

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1554t-i-st

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Allocation Tables

IADLI	- 1.			0-FIN ALL	UCATION	I TADLE (F		1554)			
0/1	14-Pin PDIP/SOIC/TSSOP	16-Pin QFN	YDC	Reference	Timers	WMd	EUSART	dSSW	Interrupt	dn-lln4	Basic
RA0	13	12	AN0	—	—	—	—		IOC	Y	ICSPDAT/ ICDDAT
RA1	12	11	AN1	VREF+	_	_	—		IOC	Y	ICSPCLK ICDCLK
RA2	11	10	AN2	_	TOCKI	_	_		INT/ IOC	Y	_
RA3	4	3		—	—	—	_	<u>SS</u> (1) SDA ⁽¹⁾ SDI ⁽¹⁾	IOC	Y	MCLR Vpp
RA4	3	2	AN10 ADTRIG	—	T1G	—	RX ⁽¹⁾ DT ⁽¹⁾	SDO ⁽¹⁾	IOC	Y	CLKOUT
RA5	2	1	AN20	_	T1CKI	_	—	_	IOC	Y	CLKIN
RC0	10	9	AN13	—	—	—	—	SCL SCK		Y	—
RC1	9	8	AN23	—	—	—	—	SDA ⁽¹⁾ SDI ⁽¹⁾	_	Y	
RC2	8	7	AN12 AD1GRDB AD2GRDB ⁽¹⁾	—	—	PWM1	_	SDO ⁽¹⁾		Y	—
RC3	7	6	AN22 AD1GRDB ⁽¹⁾ AD2GRDB	—	_	PWM2	TX ⁽¹⁾ CK ⁽¹⁾	<u>SS</u> (1)		Y	—
RC4	6	5	AN11 AD1GRDA AD2GRDA ⁽¹⁾	—	—	_	TX ⁽¹⁾ CK ⁽¹⁾	_		Y	—
RC5	5	4	AN21 AD1GRDA ⁽¹⁾ AD2GRDA	_	_		RX ⁽¹⁾ DT ⁽¹⁾		_	Y	—
VDD	1	16	_	—	—		—	_	_		Vdd
Vss	14	13	—		—				—		Vss

TABLE 1:	14-PIN AND 16-PIN ALLOCATION TABLE (PIC16LF1554)

Note 1: Pin functions can be assigned to one of two pin locations via software.

PIC16LF1554/1559

TABLE 1-3: PIC16LF1559 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
	RB5	TTL	CMOS	General Purpose I/O
DDE(AN16(DX(1)))	AN16	AN	—	ADC Channel Input
RB3/ANTO/RAM/DTM	RX	ST	—	USART Asynchronous Input
	DT	ST	CMOS	USART Synchronous Data
	RB6	TTL	CMOS	General Purpose I/O
	AN25	AN	—	ADC Channel Input
RB6/AN25/SCL/SCK	SCL	l ² C	OD	I ² C Clock
	SCK	ST	CMOS	SPI Clock
	RB7	TTL	CMOS	General Purpose I/O
	AN15	AN	_	ADC Channel Input
RB7/ANT5/TX/CK	ТХ	_	CMOS	USART Asynchronous Transmit
	СК	ST	CMOS	USART Synchronous Clock
DOM/MAR	RC0	TTL	CMOS	General Purpose I/O
RC0/ANT3	AN13	AN	—	ADC Channel Input
	RC1	TTL	CMOS	General Purpose I/O
RC I/ANZ3	AN23	AN	—	ADC Channel Input
	RC2	TTL	CMOS	General Purpose I/O
(1)	AN12	AN	—	ADC Channel Input
RC2/AN12/AD1GRDB ⁽¹⁾ /AD2GRDB ⁽¹⁾	AD1GRDB	—	CMOS	ADC1 Guard Ring Output B
	AD2GRDB	—	CMOS	ADC2 Guard Ring Output B
	PWM1	—	CMOS	PWM Output
	RC3	TTL	CMOS	General Purpose I/O
	AN22	AN	_	ADC Channel Input
RC3/AN22/AD1GRDB ⁽¹⁾ /AD2GRDB ⁽¹⁾ /PWM2	AD1GRDB	—	CMOS	ADC1 Guard Ring Output B
	AD2GRDB	_	CMOS	ADC2 Guard Ring Output B
	PWM2	—	CMOS	PWM Output
	RC4	TTL	CMOS	General Purpose I/O
PC4/ANI11/AD1CPDA(1)/AD2CPDA(1)	AN11	AN	_	ADC Channel Input
RC4/ANTI/AD IGRDA: //ADZGRDA: /	AD1GRDA	—	CMOS	ADC1 Guard Ring Output B
	AD2GRDA	—	CMOS	ADC2 Guard Ring Output B
	RC5	TTL	CMOS	General Purpose I/O
	AN21	AN	_	ADC Channel Input
	AD1GRDA	—	CMOS	ADC1 Guard Ring Output B
	AD2GRDA	—	CMOS	ADC2 Guard Ring Output B
Legend: AN = Analog input or output	CMOS= CN	IOS comp	atible input	or output OD = Open-Drain

