

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1559-e-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 6											
300h	INDF0 ⁽¹⁾	Addressing t	this location us	es contents of	FSR0H/FSR0)L to address	data memor	y (not a physi	ical register)	XXXX XXXX	uuuu uuuu
301h	INDF1 ⁽¹⁾	Addressing t	this location us	es contents of	FSR1H/FSR1	L to address	data memor	y (not a physi	ical register)	XXXX XXXX	uuuu uuuu
302h	PCL ⁽¹⁾			Program C	Counter (PC) L	east Significa	ant Byte			0000 0000	0000 0000
303h	STATUS ⁽¹⁾	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
304h	FSR0L ⁽¹⁾			Indirect Da	ata Memory Ad	dress 0 Low	Pointer			0000 0000	uuuu uuuu
305h	FSR0H ⁽¹⁾			Indirect Da	ta Memory Ac	ldress 0 High	Pointer			0000 0000	0000 0000
306h	FSR1L ⁽¹⁾			Indirect Da	ata Memory Ad	dress 1 Low	Pointer			0000 0000	uuuu uuuu
307h	FSR1H ⁽¹⁾			Indirect Da	ta Memory Ac	ldress 1 High	Pointer			0000 0000	0000 0000
308h	BSR ⁽¹⁾	-	_	_			BSR<4:0>			0 0000	0 0000
309h	WREG ⁽¹⁾				Working R	egister				0000 0000	uuuu uuuu
30Ah	PCLATH ⁽¹⁾	_		Write Bu	ffer for the upp	per 7 bits of th	ne Program C	Counter		-000 0000	-000 0000
30Bh	INTCON ⁽¹⁾	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
30Ch	—				Unimplem	ented				_	_
30Dh	—				Unimplem	ented				_	_
30Eh	—				Unimplem	ented				_	_
30Fh	—				Unimplem	ented				_	_
310h	—				Unimplem	ented				_	_
311h	—				Unimplem	ented				_	_
312h	—				Unimplem	ented				_	_
313h	—				Unimplem	ented				_	_
314h	—				Unimplem	ented				_	_
315h	—				Unimplem	ented				_	_
316h	—				Unimplem	ented				_	_
317h	—				Unimplem	ented				_	_
318h	—				Unimplem	ented				_	_
319h	—				Unimplem	ented				_	-
31Ah	—		Unimplemented						_	-	
31Bh	—				Unimplem	ented				_	_
31Ch	—				Unimplem	ented				—	_
31Dh	_				Unimplem	ented				_	_
31Eh	_				Unimplem	ented				_	_
31Fh	—				Unimplem	ented				_	_

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. These registers can be accessed from any bank. Note 1:

2: PIC16LF1554.

PIC16LF1559. 3:

4: These registers/bits are available at two address locations, in Bank 1 and Bank 14.

FIGURE 5-3:	INTERNAL OSCILLATOR SWITCH TIMING
9999970992	LFINYONE (WEF disable)
HFINTOSC	
IRCF <3:0>	$\neq 0$ $\chi = 0$
System Clock	
	LANGTORC (MIDY spanias)
HFINTOSC	
LEINTOSC	
IRCF <3:0>	$\neq 0$ $\chi = 0$
System Clock	
LEINTOSC	
	NINNINNINNI E
8702 ×339>	
System Clook	

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate interrupt enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 8.0 "Power-Down Mode (Sleep)"** for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	
TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE	_	TMR2IE	TMR1IE	
bit 7					•		bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'		
u = Bit is unchanged $x = Bit$ is unknown $-n/n = Value$ at POR and BOR/Value a				R/Value at all c	other Resets			
'1' = Bit is set		0' = Bit is cle	ared					
bit 7	TMR1GIE: Ti	mer1 Gate Inte	rrupt Enable I	bit				
	1 = Enables t 0 = Disables	the Timer1 gate the Timer1 gate	acquisition ir e acquisition i	nterrupt nterrupt				
bit 6	AD1IE: Analo	og-to-Digital Co	nverter (ADC	1) Interrupt En	able bit			
	1 = Enables t 0 = Disables	the ADC interru	pt upt					
bit 5	RCIE: USAR	IE: USART Receive Interrupt Enable bit						
	1 = Enables t 0 = Disables	the USART rec the USART rec	eive interrupt æive interrupt					
bit 4	TXIE: USAR	USART Transmit Interrupt Enable bit						
	1 = Enables t 0 = Disables	the USART tran the USART tra	nsmit interrupt nsmit interrup	: t				
bit 3	SSP1IE: Synchronous Serial Port (MSSP) Interrupt Enable bit							
	1 = Enables t 0 = Disables	the MSSP inter	rupt rupt					
bit 2	Unimplemen	ted: Read as '	0'					
bit 1	TMR2IE: TM	R2 to PR2 Mat	ch Interrupt E	nable bit				
	1 = Enables t 0 = Disables	the Timer2 to P the Timer2 to F	R2 match inte R2 match inte	errupt errupt				
bit 0	TMR1IE: Tim	er1 Overflow Ir	nterrupt Enabl	e bit				
	1 = Enables t 0 = Disables	the Timer1 over the Timer1 over	flow interrupt	t				
Note: Rit		TCON register	must be					

set to enable any peripheral interrupt.

