 0000	uuuu uuuu
105h	FSR0H ⁽¹⁾			Indirect Da	ta Memory Ad	ldress 0 High	Pointer			0000 0000	0000 0000
106h	FSR1L ⁽¹⁾			Indirect Da	ata Memory Ac	ldress 1 Low	Pointer			0000 0000	uuuu uuuu
107h	FSR1H ⁽¹⁾			Indirect Da	ta Memory Ad	ldress 1 High	Pointer			0000 0000	0000 0000
108h	BSR ⁽¹⁾	—	— — BSR<4:0>							0 0000	0 0000
109h	WREG ⁽¹⁾		Working Register								uuuu uuuu
10Ah	PCLATH ⁽¹⁾	—	Write Buffer for the upper 7 bits of the Program Counter							-000 0000	-000 0000
10Bh	INTCON ⁽¹⁾	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
10Ch	LATA	—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0	xx xxxx	uu uuuu
10Dh	LATB ⁽²⁾	Unimplemented							—	—	
IUDII	LATB ⁽³⁾	LATB7	LATB6	LATB5	LATB4	—	—	—	—	xxxx	uuuu
10Eb	LATC ⁽²⁾	—	—	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xx xxxx	uu uuuu
IULII	LATC ⁽³⁾	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	uuuu uuuu
10Fh	—				Unimplem	ented				—	—
110h	—				Unimplem	ented				—	—
111h	—				Unimplem	ented				—	—
112h	_				Unimplem	ented				—	—
113h	_				Unimplem	ented				—	—
114h	—				Unimplem	ented				—	—
115h	—				Unimplem	ented	_	_		—	—
116h	BORCON	SBOREN	BORFS	—	—	—	—	—	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	—	—	ADFV	R<1:0>	0q0000	0q0000
118h	—				Unimplem	ented				—	—
119h	—				Unimplem	ented				—	—
11Ah	—				Unimplem	ented				—	—
11Bh	—				Unimplem	ented				—	—
11Ch	—				Unimplem	ented				—	—
11Dh	APFCON	RXDTSEL	SDOSEL	SSSEL	SDSEL	—	TXCKSEL	GRDBSEL	GRDASEL	0000 -000	0000 -000
11Eh	—				Unimplem	ented				—	—
11Fh	_		Unimplemented								—

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: These registers can be accessed from any bank.

2: PIC16LF1554.

3: PIC16LF1559.

4: These registers/bits are available at two address locations, in Bank 1 and Bank 14.

5.0 OSCILLATOR MODULE

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external clock oscillators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

• Selectable system clock source between external or internal sources via software.

The oscillator module can be configured in one of the following clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium-Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 20 MHz)
- 4. INTOSC Internal oscillator (31 kHz to 32 MHz)

Clock source modes are selected by the FOSC<1:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The EC clock mode relies on an external logic level signal as the device clock source.

The INTOSC internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC (see Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these clock sources.

FIGURE 5-1: SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

5.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits:

- Default system oscillator determined by FOSC bits in Configuration Words
- Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals.

- When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC<1:0> bits in the Configuration Words.
- When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

Switch From	Switch To	Frequency	Oscillator Delay
Sleep	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay Twarm ⁽²⁾
Sleep/POR	EC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)

TABLE 5-1: OSCILLATOR SWITCHING DELAYS

Note 1: PLL inactive.

2: See Section 25.0 "Electrical Specifications".

11.3 PORTA Registers

11.3.1 DATA REGISTER

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 11-3). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input-only and its TRISX bit will always read as '1'. Example 11-1 shows how to initialize an I/O port.

Reading the PORTA register (Register 11-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

11.3.2 DIRECTION CONTROL

The TRISA register (Register 11-3) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

11.3.3 ANALOG CONTROL

The ANSELA register (Register 11-5) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSELx bits
	must be initialized to '0' by user software.

EXAMPLE 11-1: INITIALIZING PORTA

BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'00111000'	;Set RA<5:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

11.3.4 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 11-2.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC and comparator inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below in Table 11-2.