 Legend: AN = Analog input or output TTL = TTL compatible input HV = High Voltage
 CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels
 OD = Open-Drain = Schmitt Trigger input with I²C levels

Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.

3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	DEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH operator will set bit 7 if a label points to a location in program memory.

EXAMPLE 3-2:	ACCESSING PROGRAM
	MEMORY VIA FSR

constants			
RETLW	DATA0	;Index0 data	
RETLW	DATA1	;Index1 data	
RETLW	DATA2		
RETLW	DATA3		
my_functi	on		
; LO	IS OF CODE		
MOVLW	LOW consta	ints	
MOVWF	FSR1L		
MOVLW	HIGH const	ants	
MOVWF	FSR1H		
MOVIW	0[FSR1]		
; THE PROG	RAM MEMORY I	S IN W	

TABLE 3-4: PIC16LF1559 MEMORY MAP, BANKS 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	INDF0	080h	INDF0	100h	INDF0	180h	INDF0	200h	INDF0	280h	INDF0	300h	INDF0	380h	INDF0
001h	INDF1	081h	INDF1	101h	INDF1	181h	INDF1	201h	INDF1	281h	INDF1	301h	INDF1	381h	INDF1
002h	PCL	082h	PCL	102h	PCL	182h	PCL	202h	PCL	282h	PCL	302h	PCL	382h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS	203h	STATUS	283h	STATUS	303h	STATUS	383h	STATUS
004h	FSR0L	084h	FSR0L	104h	FSR0L	184h	FSR0L	204h	FSR0L	284h	FSR0L	304h	FSR0L	384h	FSR0L
005h	FSR0H	085h	FSR0H	105h	FSR0H	185h	FSR0H	205h	FSR0H	285h	FSR0H	305h	FSR0H	385h	FSR0H
006h	FSR1L	086h	FSR1L	106h	FSR1L	186h	FSR1L	206h	FSR1L	286h	FSR1L	306h	FSR1L	386h	FSR1L
007h	FSR1H	087h	FSR1H	107h	FSR1H	187h	FSR1H	207h	FSR1H	287h	FSR1H	307h	FSR1H	387h	FSR1H
008h	BSR	088h	BSR	108h	BSR	188h	BSR	208h	BSR	288h	BSR	308h	BSR	388h	BSR
009h	WREG	089h	WREG	109h	WREG	189h	WREG	209h	WREG	289h	WREG	309h	WREG	389h	WREG
00Ah	PCLATH	08Ah	PCLATH	10Ah	PCLATH	18Ah	PCLATH	20Ah	PCLATH	28Ah	PCLATH	30Ah	PCLATH	38Ah	PCLATH
00Bh	INTCON	08Bh	INTCON	10Bh	INTCON	18Bh	INTCON	20Bh	INTCON	28Bh	INTCON	30Bh	INTCON	38Bh	INTCON
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	—	30Ch	—	38Ch	—
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	_	30Dh	—	38Dh	_
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	_	28Eh	_	30Eh	—	38Eh	_
00Fh		08Fh	—	10Fh		18Fh	—	20Fh	—	28Fh	—	30Fh	—	38Fh	—
010h	_	090h	_	110h	_	190h	_	210h	_	290h	_	310h	—	390h	_
011h	PIR1	091h	PIE1	111h	_	191h	PMADRL	211h	SSPBUF	291h	_	311h	—	391h	IOCAP
012h	PIR2	092h	PIE2	112h	—	192h	PMADRH	212h	SSPADD	292h	—	312h	—	392h	IOCAN
