

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1559-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative Addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- · Automatic Interrupt Context Saving
- 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

FIGURE 2-1: CORE BLOCK DIAGRAM

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- · Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

TABLE 3-1: DEVICE SIZES AND ADDRESSES

DeviceProgram Memory
Space (Words)Last Program Memory
AddressHigh-Endurance Flash
Memory Address Range (1)PIC16LF15544,0960FFFh0F80h-0FFFhPIC16LF15598,1921FFFh1F80h-1FFFh

Note 1: High-endurance Flash applies to low byte of each address in the range.

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing a 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 3-1).

3.2 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-3):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.5** "Indirect Addressing" for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-8.

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

FIGURE 3-8:	ACCESSING TH	E ST/	ACK EXAMPLE	4
				Rev 10.000043D 7/002013
		0x0F	Return Address	
		0x0E	Return Address	
		0x0D	Return Address	
		0x0C	Return Address	
		0x0B	Return Address	
		0x0A	Return Address	When the stack is full, the next CALL or
		0x09	Return Address	an interrupt will set the Stack Pointer to
		0x08	Return Address	the stack will wrap and overwrite the
		0x07	Return Address	return address at 0x00. If the Stack
		0x06	Return Address	Reset will occur and location 0x00 will
		0x05	Return Address	not be overwritten.
		0x04	Return Address	
		0x03	Return Address	
		0x02	Return Address	
	4	0x01	Return Address	
-	FOSH:TOSL	0x00	Return Address	STKPTR = 0x10
1				

3.4.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

REGISTER 11-14: LATC: PORTC DATA LATCH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATC7 ⁽¹⁾	LATC6 ⁽¹⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽²⁾

Note 1: Functions not available on PIC16LF1554.

2: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

REGISTER 11-15: ANSELC: PORTC ANALOG SELECT REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ANSC<7:0>**: Analog Select between Analog or Digital Function on pins RC<7:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽²⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: Functions not available on PIC16LF1554.

2: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	117
LATC	LATC7 ⁽¹⁾	LATC6 ⁽¹⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	117
PORTC	RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0	116
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	116

TABLE 11-9: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

Note 1: Functions not available on PIC16LF1554.

FIGURE 12-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM (PORTA EXAMPLE)

15.2 ADC Operation

15.2.1 STARTING A CONVERSION

To enable the ADCx module, the ADxON bit of the ADxCON0 register must be set to a '1'. Setting the GO/DONEx bit of the ADxCON0 register to a '1' will start the Analog-to-Digital Conversion.

Setting the GO/DONE_ALL bit of the ADCON1/ ADCOMCON register to a '1' will start the Analog-to-Digital conversion for both ADC1 and ADC2, which is called synchronized conversion.

Note: The GO/DONEx bit should not be set in the same instruction that turns on the ADC. Refer to Section 15.2.6 "Individual ADC Conversion Procedure".

15.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONEx bit
- Clear the GO/DONE_ALL bit if a synchronized conversion is done
- Set the ADxIF interrupt flag bit
- Update the ADxRESxH and ADxRESxL registers with new conversion result

Note: Only ADxRES0 will be updated after a single sample conversion. The completion of a double sample conversion will update both ADxRES0 and ADxRES1 registers. Refer to Section 16.1.6 "Double Sample Conversion" for more information.

15.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the <u>GO/DONEx</u> bit can be cleared in software. If the <u>GO/DONE_ALL</u> bit is cleared in software, the synchronized conversion will stop. The ADxRESxH and ADxRESxL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note:	A device Reset forces all registers to their									
	Reset state. Thus, the ADC module is									
	turned off and any pending conversion is									
	terminated.									

15.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. Performing the ADC conversion during Sleep can reduce system noise. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADXON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADxON bit remains set.

15.2.5 AUTO-CONVERSION TRIGGER

The auto-conversion trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/ DONEx bit is set by hardware.

The auto-conversion trigger source is selected with the TRIGSEL<2:0> bits of the ADxCON2 register.

Using the auto-conversion trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See Table 15-2 for auto-conversion sources.

TABLE 15-2: AUTO-CONVERSION SOURCES

Source Peripheral	Trigger Event
Timer0	Timer0 Overflow
Timer1	Timer1 Overflow
Timer2	Timer2 matches PR2
ADTRIG pin	ADTRIG Rising Edge
ADTRIG pin	ADTRIG Falling Edge