9.0 WATCHDOG TIMER (WDT)

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- Independent clock source
- Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (nominal)
- Multiple Reset conditions
- · Operation during Sleep

FIGURE 9-1: WATCHDOG TIMER BLOCK DIAGRAM

9.6 Register Definitions: Watchdog Control

REGISTER 9		JUN. WATCH		CONTROL	REGISTER		
U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
—				WDTPS<4:0	>		SWDTEN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unchanged		x = Bit is unkr	iown	-n/n = Value	at POR and BO	R/Value at all (other Resets
'1' = Bit is set	-	'0' = Bit is clea	ared				
bit 7-6	Unimplemer	nted: Read as ')'				
bit 5-1	WDTPS<4:0	>: Watchdog Tir	ner Period Se	elect bits ⁽¹⁾			
	Bit Value = I	Prescale Rate					
	111111 = Re	eserved. Results	s in minimum	interval (1:32)			
	•						
	•						
	•		• • • • • • • •	· · · · · · · · · · · · · · · · · · ·			
	10011 = Re	eserved. Results	s in minimum	interval (1:32)			
	10010 = 1 :8	3388608 (2 ²³) (I	nterval 256s	nominal)			
	10001 = 1:4	4194304 (2 ²²) (I	nterval 128s	nominal)			
	10000 = 1:2	2097152 (2 ²¹) (I	nterval 64s n	ominal)			
	01111 = 1:	1048576 (2 ²⁰) (I	nterval 32s n	ominal)			
	01110 = 1:5	524288 (2 ¹⁹) (In	terval 16s no	minal)			
	01101 = 1.2 01100 = 1.2	202144 (2 ¹³) (In 131072 (2 ¹⁷) (In	terval as non	ninal)			
	01011 = 1:6	65536 (Interval)	2s nominal) (l	Reset value)			
	01010 = 1:3	32768 (Interval	1s nominal)	····,			
	01001 = 1:	16384 (Interval	512 ms nomir	nal)			
	01000 = 1:8	3192 (Interval 2	56 ms nomina	al)			
	00111 = 12	4096 (Interval 12	28 ms nomina	al)			
	00110 = 1.2	2046 (Interval 3	+ ms nominal 2 ms nominal)			
	00100 = 1:	512 (Interval 16	ms nominal)	/			
	00011 = 1:2	256 (Interval 8 n	ns nominal)				
	00010 = 1:	128 (Interval 4 n	ns nominal)				
	00001 = 1:6	64 (Interval 2 m	s nominal)				
	00000 = 1:3	32 (Interval 1 m	s nominal)				
bit 0	SWDTEN: S	oftware Enable/	Disable for W	/atchdog Timer	bit		
	If WDTE<1:0	> = 1x:					
	1 = WDT is 1	<u>∽ – ∪⊥</u> . turned on					
	0 = WDT is 1	turned off					
	If WDTE<1:0	> = <u>00</u> :					
	This bit is ign	ored.					

REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.

10.2.4 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the address in PMADRH:PMADRL of the row to be programmed.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 10-5 (row writes to program memory with 32 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper 10-bits of PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:5>) with the lower five bits of PMADRL, (PMADRL<7:5>) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the PMDATH:PMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory.

- Note: The special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. If the unlock sequence is interrupted, writing to the latches or program memory will not be initiated.
- 1. Set the WREN bit of the PMCON1 register.
- 2. Clear the CFGS bit of the PMCON1 register.
- Set the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the PMADRH:PMADRL register pair with the address of the location to be written.
- 5. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The write latch is now loaded.
- 7. Increment the PMADRH:PMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- 11. Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The entire program memory latch content is now written to Flash program memory.
- **Note:** The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

An example of the complete write sequence is shown in Example 10-3. The initial address is loaded into the PMADRH:PMADRL register pair; the data is loaded using indirect addressing.