013h	_	093h	—	113h	—	193h	PMDATL	213h	SSPMSK	293h	—	313h	—	393h	IOCAF
014h	_	094h	_	114h	_	194h	PMDATH	214h	SSPSTAT	294h	_	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION	115h	—	195h	PMCON1	215h	SSPCON1	295h	—	315h	—	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSPCON2	296h	—	316h	—	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	_	217h	SSPCON3	297h	—	317h	—	397h	—
018h	T1CON	098h	—	118h	—	198h	—	218h	—	298h	—	318h	—	398h	—
019h	T1GCON	099h	OSCCON	119h	—	199h	RCREG	219h	—	299h	—	319h	—	399h	—
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	TXREG	21Ah	—	29Ah	—	31Ah	—	39Ah	—
01Bh	PR2	09Bh	ADRESL/ AD1RES0L ⁽¹⁾	11Bh	_	19Bh	SPBRGL	21Bh	_	29Bh	_	31Bh	—	39Bh	_
01Ch	T2CON	09Ch	ADRESH/ AD1RES0H ⁽¹⁾	11Ch	_	19Ch	SPBRGH	21Ch	_	29Ch	_	31Ch	—	39Ch	—
01Dh	_	09Dh	ADCON0/ AD1CON0 ⁽¹⁾	11Dh	APFCON	19Dh	RCSTA	21Dh	_	29Dh	_	31Dh	—	39Dh	—
01Eh	_	09Eh	ADCON1/ ADCOMCON ⁽¹⁾	11Eh	_	19Eh	TXSTA	21Eh	_	29Eh	_	31Eh	_	39Eh	—
01Fh	_	09Fh	ADCON2/ AD1CON2 ⁽¹⁾	11Fh	_	19Fh	BAUDCON	21Fh	_	29Fh	_	31Fh	_	39Fh	_
020h		0A0h		120h		1A0h		220h		2A0h		320h	General Purpose Register 16 Bytes	3A0h	
	General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	330h	Unimplemented Read as '0'		Unimplemented Read as '0'								
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h	A	170h	A	1F0h	A	270h	A	2F0h	A	370h	A	3F0h	A
07Eb		0FFb	Accesses 70h – 7Fh	17Fh	Accesses 70h – 7Fh	1FFb	Accesses 70h – 7Fh	27Fb	Accesses 70h – 7Fh	2FFh	Accesses 70h – 7Fh	37Fb	Accesses 70h – 7Fh	3FFh	Accesses 70h – 7Fh

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: These ADC registers are the same as the registers in Bank 14.

DS40001761E-page 25

6.4 Low-Power Brown-out Reset (LPBOR)

The Low-Power Brown-Out Reset (LPBOR) operates like the BOR to detect low voltage conditions on the VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit (BOR) is changed to indicate that a BOR Reset has occurred. The BOR bit in PCON is used for both BOR and the LPBOR. Refer to Register 6-2.

The LPBOR voltage threshold (VLPBOR) has a wider tolerance than the BOR (VBOR), but requires much less current (LPBOR current) to operate. The LPBOR is intended for use when the BOR is configured as disabled (BOREN = 00) or disabled in Sleep mode (BOREN = 10).

Refer to Figure 6-1 to see how the LPBOR interacts with other modules.