TABLE 11-2:	PORTA OUTPUT PRIORITY
-------------	-----------------------

Pin Name	Function Priority ⁽¹⁾
RA0	ICSPDAT RA0
RA1	RA1
RA2	RA2
RA3	RA3
RA4	CLKOUT RA4
RA5	RA5

Note 1: Priority listed from highest to lowest.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0		
LATB7	LATB6	LATB5	LATB4	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					

REGISTER 11-9: LATB: PORTB DATA LATCH REGISTER

bit 7-4	LATB<7:4>: RB<7:4> Output Latch Value bits ⁽¹⁾
---------	---

bit 3-0 Unimplemented: Read as '0'

' = Bit is set

1

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 11-10: ANSELB: PORTB ANALOG SELECT REGISTER

'0' = Bit is cleared

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
ANSB7	ANSB6	ANSB5	ANSB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **ANSB<7:4>:** Analog Select between Analog or Digital Function on pins RB<5:4>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

- 0 = Digital I/O. Pin is assigned to port or digital special function.
- bit 3-0 Unimplemented: Read as '0'
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

11.8 Register Definitions: PORTC

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0
bit 7		- -				-	bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 11-12: PORTC: PORTC REGISTER

bit 7-0 **RC<7:0>**: PORTC General Purpose I/O Pin bits 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Functions not available on PIC16LF1554.

REGISTER 11-13: TRISC: PORTC TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TRISC<7:0>:** PORTC Tri-State Control bits 1 = PORTC pin configured as an input (tri-stated) 0 = PORTC pin configured as an output

Note 1: Functions not available on PIC16LF1554.

R/W-0/	0 R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>			GO/DONE_ALL	ADPRE	F<1:0>
bit 7	•					•	bit 0
Legend:							
R = Reada	able bit	W = Writable	e bit	U = Unimple	mented bit, read a	s '0'	
u = Bit is u	unchanged	x = Bit is unk	nown	-n/n = Value	at POR and BOR/	Value at all oth	er Resets
'1' = Bit is set '0' = Bit is cleared							
 bit 7 ADFM: ADC Result Format Select bit 1 = Right justified. Six Most Significant bits of ADxRESxH are set to '0' when the conversion resu loaded. 0 = Left justified. Six Least Significant bits of ADxRESxL are set to '0' when the conversion resu loaded. 						ersion result is ersion result is	
bit 6-4	ADCS<2:0>: ADC Conversion Clock Select bits 000 = Fosc/2 001 = Fosc/8 010 = Fosc/32 011 = FRC (clock supplied from an internal RC oscillator) 100 = Fosc/4 101 = Fosc/16 110 = Fosc/64 111 = FPC (clock supplied from an internal PC oscillator)						
bit 3	Unimpleme	ented: Read as	'0'				
 bit 2 GO/DONE_ALL⁽³⁾: Synchronized ADC Conversion Status bit 1 = Synchronized ADC conversion in progress. Setting this bit starts conversion in any ADC with ADxON = 1. 0 = Synchronized ADC conversion completed/ not in progress. 					any ADC with		
bit 1-0 ADPREF<1:0>: ADC Positive Voltage Reference Configuration bits 00 = VREFH is connected to VDD 01 = Reserved							
	 10 = VREFH is connected to external VREF+ pin⁽⁴⁾ 11 = VREFH is connected to internal Fixed Voltage Reference. 						
Note 1:	Bank 1 name is	ADCON1.					
2:	Bank 14 name i	s ADCOMCON	l				
3:	Setting this bit tr control register	iggers the GO/ settings. This b	DONEx bits in it reads as an	both ADCs. E OR of the indi	ach ADC <u>will run</u> a ividual GO/DONEx	a conversion a bits.	ccording to its
4.	When colocting	the Vorst nin	as the source	of the positive	reference be awa	re that a minir	num valtaga

REGISTER 15-3: ADCON1⁽¹⁾/ADCOMCON⁽²⁾: ADC CONTROL REGISTER 1

4: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See Section 25.0 "Electrical Specifications" for details.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
	AD2CONV	AD2ST	G<1:0>		AD1CONV	AD1ST	G<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value	e at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6	AD2CONV: A	DC2 Conversi	on Status bit				
	1 = Indicates	ADC2 is in Co	nversion Sequ	ence for AAD	2RES1H:AAD2F	RES1L	
	0 = Indicates	ADC2 is in Co	nversion Sequ	uence for AAE	D2RES0H:AAD2	RES0L (Also re	eads '0' when
	GO/DON	E2 = 0)					
bit 5-4	AD2STG<1:0	>: ADC2 Stage	e Status bit				
	11 = ADC2	module is in co modulo is in co	nversion stage	9			
	10 = ADC21	module is in ac	echarge stage	;			
	00 = ADC2	module is not o	onverting (sar	ne as GO/ DO	NE2= 0)		
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	AD1CONV: A	DC2 Conversi	on Status bit				
	1 = Indicates	ADC1 is in Co	nversion Sequ	uence for AAE	D1RES1H:AAD1	RES1L	
	0 = Indicates	ADC1 is in Co	nversion Sequ	uence for AAE	01RES0H:AAD1	RES0L (Also re	eads '0' when
	GO/DON	E1 = 0)					
bit 1-0	AD1STG<1:0	>: ADC1 Stage	e Status bit				
	11 = ADC1 module is in conversion stage						
	10 = ADCII	module is in ac	quisition stage	;			
	00 = ADC1	module is not c	onverting (sar	ne as GO/ DO	NE1= 0)		