11.5 PORTB Registers (PIC16LF1559 Only)

11.5.1 DATA REGISTER

PORTB is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 11-8). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., disable the output driver). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 11-7) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

11.5.2 DIRECTION CONTROL

The TRISB register (Register 11-8) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

11.5.3 ANALOG CONTROL

The ANSELB register (Register 11-10) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELB bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSELx bits
	must be initialized to '0' by user software.

11.5.4 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 11-5.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC and comparator inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below in Table 11-5.

TABLE 11-5:	PORTB OUTPUT PRIORITY
-------------	-----------------------

Pin Name	Function Priority ⁽¹⁾
RB4	SDA RB4
RB5	RB5
RB6	SCL SCK RB6
RB7	TX RB7

Note 1: Priority listed from highest to lowest.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
		TRIGSEL<2:0>		_		_	_
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is u	unchanged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is	set	'0' = Bit is clea	ared				
bit 7	Unimpleme	ented: Read as 'o)'				
bit 6-4	TRIGSEL<2	2:0>: Auto-Conve	ersion Trigger	Selection bits			
	000 = No A	uto Conversion T	rigger selecte	d			
	001 = Rese	rved					
	010 = Rese	rved					
	011 = 11me	ru Overflow ⁽¹⁾					
	100 = Time	r? Match to PP?	1)				
	101 - 100 Constant of Con						
111 = ADTRIG Falling Edge							
bit 3-0	Unimpleme	ented: Read as ')'				
Note 1:	Signal also sets	its corresponding	interrupt flag				

REGISTER 15-4: ADxCON2: ADC CONTROL REGISTER 2

REGISTER 15-5: ADxRESxH: ADC RESULT REGISTER HIGH (ADxRESxH) ADFM = 0

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADRES | S<9:2> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE2 ⁽²⁾	AD2ON
bit 7		- I - I				-	bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimpleme	ented bit, read as	s 'O'	
u = Bit is unc	hanged	x = Bit is unknow	'n	-n/n = Value at	POR and BOR/	/alue at all other Res	sets
'1' = Bit is set	t	'0' = Bit is cleare	d				
	•						
bit 7	Unimplemente	ed: Read as '0'					
bit 6-2	CHS<4.0>. An	alog Channel Sele	ct bits for ADC2				
bit 0 2	When AD2ON = 0 , all multiplexer inputs are disconnected.						
	00000 = Cha	innel 0, (AN0)					
	00001 = Cha	innel 1, (AN1)					
	00010 = Cha	innel 2, (AN2)					
	00011 = Res	erved					
	00100 = Res	erved					
	00101 = Res	erved					
	00110 = Res	erved					
	00111 = Res	erved					
	01000 = Res	erved					
	01001 = Res	erved					
	01010 = Res	erved					
	01011 = Res	erved					
	01100 = Res	erved					
	01101 = Res	erved					
	01110 = Res	erved					
	01111 = Res	erved					
	10000 = Res	erved					
	10001 = Res	erved					
	10010 = Res	erved					
	10011 - Res	unnol 20 (ANI20)					
	10100 - Cha	(AN20)					
	10101 - Cha	(AN21)					
	10110 - Cha	$(\Delta N 22)$					
	11000 = Cha	innel 24 (AN24)(1)					
	11000 Cha	(1) (AN25)(1)					
	11010 = Cha	nnel 26 (AN26) ⁽¹⁾					
	11011 = VRE	FH (ADC Positive F	Reference)				
	11100 = Res	erved	(0.0.0100)				
	11101 = Tem	perature Indicator					
	11110 = Res	erved					
	11111 = Fixe	ed Voltage Referen	ce (FVREF) Buffe	er 1 Output			
bit 1	GO/DONE2: A	DC2 Conversion S	tatus bit ⁽²⁾				
	If AD2ON = 1						
	1 = ADC cor	version in progres	s. Setting this bi	t starts the ADC	conversion. Whe	en the RC clock sour	ce is selected,
	the ADC	Module waits one	instruction befo	re starting the co	nversion.		
	0 = ADC cor	nversion not in pro	gress (This bit	is automatically	cleared by hard	ware when the ADC	conversion is
	complete	e.) If this bit is clea	red while a conv	version is in prog	ress, the conver	sion will stop and the	e results of the
	conversi	on up to this point w	vill be transferre	d to the result reg	jisters, but the Al	D2IF interrupt flag bit	will not be set.
	If $AD2ON = 0$			-			
	0 = ADC cor	nversion not in prog	gress				
bit 0	AD2ON: ADC	Module 2 Enable b	bit				
	1 = ADC2 is	enabled					
	0 = ADC2 is	disabled and cons	umes no operat	ing current. All a	nalog channels a	are disconnected.	
Note 1: Pla	C16LF1559 only. No	ot implemented on	PIC16LF1554		-		

REGISTER 16-2: AAD2CON0: HARDWARE CVD 2 CONTROL REGISTER 0

2: When the AD2DSEN bit is set; the GO/DONE2 bit will clear after a second conversion has completed.