6.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOR bit of Configuration Words. When the device is erased, the LPBOR module defaults to disabled.

6.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 6-2).

TABLE 6-2:MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

6.5.1 MCLR ENABLED

When $\overline{\text{MCLR}}$ is enabled and the pin is held low, the device is held in Reset. The $\overline{\text{MCLR}}$ pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin low.

6.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 11.3 "PORTA Registers"** for more information.

6.6 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See **Section 9.0** "**Watchdog Timer (WDT)**" for more information.

6.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 6-4 for default conditions after a RESET instruction has occurred.

6.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 3.4.2** "**Overflow/Underflow Reset**" for more information.

6.9 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

6.10 Power-up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overrightarrow{\text{PWRTE}}$ bit of Configuration Words.

6.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See **Section 5.0** "Oscillator Module" for more information.

The Power-up Timer runs independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer will expire. Upon bringing MCLR high, the device will begin execution after 10 Fosc cycles (see Figure 6-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

10.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FIGURE 10-7: FLASH PROGRAM MEMORY MODIFY FLOWCHART

REGISTER 11-14: LATC: PORTC DATA LATCH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATC7 ⁽¹⁾	LATC6 ⁽¹⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽²⁾

Note 1: Functions not available on PIC16LF1554.

2: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

REGISTER 11-15: ANSELC: PORTC ANALOG SELECT REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ANSC<7:0>**: Analog Select between Analog or Digital Function on pins RC<7:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽²⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: Functions not available on PIC16LF1554.

2: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	117
LATC	LATC7 ⁽¹⁾	LATC6 ⁽¹⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	117
PORTC	RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0	116
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	116

TABLE 11-9: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

Note 1: Functions not available on PIC16LF1554.

13.3 Register Definitions: FVR Control

IL GIOIL	.K 13-1. I VKC				JOINT NOL KL	GIGTER	
R/W-0/	/0 R-q/q	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
FVRE	N FVRRDY	TSEN	TSRNG		—	ADFVI	R<1:0>
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
u = Bit is u	unchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all c	other Resets
'1' = Bit is	set	'0' = Bit is cle	ared	q = Value de	pends on conditi	ion	
bit 7	FVREN: Fixe	ed Voltage Refe	rence Enable	bit			
	1 = Fixed Vc	oltage Referenc	e is enabled				
hit 6			e is uisableu	v Elag bit			
DILO	1 = Fixed Vc	oltage Referenc	e output is rea	adv for use			
	0 = Fixed Vc	oltage Referenc	e output is no	t ready or not e	enabled		
bit 5	TSEN: Temp	erature Indicato	or Enable bit ⁽¹)			
	1 = Tempera	ature Indicator is	s enabled				
	0 = Tempera	ature Indicator is	s disabled	(4)			
bit 4	TSRNG: Ten	nperature Indica	ator Range Se	election bit ⁽¹⁾			
	1 = VOUT = V 0 = VOUT = V	VDD - 4VT (Higr עס - 2Vד (Low	Range)				
bit 3-2	Unimplemen	nted: Read as '	0'				
bit 1-0	ADFVR<1:0	ADC Fixed V	oltage Refere	nce Selection	bit		
	11 = ADC Fi	xed Voltage Re	ference Perip	heral output is	off		
10 = ADC Fixed Voltage Reference Peripheral output is 2x (2.048V) ⁽²⁾							
01 = ADC Fixed Voltage Reference Peripheral output is 1x (1.024V)							
Noto 1:	Soo Section 14 0	"Tomporature		nerar output is	uii itional informatia	n	
NULE 1. 2.	Fixed Voltage Def					11.	
۷.	TINGU VUILAYE REI	cicilice output t		I VOD.			

REGISTER 13-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

TABLE 13-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG		_	ADFVI	R<1:0>	124

Legend: Shaded cells are unused by the Fixed Voltage Reference module.