REGISTER 16-8: AADSTAT: HARDWARE CVD STATUS REGISTER

17.2 Register Definitions: Option Register

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>	
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7 WPUEN: Weak Pull-Up Enable bit 1 = All weak pull-ups are disabled (except MCLR, if it is enabled) 0 = Weak pull-ups are enabled by individual WPUx latch values							
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin						
bit 5	TMROCS: Tir 1 = Transition 0 = Internal in	ner0 Clock So າ on T0CKI pin າstruction cycle	urce Select bit clock (Fosc/4	4)			
bit 4	TMROSE: Tir 1 = Incremen 0 = Incremen	ner0 Source Eo It on high-to-lov It on low-to-hig	dge Select bit v transition on h transition on	T0CKI pin T0CKI pin			
bit 3	PSA: Prescale 1 = Prescale 0 = Prescale	ler Assignment is not assigne is assigned to	bit d to the Timer the Timer0 m	0 module odule			
bit 2-0	PS<2:0>: Pre	escaler Rate So	elect bits				
	Bit	Value Timer) Rate				
		D00 1:2 D01 1:4 D10 1:8 D11 1:5 L00 1:3 L01 1:6 L10 1:7 L11 1:2	2 4 3 6 32 34 128 256				
TABLE 17-1:	SUMMAR	Y OF REGIS	TERS ASSO	CIATED WIT	H TIMER0		i

|--|

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADxCON2	—	TRIGSEL<2:0>				—	—	—	136
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	77
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		166
TMR0	Holding Re	Holding Register for the 8-bit Timer0 Count						164*	
TRISA	—	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	108
1	1.1			0		d barrier Theorem	• • • • • • • • • • • • • • • • • • •		

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module. * Page provides register information.

Note 1: Unimplemented, read as '1'.

19.5 Register Definitions: Timer2 Control

0-0	rt/vv-u/U		0,01-010	r:////U/U			rv/vv-u/U
		120011	0-0.0-			12011	<u>0 1.0</u> 2 hit Ω
							Dit U
Legend:							
R = Readable	bit	W = Writable	oit	U = Unimpler	mented bit read	1 as '0'	
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all (other Resets
'1' = Bit is set	langoa	0' = Bit is clear	ared				
bit 7	Unimpleme	nted: Read as ')'				
bit 6-3	T2OUTPS<3	3:0>: Timer2 Ou	tput Postscale	er Select bits			
	0000 = 1:1 F	Postscaler					
	0001 = 1:2 F	Postscaler					
	0010 = 1:3 Postscaler						
	0011 = 1:4 Postscaler						
	0100 = 1:5 Postscaler						
	0101 = 1.6 F						
	0110 = 1.7 F						
	1000 = 1.9 F	Postscaler					
	1000 = 1:31 1001 = 1:10	Postscaler					
	1010 = 1:11	Postscaler					
	1011 = 1:12	Postscaler					
	1100 = 1:13	Postscaler					
	1101 = 1:14	Postscaler					
	1110 = 1 : 15	Postscaler					
	1111 = 1:16	Postscaler					
bit 2	TMR2ON: T	mer2 On bit					
1 = Timer2 is on							
	0 = Timer2 i	s off					
bit 1-0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits						
	00 = Prescal	er is 1					
	01 = Prescal	er is 4					
	10 = Prescal	er is 16					
	11 = Prescal	er is 64					

REGISTER 19-1: T2CON: TIMER2 CONTROL REGISTER

TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	77
PIE1	TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE	—	TMR2IE	TMR1IE	78
PIR1	TMR1GIF	AD1IF	RCIF	TXIF	SSP1IF	—	TMR2IF	TMR1IF	80
PR2			Time	er2 Module	Period Regi	ster			178*
T2CON	_		T2OUTPS<3:0> TMR2ON T2CKPS<1:0>				180		
TMR2		Holding Register for the 8-bit TMR2 Count						178*	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