REGISTER 16-13: AADxRESxH: HARDWARE CVD RESULT REGISTER MSB ADFM = $0^{(1)}$

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRES	Sx<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	s unchanged x = Bit is unknown		nown	-n/n = Value at POR and BOR/Value at all other			

bit 7-0 ADRESx<9:2>: ADC Result Register bits Upper eight bits of 10-bit conversion result

'1' = Bit is set

Note 1: See Section 16.1.11 "Hardware CVD Register Mapping" for more information.

'0' = Bit is cleared

REGISTER 16-14: AADxRESxL: HARDWARE CVD RESULT REGISTER LSL ADFM = $0^{(1)}$

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
ADRESx<1:0>		—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 ADRESx<1:0>: ADC Result Register bits

Lower two bits of 10-bit conversion result

bit 5-0 Reserved: Do not use.

Note 1: See Section 16.1.11 "Hardware CVD Register Mapping" for more information.

The I^2C interface supports the following modes and features:

- Master mode
- · Slave mode
- Byte NACKing (Slave mode)
- · Limited multi-master support
- 7-bit and 10-bit addressing
- · Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- · General call address matching
- · Address masking
- · Address Hold and Data Hold modes
- Selectable SDA hold times

Figure 20-2 is a block diagram of the I^2C interface module in Master mode. Figure 20-3 is a diagram of the I^2C interface module in Slave mode.

PIC16LF1554/1559 has one MSSP module.

FIGURE 20-2: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

20.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- · Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN of the SSPCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCONx registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRISx register) appropriately programmed as follows:

- · SDI must have corresponding TRISx bit set
- · SDO must have corresponding TRISx bit cleared
- SCK (Master mode) must have corresponding TRISx bit cleared
- SCK (Slave mode) must have corresponding TRISx bit set
- SS must have corresponding TRISx bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRISx) register to the opposite value.

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full Detect bit, BF of the SSPSTAT register, and the interrupt flag bit, SSP1IF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the write collision detect bit WCOL of the SSPCON1 register, will be set. User software must clear the WCOL bit to allow the following write(s) to the SSPBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF of the SSPSTAT register, indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the SSPSTAT register indicates the various Status conditions.

20.5.8 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I^2C protocol, defined as address 0x00. When the GCEN bit of the SSPCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave read SSPBUF software can and respond. Figure 20-24 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the 8th falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

20.5.9 SSP MASK REGISTER

An SSP Mask (SSPMSK) register (Register 20-5) is available in I²C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

21.3 Register Definitions: EUSART Control

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7			1	1		1	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
u = Bit is un	changed	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared				
bit 7	CSRC: Clock Asynchronous Don't care Synchronous 1 = Master r 0 = Slave m	Source Select <u>s mode</u> : <u>mode</u> : node (clock ge ode (clock for	t bit enerated intern n external sou	ally from BRG)		
bit 6	TX9: 9-bit Tra 1 = Selects 0 = Selects	ansmit Enable 9-bit transmiss 8-bit transmiss	bit ion ion	,			
bit 5	TXEN: Transi 1 = Transmit 0 = Transmit	mit Enable bit ^{(*} enabled disabled	1)				
bit 4	SYNC: EUSA 1 = Synchror 0 = Asynchror	ART Mode Sele nous mode onous mode	ect bit				
bit 3	SENDB: Sen Asynchronous 1 = Send Syn 0 = Sync Bre Synchronous Don't care	d Break Chara <u>s mode</u> : nc Break on ne ak transmissic <u>mode</u> :	cter bit ext transmissio on completed	on (cleared by	hardware upon o	completion)	
bit 2	BRGH: High Baud Rate Select bit <u>Asynchronous mode</u> : 1 = High speed 0 = Low speed <u>Synchronous mode</u> : Unused in this mode						
bit 1	TRMT: Transi 1 = TSR emp 0 = TSR full	mit Shift Regis oty	ter Status bit				
bit 0	TX9D: Ninth I Can be addre	bit of Transmit ess/data bit or a	Data a parity bit.				
Note 1: S	REN/CREN over	rides TXEN in	Sync mode.				

REGISTER 21-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

C	onfiguration B	lits		Baud Pata Formula		
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Kale Formula		
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]		
0	0	1	8-bit/Asynchronous			
0	1	0	16-bit/Asynchronous	FOSC/[16 (N+1)]		
0	1	1	16-bit/Asynchronous			
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]		
1	1	x	16-bit/Synchronous			

TABLE 21-3: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGH, SPBRGL register pair.