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE2(2)	AD2ON
bit 7					1	1	bit
							SIL
Legend:							
R = Reada	able bit	W = Writable bit		U = Unimpleme	ented bit, read as	s '0'	
u = Bit is ι	inchanged	x = Bit is unknow	/n	-n/n = Value at	POR and BOR/	Value at all other Res	sets
'1' = Bit is	set	'0' = Bit is cleare	d				
			-				
hit 7	Unimplomon	had. Dood oo 'o'					
	Unimplement						
bit 6-2	CHS<4:0>: A	nalog Channel Sele	ct bits for ADC2				
	when AD2ON	I = 0, all multiplexer	inputs are disc	onnected.			
	00000 = Cha	Innel U, (ANU)					
	00001 - Cha	(111) = 1, (AN1)					
	00010 - Cha						
	00011 = Res	erved					
	00101 = Res	erved					
	00110 = Res	erved					
	00111 = Res	erved					
	01000 = Res	erved					
	01001 = Res	erved					
	01010 = Res	erved					
	01011 = Res	erved					
	01100 = Res	erved					
	01101 = Res	erved					
	01110 = Res	erved					
	01111 = Res	erved					
	10000 = Res	served					
	10001 = Res	erved					
	10010 - Res	erved					
	10011 = Res	annel 20 (AN20)					
	10101 = Cha	annel 21 (AN21)					
	10101 = Cha	annel 22. (AN22)					
	10111 = Cha	nnel 23. (AN23)					
	11000 = Cha	nnel 24, (AN24) ⁽¹⁾					
	11001 = Cha	nnel 25, (AN25) ⁽¹⁾					
	11010 = Cha	nnel 26, (AN26) ⁽¹⁾					
	11011 = VRE	FH (ADC Positive R	eference)				
	11100 = Res	erved					
	11101 = Tem	perature Indicator					
	11110 = Res	erved	·				
	111111 = Fixe	ed Voltage Reference	e (FVREF)				
bit 1	GO/DONE2: /	ADC2 Conversion S	tatus bit ⁽²⁾				
	If $AD2ON = 1$						
	1 = ADC c	onversion in progre	ss. Setting this	bit starts the ADC	conversion. Wh	en the RC clock sou	rce is selected
	the AL	C Module waits one	e instruction bei	ore starting the c	onversion.		
	0 = ADCC	onversion not in pro	gress (I his bit is	s automatically cle	eared by hardwar	e when the ADC con	iversion is com
	piete.)	hit in algorid while a	annuaraian ia i	n prograda the e	onvoraion will at	an and the regulte of	the conversion
	ii ulis i	bic point will be trap	eforred to the r	n progress, the c	ut the AD2IE inter	op and the results of	
		nis point will be train		esuit registers, bu		inuplinag bit will not i	Je sel.
	$\frac{11 \text{ AD2ON} = 0}{0} = \Delta DC \alpha$	onversion not in pro	aress				
bit 0	AD2ON: ADC	Module 2 Enable b	it ,.				
	1 = ADC c	onverter module 2 i	s operating			A	
	0 = ADC c	onverter module 2 i	s shut off and co	onsumes no oper	ating current. All	Analog channels are	e aisconnected
Note 1:	PIC16LF1559 only.	Not implemented o	<u>n PIC1</u> 6LF1554	·.			
2:	When the AD2DSE	N bit is set; the GO/	DONE bit will c	lear after a secon	d conversion ha	s completed.	

REGISTER 15-2: AD2CON0: ANALOG-TO-DIGITAL (ADC) 2 CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	
—	-	TRIGSEL<2:0>()	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unch	nanged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	Unimplemented: Read as '0'							
bit 6-4	TRIGSEL<2:0>: Auto-Conversion Trigger Selection bits							
000 = No Auto Conversion Trigger selected								
001 = Reserved								
010 = Reserved								
	$011 = \text{ImerO Overflow}^{(2)}$							
	$100 = 1 \text{ imer 1 Overflow}^{(2)}$							
101 = IMERZ MATCH TO PRZY								
110 = ADTRIC Follows Edge								
bit 3-0	bit 3-0 Unimplemented: Read as '0'							
Note 1: Se	e Section 16. ⁴	1.11 "Hardware	CVD Registe	r Mapping" fo	r more informat	tion.		

REGISTER 16-6: AADxCON2: HARDWARE CVD CONTROL REGISTER 2⁽¹⁾

See Section 16.1.11 "Hardware CVD Register Mapping" for more information. 1:

2: Signal used to set the corresponding interrupt flag.

17.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 3-bit prescaler (independent of Watchdog Timer)
- · Programmable internal or external clock source
- Programmable external clock edge selection
- Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 17-1 is a block diagram of the Timer0 module.

17.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

17.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION REG register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

FIGURE 17-1: TIMER0 BLOCK DIAGRAM

17.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

18.6 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- · PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

18.7 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting.

FIGURE 18-2: TIMER1 INCREMENTING EDGE

18.7.1 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 11.1 "Alternate Pin Function"** for more information.