20.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 20.5.6** "**Clock Stretching**" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then the SCL pin should be released by setting the CKP bit of the SSPCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This \overline{ACK} value is copied to the ACKSTAT bit of the SSPCON2 register. If ACKSTAT is set (not \overline{ACK}), then the data transfer is complete. In this case, when the not \overline{ACK} is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (\overline{ACK}), the next transmit data must be loaded into the SSPBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSP1IF bit must be cleared by software and the SSPSTAT register is used to determine the status of the byte. The SSP1IF bit is set on the falling edge of the ninth clock pulse.

20.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPCON3 register is set, the BCLIF bit of the PIRx register is set. Once a bus collision is detected, the slave goes Idle and waits to be addressed again. User software can use the BCLIF bit to handle a slave bus collision.

20.5.3.2 7-Bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 20-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPSTAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/W bit set is received by the Slave setting SSP1IF bit.
- 4. Slave hardware generates an ACK and sets SSP1IF.
- 5. SSP1IF bit is cleared by user.
- 6. Software reads the received address from SSPBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the \overline{ACK} .
- 8. The slave software loads the transmit data into SSPBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSP1IF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSP1IF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - Note 1: If the master ACKs the clock will be stretched.
 - ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSP1IF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

20.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in both I^2C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPADD register (Register 20-6). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 20-40 triggers the value from SSPADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 20-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

EQUATION 20-1:

$$FCLOCK = \frac{Fosc}{(SSPxADD + 1)(4)}$$

FIGURE 20-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 20-4: MSSP CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FcLock (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz ⁽¹⁾
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: Refer to the I/O port electrical and timing specifications in Table 25-9 and Figure 25-5 to ensure the system is designed to support the I/O timing requirements.

20.7.1 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 11.1 "Alternate Pin Function"** for more information.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			MSK	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-1	MSK<7:1>:	Mask bits					
	1 = The rec	eived address b	it n is compar	ed to SSPADD	<n> to detect I²</n>	² C address mat	tch

REGISTER 20-5: SSPMSK: SSP MASK REGISTER

	0 = The received address bit n is not used to detect I ² C address match
bit 0	MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address
	I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
	1 = The received address bit 0 is compared to SSPADD<0> to detect I ² C address match
	0 = The received address bit 0 is not used to detect I ² C address match
	I ² C Slave mode, 7-bit address, the bit is ignored

REGISTER 20-6: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADD< | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode:

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode — Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u> 10-Bit Slave mode — Least Significant Address Byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1	ADD<7:1>: 7-bit address	

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

PIC16LF1554/1559

FIGURE 21-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit

RX/DT pin	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7	
TX/CK pin (SCKP = 0)-		
TX/CK pin- (SCKP = 1)		
bit SREN		
CREN bit	·0 [,]	·0'
RCIF bit (Interrupt) -		
Read RCREG	Timing diagram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0	Ĺ
Note.		

TABLE 21-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN	245
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	77
PIE1	TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE	_	TMR2IE	TMR1IE	78
PIR1	TMR1GIF	AD1IF	RCIF	TXIF	SSP1IF	_	TMR2IF	TMR1IF	80
RCREG	EUSART Receive Data Register				239*				
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	244
SPBRGL	BRG<7:0>				246*				
SPBRGH				BRG<	:15:8>				246*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_		_	112
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	243

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

PIC16LF1554/1559

DECFSZ	Decrement f, Skip if 0
Syntax:	[<i>label</i>] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	k → PC<10:0> PCLATH<6:3> → PC<14:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

IORLW	Inclusive OR literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.

INCF	Increment f		
Syntax:	[label] INCF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	(f) + 1 \rightarrow (destination)		
Status Affected:	Z		
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.		

IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

RRF	Rotate Right f through Carry					
Syntax:	[label] RRF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	See description below					
Status Affected:	С					
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					
	C Register f					

SUBLW	Subtract W from literal					
Syntax:	[label] SU	BLW k				
Operands:	$0 \le k \le 255$					
Operation: I	$k - (W) \to (W)$					
Status Affected:	C, DC, Z					
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.					
	C = 0	W > k				
	C = 1	$W \leq k$				

DC = 0

DC = 1

SLEEP	Enter Sleep mode				
Syntax:	[label] SLEEP				
Operands:	None				
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$				
Status Affected:	TO, PD				
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its pres- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.				