PIC16LF1554/1559

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0/ AD1CON0		CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE1	AD10N	133
AD2CON0	_	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE2	AD2ON	134
ADCON1/ ADCOMCON	ADFM	ADCS<2:0>		_	GO/DONE_ALL	ADPREF	<1:0>	135	
ADxCON2	_	TR	IGSEL<2:()>	_	_		_	136
ADxRESxH	ADC Resu	ADC Result Register High						136, 137	
ADxRESxL	ADC Resu	ADC Result Register Low					137, 137		
ANSELA			ANSA5	ANSA4		ANSA2	ANSA1	ANSA0	109
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4		—	_	_	113
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	117
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	77
PIE1	TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE	—	TMR2IE	TMR1IE	78
PIR1	TMR1GIF	AD1IF	RCIF	TXIF	SSP1IF	_	TMR2IF	TMR1IF	80
TRISA	_		TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	108
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_		112
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	116
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_		ADFVR-	<1:0>	124

TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

Note 1: Unimplemented, read as '1'.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE2 ⁽²⁾	AD2ON
bit 7		- I - I				-	bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimpleme	ented bit, read as	s 'O'	
u = Bit is unc	hanged	x = Bit is unknow	'n	-n/n = Value at	POR and BOR/	/alue at all other Res	sets
'1' = Bit is set	t	'0' = Bit is cleare	d				
	•						
bit 7	Unimplemente	ed: Read as '0'					
bit 6-2	it 6.2 CHS \sim Analog Channel Select hits for ADC 2						
bit 0 2	When AD2ON	= 0, all multiplexer	inputs are disco	onnected.			
	00000 = Cha	innel 0, (AN0)					
	00001 = Cha	innel 1, (AN1)					
	00010 = Cha	innel 2, (AN2)					
	00011 = Res	erved					
	00100 = Res	erved					
	00101 = Res	erved					
	00110 = Res	erved					
	00111 = Res	erved					
	01000 = Res	erved					
	01001 = Res	erved					
	01010 = Res	erved					
	01011 = Res	erved					
	01100 = Res	erved					
	01101 = Res	erved					
	01110 = Res	erved					
	01111 = Res	erved					
	10000 = Res	erved					
	10001 = Res	erved					
	10010 = Res	erved					
	10011 - Res	unnol 20 (ANI20)					
	10100 - Cha	(AN20)					
	10101 - Cha	(AN21)					
	10110 - Cha	$(\Delta N 22)$					
	11000 = Cha	innel 24 (AN24)(1)					
	11000 Cha	(1) (AN25)(1)					
	11010 = Cha	nnel 26 (AN26) ⁽¹⁾					
	11011 = VRE	FH (ADC Positive F	Reference)				
	11100 = Res	erved	(0.0.0100)				
	11101 = Tem	perature Indicator					
	11110 = Res	erved					
	11111 = Fixe	ed Voltage Referen	ce (FVREF) Buffe	er 1 Output			
bit 1	GO/DONE2: A	DC2 Conversion S	tatus bit ⁽²⁾				
	If AD2ON = 1						
	1 = ADC cor	version in progres	s. Setting this bi	t starts the ADC	conversion. Whe	en the RC clock sour	ce is selected,
	the ADC	Module waits one	instruction befo	re starting the co	nversion.		
	0 = ADC conversion not in progress (This bit is automatically cleared by hardware when the ADC conver						conversion is
	complete.) If this bit is cleared while a conversion is in progress, the conversion will stop and the results						e results of the
	conversi	on up to this point w	vill be transferre	d to the result reg	jisters, but the Al	D2IF interrupt flag bit	will not be set.
	If $AD2ON = 0$			-			
	0 = ADC cor	nversion not in prog	gress				
bit 0	AD2ON: ADC	Module 2 Enable b	bit				
	1 = ADC2 is	enabled					
	0 = ADC2 is	disabled and cons	umes no operat	ing current. All a	nalog channels a	are disconnected.	
Note 1: Pla	C16LF1559 only. No	ot implemented on	PIC16LF1554		-		

REGISTER 16-2: AAD2CON0: HARDWARE CVD 2 CONTROL REGISTER 0

2: When the AD2DSEN bit is set; the GO/DONE2 bit will clear after a second conversion has completed.