TABLE 21-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	245
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	244
SPBRGL	BRG<7:0>								246*
SPBRGH		BRG<15:8>						246*	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	243

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

REGISTER 22-3: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
PWMxDCL<7:6>		—	—	—	—	—	—
bit 7							bit 0

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6PWMxDCL<7:6>: PWM Duty Cycle Least Significant bits
These bits are the LSbs of the PWM duty cycle. The MSbs are found in the PWMxDCH register.bit 5-0Unimplemented: Read as '0'

TABLE 22-4: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PR2			Timer	2 module Per	riod Registe	er			178*
PWM1CON	PWM1EN	PWM10E	PWM10UT	PWM1POL		—	-	—	265
PWM1DCH		PWM1DCH<7:0>						265	
PWM1DCL	PWM1D	CL<7:6>	—	—		_		—	266
PWM2CON	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	-	—	-	—	265
PWM2DCH		PWM2DCH<7:0>							265
PWM2DCL	PWM2D	CL<7:6>	—	—		_		—	266
T2CON	- T20UTPS<3:0> TMR20N T2CKPS<1:0>					180			
TMR2		Timer2 module Register						178*	
TRISA	_	—	TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	108
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	116

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le k \le 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC<10:0>, \\ (PCLATH<6:3>) \rightarrow PC<14:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ \text{0} \rightarrow \text{WDT prescaler,} \\ \text{1} \rightarrow \overline{\text{TO}} \\ \text{1} \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits $\overline{\text{TO}}$ and $\overline{\text{PD}}$ are set.

CALLW	Subroutine Call With W				
Syntax:	[label] CALLW				
Operands:	None				
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>				
Status Affected:	None				
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.				

COMF	Complement f		
Syntax:	[<i>label</i>] COMF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	$(\overline{f}) \rightarrow (destination)$		
Status Affected:	Z		
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.		

CLRF	Clear f	
Syntax:	[<i>label</i>] CLRF f	
Operands:	$0 \leq f \leq 127$	
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$	
Status Affected:	Z	
Description:	The contents of register 'f' are cleared and the Z bit is set.	

The contents of register 'f' are cleared and the Z bit is set.	Description:
Clear W	_
[label] CLRW	
None	
$00h \rightarrow (W)$	
$1 \rightarrow Z$	
Z	

W register is cleared. Zero bit (Z) is

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

set.

CLRW Syntax: Operands: Operation:

Status Affected: Description:

MOVIW	Move INDFn to W			
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]			
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31			
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{• FSR + 1 (preincrement)} \\ &\text{• FSR - 1 (predecrement)} \\ &\text{• FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be either:} \\ &\text{• FSR + 1 (all increments)} \\ &\text{• FSR - 1 (all decrements)} \\ &\text{• Unchanged} \end{split}$			
Status Affected:	Z			

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

MOVLB Move literal to BSR

Syntax:	[<i>label</i>]MOVLB k
Operands:	$0 \leq k \leq 31$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH				
Syntax:	[<i>label</i>]MOVLP k				
Operands:	$0 \le k \le 127$				
Operation:	$k \rightarrow PCLATH$				
Status Affected:	None				
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.				
MOVLW	Move literal to W				
Syntax:	[<i>label</i>] MOVLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k \rightarrow (W)$				
Status Affected:	None				
Description:	The 8-bit literal 'k' is loaded into W reg- ister. The "don't cares" will assemble as '0's.				
Words:	1				
Cycles:	1				
Example:	MOVLW 0x5A				
	After Instruction W = 0x5A				
MOVWF	Move W to f				
Syntax:	[label] MOVWF f				

Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF OPTION_REG
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

TABLE 25-9:	CLKOUT	AND I/O	TIMING	PARAMETERS	3
					-

Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C \leq TA \leq +125°C							
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	_	_	70	ns	VDD = 3.3-3.6V
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—		72	ns	VDD = 3.3-3.6V
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—		20	ns	
OS14	TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns		_	ns	
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-3.6V
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	_	_	ns	VDD = 3.3-3.6V
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20			ns	
OS18*	TioR	Port output rise time	—	15	32	ns	VDD = 2.0V
OS19*	TioF	Port output fall time	—	28	55	ns	VDD = 2.0V
OS20*	Tinp	INT pin input high or low time	25			ns	
OS21*	Tioc	Interrupt-on-change new input level time	25	—	—	ns	

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EC mode where CLKOUT output is 4 x Tosc.