SUBWF	Subtract W from f					
Syntax:	[<i>label</i>] Sl	JBWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(f) - (W) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.					
	C = 0 W > f					
	-					

C = 0	W > f
C = 1	$W \leq f$
DC = 0	W<3:0> > f<3:0>
DC = 1	$W < 3:0 > \le f < 3:0 >$

W<3:0> > k<3:0>

 $W<3:0> \le k<3:0>$

SUBWFB	Subtract W from f with Borrow					
Syntax:	SUBWFB f {,d}					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$					
Status Affected:	C, DC, Z					
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.					

© 2014-2016 Microchip Technology Inc.

25.3 DC Characteristics

TABLE 25-1: SUPPLY VOLTAGE

$\label{eq:picture} \begin{tabular}{lllllllllllllllllllllllllllllllllll$			by the second state of th				
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
D001	Vdd	Supply Voltage (VDDMIN, VDDMAX)					
			1.8	—	3.6	V	Fosc ≤ 16 MHz:
			2.5	—	3.6	V	$FOSC \leq 32 MHz$
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	—	V	Device in Sleep mode
D002A*	VPOR*	Power-on Reset Release Voltage	-	1.6	_	V	
D002B*	VPORR*	Power-on Reset Rearm Voltage	—	0.8		V	
D003	VADFVR	Fixed Voltage Reference Voltage	-7	_	6	%	$1.024V, VDD \ge 2.5V, 85^{\circ}C$ (Note 2)
		for ADC, Initial Accuracy	-8	—	6		1.024V, VDD \geq 2.5V, 125°C (Note 2)
			-7	—	6		$2.048V, VDD \ge 2.5V, 85^{\circ}C$
			-8	—	6		$2.048V, VDD \ge 2.5V, 125^{\circ}C$
D003C*	TCVFVR	Temperature Coefficient, Fixed Voltage Reference	—	-130	—	ppm/°C	
D003D*	$\Delta VFVR/$ ΔVIN	Line Regulation, Fixed Voltage Reference	_	0.270	_	%/V	
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05			V/ms	See Section 6.1 "Power-on Reset (POR)" for details.

* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: For proper operation, the minimum value of the ADC positive voltage reference must be 1.8V or greater. When selecting the FVR or the VREF+ pin as the source of the ADC positive voltage reference, be aware that the voltage must be 1.8V or greater.

TABLE 25-13: PIC16LF1554/1559 ADC CONVERSION REQUIREMENTS

Param. No.Sym.CharacteristicMin.Typ.†Max.UnitsConditionsAD130*TADADC Clock Period0.25—25µsTosc-based, -40°C to +85°C, VREF0.7—25µsTosc-based, -40°C to +85°C, VREF0.7—8µsTosc-based, +86°C to +125°C	Standard Operating	perating Conditions (unless other emperature $-40^{\circ}C \le TA \le +125^{\circ}C$	wise st	ated)			
AD130* TAD ADC Clock Period 0.25 — 25 μs Tosc-based, -40°C to +85°C, VREF 0.7 — 25 μs Tosc-based, -40°C to +85°C, VREF 0.7 — 8 μs Tosc-based, +86°C to +125°C	Param. No.	/m. Characteristic	Min.	Тур.†	Max.	Units	Conditions
ADC Internal FRC Oscillator1.01.66.0 μ sADCS<1:0> = 11 (ADFRC mode)Period	AD130*	D ADC Clock Period ADC Internal FRC Oscillator Period	0.25 0.7 0.7 1.0	 1.6	25 25 8 6.0	μs μs μs μs	Tosc-based, -40°C to +85°C, VREF ≥ 2.4V Tosc-based, -40°C to +85°C, VREF < 2.4V Tosc-based, +86°C to +125°C ADCS<1:0> = 11 (ADFRC mode)
AD131 TCNV Conversion Time (not including - 11 - TAD Set GO/DONEx bit to conversion complete	AD131	NV Conversion Time (not including Acquisition Time) ⁽¹⁾	-	11	_	Tad	Set GO/DONEx bit to conversion complete
AD132* TACQ Acquisition Time — 5.0 — μs	AD132*	.cq Acquisition Time	—	5.0	—	μS	

* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

27.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

27.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

27.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

Package Marking Information (Continued)

14-Lead TSSOP (4.4 mm)

16-Lead QFN (4x4x0.9 mm)

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available of or customer-specific information.