REGISTER 16-12:	AADxCAP: HARDWARE CVD ADDITIONAL SAMPLE CAPACITOR SELECTION
	REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		ADDxC	AP<3:0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplei	mented bit, re	ad as 'O'	
u = Bit is unchanged x = Bit is unknown		wn	-n/n = Value Resets	at POR and B	OR/Value at a	all other	
'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared						
bit 7-4	Unimplemente	d: Read as '0'					
bit 3-0	ADDxCAP<3:0	>: ADC Addition	al Sample Ca	apacitor Select	ion bits		
	1111 = Nomina	al Additional Sam	nple Capacito	r of 30pF			
	1110 = Nomina	al Additional Sam	nple Capacito	r of 28pF			
	1101 = Nomina	al Additional Sam	nple Capacito	r of 26pF			
	1100 = Nomina	al Additional Sam	ple Capacito	r of 24pF			
	1011 = Nomina	al Additional Sam	ple Capacito	r of 22pF			
	1010 = Nomina	al Additional Sam	ple Capacito	r of 20pF			
	1001 = Nomina	al Additional Sam	nple Capacito	r of 18pF			
	1000 = Nomina	al Additional Sam	nple Capacito	r of 16pF			
	0111 = Nomina	al Additional Sam	ple Capacito	r of 14pF			
	0110 = Nomina	al Additional Sam	ple Capacito	r of 12pF			
	0101 = Nomina	al Additional Sam	nple Capacito	r of 10pF			

0100 = Nominal Additional Sample Capacitor of 8pF

0011 = Nominal Additional Sample Capacitor of 6pF

 ${\tt 0010} = {\sf Nominal \ Additional \ Sample \ Capacitor \ of \ 4pF}$

0001 = Nominal Additional Sample Capacitor of 2pF 0000 = Additional Sample Capacitor is Disabled

PIC16LF1554/1559

FIGURE 20-7: SPI DAISY-CHAIN CONNECTION

FIGURE 20-8: SLAVE SELECT SYNCHRONOUS WAVEFORM

20.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an I^2C Slave in 10-bit Addressing mode.

Figure 20-20 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- 2. Master sends Start condition; S bit of SSPSTAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSPSTAT register is set.
- 4. Slave sends ACK and SSP1IF is set.
- 5. Software clears the SSP1IF bit.
- 6. Software reads received address from SSPBUF clearing the BF flag.
- 7. Slave loads low address into SSPADD, releasing SCL.
- 8. Master sends matching low address byte to the Slave; UA bit is set.

Note: Updates to the SSPADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSP1IF is set.

Note: If the low address does not match, SSP1IF and UA are still set so that the slave software can set SSPADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSP1IF.
- 11. Slave reads the received matching address from SSPBUF clearing BF.
- 12. Slave loads high address into SSPADD.
- 13. Master clocks a data byte to the slave and clocks out the slaves ACK on the 9th SCL pulse; SSP1IF is set.
- 14. If SEN bit of SSPCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSP1IF.
- 16. Slave reads the received byte from SSPBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

20.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPADD register

using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 20-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 20-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