FIGURE 20-9:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	H CKE	= 0)			
 SS Općonsi	• • •										
	:						[
- 2003 - 200 	: : : :		c	× •	> - 		c	2 2 2			, , , ,
	· · · ·		2 2 2 3	- 5 5 7 7	- 5 5 5 7		2 2 2 3	8 5 5 6	5 5 5 5 5 5 5 5		•
- 3023		× <u> </u>	X 88.8	X 198.6	X 83.4	X 82 3	X 82	; X;		98 Ó	
· (;;;)/ · · · · · · · · · · · · · · · · · · ·	<pre>{ </pre>		; ,/////////////////////////////////	; ;ad///////////////////////////////////	; ,	; 		; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		//////////////////////////////////////	
80988 Serresse		<i>1</i> 4,	s 6 8 8 9 9	, , <i>14</i> 9, ,	, /jp. , /jp. (· · · ·	s c S s	. //j 		ź.	
5552359 175527105 175527105	· · · · · · · · · · · · · · · · · · ·		9 9 9 9	s 5 5 2	< < < \$ \$	• • • •	9 9 9 9	¢ \$ \$ }	 <td></td><td></td>		
	* * * * * * * * * * * * * * * * * * *		с с с с	, , ,	> > > >	• : : :	с с с с	; ; ; ;	; , ; , ; , ; ,	14. 	
Vérile Collision detective autre				·····	·····			·····			

FIGURE 20-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

20.5.3.3 7-Bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPCON3 register enables additional clock stretching and interrupt generation after the 8th falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSP1IF interrupt is set.

Figure 20-19 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPSTAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the 8th falling edge of the SCL line the CKP bit is cleared and SSP1IF interrupt is generated.
- 4. Slave software clears SSP1IF.
- 5. Slave software reads ACKTIM bit of SSPCON3 register, and R/\overline{W} and D/\overline{A} of the SSPSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- Slave hardware automatically clears the CKP bit and sets SSP1IF after the ACK if the R/W bit is set.
- 11. Slave software clears SSP1IF.
- 12. Slave loads value to transmit to the master into SSPBUF setting the BF bit.

Note: <u>SSPBUF</u> cannot be loaded until after the <u>ACK</u>.

- 13. Slave sets CKP bit releasing the clock.
- 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

24.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- · Bit Oriented
- · Literal and Control

The literal and control category contains the most varied instruction word format.

Table lists the instructions recognized by the MPASM $^{\mbox{\scriptsize TM}}$ assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

24.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 24-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 24-2: ABBREVIATION DESCRIPTIONS

Field	Description
PC	Program Counter
TO	Time-Out bit
С	Carry bit
DC	Digit Carry bit
Z	Zero bit
PD	Power-Down bit

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label]BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BRWRelative Branch with WSyntax:[label] BRWOperands:None

Operation:	$(PC) + (W) \rightarrow PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be $PC + 1 + (W)$. This instruction is a 2-cycle instruc- tion.
	uon.

BSF	Bit Set f
Syntax:	[<i>label</i>]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

LSLF	Logical Left Shift
Syntax:	[<i>label</i>]LSLF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1 \right] \end{array}$
Operation:	$(f<7>) \rightarrow C$ $(f<6:0>) \rightarrow dest<7:1>$ $0 \rightarrow dest<0>$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	C ← register f ← 0

LSRF	Logical Right Shift
Syntax:	[<i>label</i>]LSRF f{,d}
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$\begin{array}{l} 0 \rightarrow \text{dest<7>} \\ (\text{f<7:1>}) \rightarrow \text{dest<6:0>}, \\ (\text{f<0>}) \rightarrow \text{C}, \end{array}$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	0 → register f → C

MOVF	Move f							
Syntax:	[<i>label</i>] MOVF f,d							
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$							
Operation:	$(f) \rightarrow (dest)$							
Status Affected:	Z							
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.							
Words:	1							
Cycles:	1							
Example:	MOVF FSR, 0							
	After Instruction W = value in FSR register Z = 1							

FIGURE 25-14: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

SPI MASTER MODE TIMING (CKE = 0, SMP = 0) FIGURE 25-13:

TABLE 25-17: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)										
Param. No.	Symbol	Characteristic		Min.	Тур.	Max.	Units	Conditions		
SP90*	TSU:STA	Start condition	100 kHz mode	4700	_	—	ns	Only relevant for Repeated Start condition		
		Setup time	400 kHz mode	600	_	_				
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	—	ns	After this period, the first clock pulse is generated		
		Hold time	400 kHz mode	600	_	—				
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	_	_	ns			
		Setup time	400 kHz mode	600	_	—				
SP93	THD:STO	Stop condition	100 kHz mode	4000	_	—	ns			
		Hold time	400 kHz mode	600						

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

FIGURE 25-18: I²C BUS DATA TIMING

27.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

27.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension Lin	nits	MIN	NOM	MAX			
Number of Pins	N	14					
Pitch	е	1.27 BSC					
Overall Height	A	-	-	1.75			
Molded Package Thickness	A2	1.25	-	-			
Standoff §	A1	0.10	-	0.25			
Overall Width	E		6.00 BSC				
Molded Package Width	E1	3.90 BSC					
Overall Length	D	8.65 BSC					
Chamfer (Optional)	h	0.25	-	0.50			
Foot Length	L	0.40	-	1 <u>.</u> 27			
Footprint	L1	1.04 REF					
Lead Angle	Θ	0°	-	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.10	-	0.25			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2