REGISTER 20-2: SSPCON1: SSP CONTROL REGISTER 1

-							ı
R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>	
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpleme	nted bit, read as '0'		
u = Bit is uncha	anged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets						ts
'1' = Bit is set		'0' = Bit is cleare	d	HS = Bit is set b	y hardware	C = User cleared	
bit 7 WCOL: Write Collision Detect bit <u>Master mode:</u> 1 = A write to the SSPBUF register was attempted while the I ² C conditions were not valid for a transmission to be started 0 = No collision <u>Slave mode:</u> 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision						ion to be started	
bit 6	 SSPOV: Receive Overflow Indicator bit⁽¹⁾ In SPI mode: 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register (must be cleared in software). 0 = No overflow In I²C mode: 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode (must be cleared in software). 0 = No overflow 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode (must be cleared in software). 0 = No overflow 1 = A byte is received in software). 0 = No overflow 1 = A byte is received in software). 0 = No overflow 1 = A byte is received in software). 0 = No overflow 1 = A byte is received in software). 0 = No overflow 1 = A byte is received in software). 0 = No overflow 1 = A byte is received in software). 0 = No overflow 1 = A byte is received in software). 1 = No is the cleared in software). 1 = No overflow 1 = No overflow 1 = A byte is received in software). 1 = No overflow 1 = No overflow						
bit 5	SSPEN: Synchr In both modes, v <u>In SPI mode</u> : 1 = Enables se 0 = Disables su <u>In I²C mode</u> : 1 = Enables the 0 = Disables su	 SSPEN: Synchronous Serial Port Enable bit In both modes, when enabled, these pins must be properly configured as input or output In SPI mode: 1 = Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins⁽²⁾ 0 = Disables serial port and configures these pins as I/O port pins In ²C mode: 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins⁽³⁾ 0 = Disables serial port and configures these pins as I/O port pins 					
bit 4	CKP: Clock Polarity Select bit In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In I ² C Slave mode: SCL release control 1 = Enable clock 0 = Holds clock low (clock stretch). Used to ensure data setup time. In I ² C Master mode:						
bit 3-0	$\begin{array}{l} \textbf{SSPM<3:0>: Sy}\\ 0000 = SPI Mas\\ 0001 = SPI Mas\\ 0010 = SPI Mas\\ 0011 = Reserve\\ 0100 = SPI Slav\\ 0101 = SPI Slav\\ 0110 = I^2C Slav\\ 0111 = I^2C Slav\\ 1000 = I^2C Mas\\ 1001 = Reserve\\ 1010 = SPI Mas\\ 1011 = I^2C firm\\ 1100 = Reserve\\ 1101 = Reserve\\ 1101 = Reserve\\ 1101 = Reserve\\ 1101 = I^2C Slav\\ 1111 = I^2$	rnchronous Serial F ster mode, clock = ster mode, clock = ster mode, clock = ed ve mode, clock = S ve mode, clock = S ve mode, clock = S re mode, 10-bit add ter mode, clock = I ed ster mode, clock = ware controlled Ma ed re mode, 7-bit addr re mode, 10-bit addr	Port Mode Select Fosc/4 Fosc/16 Fosc/64 CK pin, <u>SS</u> pin CK pin, <u>SS</u> pin ess fress Fosc / (4 * (SSP) ister mode (Slav ress with Start a dress with Start a	control enabled control disabled, S PADD+1)) ⁽⁴⁾ ADD+1)) ⁽⁵⁾ /e idle) nd Stop bit interrup and Stop bit interrup	S can be used as l consequences of the senabled upts enabled	′O pin	
Note 1: In re 2: W	Master mode, the o gister. /hen enabled_these	verflow bit is not se	et since each ne	ew reception (and t	ransmission) is initi	ated by writing to th	he SSPBUF

- When enabled, the SDA and SCL pins must be configured as input of our When enabled, the SDA and SCL pins must be configured as inputs. SSPADD values of 0, 1 or 2 are not supported for I^2C mode. SSPADD value of '0' is not supported. Use SSPM = 0000 instead. 3:
- 4: 5:

REGISTER	20-3: SSPC	ON2: SSP CO	ONTROL RE	GISTER 2			
R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is se	t	'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set	
bit 7 bit 6	GCEN: Gene 1 = Enable in 0 = General o ACKSTAT: A 1 = Acknowle	eral Call Enable Iterrupt when a call address dis cknowledge Sta	bit (in I ² C Sla general call ad abled atus bit (in I ² C	ve mode only) ddress (0x00 d mode only)) or 00h) is receiv	ed in the SSPS	SR
bit 5	0 = Acknowle	edge was not re edge was receiv	/ed bit (in I ² C mor	de only)			
	In Receive mode: Value transmitted when the user initiates an Acknowledge sequence at the end of a receive 1 = Not Acknowledge 0 = Acknowledge						ceive
bit 4	 ACKEN: Acknowledge Sequence Enable bit (in I²C Master mode only)⁽¹⁾ <u>In Master Receive mode:</u> 1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data b Automatically cleared by hardware. 0 = Acknowledge sequence idle 						KDT data bit.
bit 3	RCEN: Recei 1 = Enables I 0 = Receive i	ive Enable bit (Receive mode dle	in I ² C Master ı for I ² C	mode only) ⁽¹⁾			
bit 2	 PEN: Stop Condition Enable bit (in I²C Master mode only)⁽¹⁾ <u>SCK Release Control:</u> 1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. Stop condition Idle 						
bit 1	RSEN: Repe 1 = Initiate R 0 = Repeate	 Stop condition fulle RSEN: Repeated Start Condition Enable bit (in l²C Master mode only)⁽¹⁾ 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle 					
bit 0	 SEN: Start Condition Enable/Stretch Enable bit⁽¹⁾ <u>In Master mode:</u> I = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware. Start condition Idle <u>In Slave mode:</u> Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) Clock stretching is disabled 						
Note de lé	the 1 ² C medule i	a matim tha Idla	made this hit	may mathe as	t (no oncoling)		I F

Note 1: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

21.1.2.8 Asynchronous Reception Set-up:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 21.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSELx bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

21.1.2.9 9-Bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an asynchronous reception with address detect enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 21.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSELx bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- 8. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

21.4 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCON register selects 16-bit mode.

The SPBRGH, SPBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCON register. In Synchronous mode, the BRGH bit is ignored.

Table 21-3 contains the formulas for determining the baud rate. Example 21-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 21-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is idle before changing the system clock.

EXAMPLE 21-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Fosc Desired Baud Rate = $\frac{1}{64([SPBRGH:SPBRGL] + 1)}$ Solving for SPBRGH:SPBRGL: Fosc $X = \frac{Desired Baud Rate}{Desired Baud Rate}$ ___1 64 16000000 9600 64 = [25.042] = 25 16000000 Calculated Baud Rate = $\overline{64(25+1)}$ = 9615 $Error = \frac{Calc. Baud Rate - Desired Baud Rate}{Calc. Baud Rate}$ Desired Baud Rate $=\frac{(9615-9600)}{2}=0.16\%$

9600

Instruction Descriptions 24.2

ADDFSR	Add Literal to FSRn
Syntax:	[label] ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h -

FFFFh. Moving beyond these bounds will cause the FSR to wrap-around.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

ADDLW	Add literal and W			
Syntax:	[<i>label</i>] ADDLW k			
Operands:	$0 \le k \le 255$			
Operation:	$(W) + k \to (W)$			
Status Affected:	C, DC, Z			
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.			

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ASRF	Arithmetic Right Shift					
Syntax:	[<i>label</i>]ASRF f{,d}					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,					
Status Affected:	C, Z					
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in					

register 'f'.

►	register f	->	С	

ADD W and CARRY bit to f

Syntax:	[<i>label</i>] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

TABLE 25-14: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120	US120 TCKH2DTV	SYNC XMIT (Master and Slave) Clock high to data-out valid		80	ns	$3.0V \leq V\text{DD} \leq 3.3V$
				100	ns	$1.8V \leq V\text{DD} \leq 3.3V$
US121	TCKRF	Clock out rise time and fall time		45	ns	$3.0V \leq V\text{DD} \leq 3.3V$
	(Master mode)		50	ns	$1.8V \leq V\text{DD} \leq 3.3V$	
US122	TDTRF	Data-out rise time and fall time	_	45	ns	$3.0V \leq V\text{DD} \leq 3.3V$
			_	50	ns	$1.8V \leq V\text{DD} \leq 3.3V$

FIGURE 25-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 25-15: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-hold before CK \downarrow (DT hold time)	10		ns	
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	—	ns	

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support