E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1559t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Master Synchronous Serial Port (MSSP) with SPI and I²C with:
 - 7-bit address masking
 - SMBus/PMBus™ compatibility
- Enhanced Universal Synchronous Asynchronous
 - Receiver Transmitter (EUSART):
 - RS-232, RS-485 and LIN compatible
 - Auto-Baud Detect
 - Auto-wake-up on start

PIC16LF1554/1559 Family Types

Device	Data Sheet Index	Program Memory Flash (words)	Data EEPROM (bytes)	SRAM (bytes)	I/OS ⁽¹⁾	10-bit ADC (ch) ⁽²⁾	Timers 8/16-Bit	EUSART	ASSM	WMd	Cap Touch Channels	Debug ⁽³⁾
PIC16LF1554	(A)	4096	0	256	12	11	2/1	1	1	2	11	Ι
PIC16LF1559	(A)	8192	0	512	18	17	2/1	1	1	2	17	Ι

Note 1: RA3 is input only.

- 2: 11/17 analog channels are connected to two ADC modules.
- 3: Debugging Methods: (I) Integrated on Chip; (H) available using Debug Header

Data Sheet Index: (Unshaded devices are described in this document)

A. DS40001761 PIC16LF1554/1559 Data Sheet, 14/20-Pin, 8-Bit Flash Microcontrollers.

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 2											
100h	INDF0 ⁽¹⁾	Addressing t	his location us	es contents of	FSR0H/FSR0)L to address	data memor	y (not a physi	ical register)	xxxx xxxx	uuuu uuuu
101h	INDF1 ⁽¹⁾	Addressing t	his location us	es contents of	FSR1H/FSR1	L to address	data memor	y (not a physi	ical register)	xxxx xxxx	uuuu uuuu
102h	PCL ⁽¹⁾			Program C	Counter (PC) L	east Significa	ant Byte			0000 0000	0000 0000
103h	STATUS ⁽¹⁾	—	—	—	TO	PD	Z	DC	С	1 1000	q quuu
104h	FSR0L ⁽¹⁾			Indirect Da	ata Memory Ac	Idress 0 Low	Pointer			0000 0000	uuuu uuuu
105h	FSR0H ⁽¹⁾				0000 0000	0000 0000					
106h	FSR1L ⁽¹⁾				0000 0000	uuuu uuuu					
107h	FSR1H ⁽¹⁾				0000 0000	0000 0000					
108h	BSR ⁽¹⁾	—	BSR<4:0>								0 0000
109h	WREG ⁽¹⁾				Working R	egister				0000 0000	uuuu uuuu
10Ah	PCLATH ⁽¹⁾	—	Write Buffer for the upper 7 bits of the Program Counter							-000 0000	-000 0000
10Bh	INTCON ⁽¹⁾	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
10Ch	LATA	—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0	xx xxxx	uu uuuu
10Dh	LATB ⁽²⁾	Unimplemented							—	—	
IUDII	LATB ⁽³⁾	LATB7	LATB6	LATB5	LATB4	—	—	—	—	xxxx	uuuu
10Eb	LATC ⁽²⁾	—	—	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xx xxxx	uu uuuu
IULII	LATC ⁽³⁾	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	uuuu uuuu
10Fh	—				Unimplem	ented				—	—
110h	—				Unimplem	ented				—	—
111h	—				Unimplem	ented				—	—
112h	_				Unimplem	ented				—	—
113h	_				Unimplem	ented				—	—
114h	—				Unimplem	ented				—	—
115h	—				Unimplem	ented	_	_		—	—
116h	BORCON	SBOREN	BORFS	—	—	—	—	—	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	—	—	ADFV	R<1:0>	0q0000	0q0000
118h	—				Unimplem	ented				—	—
119h	—				Unimplem	ented				—	—
11Ah	—		Unimplemented							—	—
11Bh	—		Unimplemented							—	—
11Ch	—				Unimplem	ented				—	—
11Dh	APFCON	RXDTSEL	SDOSEL	SSSEL	SDSEL	—	TXCKSEL	GRDBSEL	GRDASEL	0000 -000	0000 -000
11Eh	—		Unimplemented							—	—
11Fh	_				Unimplem	ented				—	—

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: These registers can be accessed from any bank.

2: PIC16LF1554.

3: PIC16LF1559.

4: These registers/bits are available at two address locations, in Bank 1 and Bank 14.

						(/			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Banks 8	3-11										
x00h/ x80h	INDF0 ⁽¹⁾	Addressing	his location us	es contents of	FSR0H/FSR0)L to address	data memor	y (not a physi	cal register)	XXXX XXXX	uuuu uuuu
x00h/ x81h	INDF1 ⁽¹⁾	Addressing	ddressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)								uuuu uuuu
x02h/ x82h	PCL ⁽¹⁾		Program Counter (PC) Least Significant Byte								0000 0000
x03h/ x83h	STATUS ⁽¹⁾	_	-	_	TO	PD	Z	DC	С	1 1000	q quuu
x04h/ x84h	FSR0L ⁽¹⁾		Indirect Data Memory Address 0 Low Pointer								uuuu uuuu
x05h/ x85h	FSR0H ⁽¹⁾		Indirect Data Memory Address 0 High Pointer							0000 0000	0000 0000
x06h/ x86h	FSR1L ⁽¹⁾		Indirect Data Memory Address 1 Low Pointer							0000 0000	uuuu uuuu
x07h/ x87h	FSR1H ⁽¹⁾			Indirect Da	ta Memory Ad	ldress 1 High	Pointer			0000 0000	0000 0000
x08h/ x88h	BSR ⁽¹⁾	_	_	_			BSR<4:0>			0 0000	0 0000
x09h/ x89h	WREG ⁽¹⁾				Working R	egister				0000 0000	uuuu uuuu
x0Ah/ x8Ah	PCLATH ⁽¹⁾	_		Write But	ffer for the upp	per 7 bits of th	ne Program C	Counter		-000 0000	-000 0000
x0Bh/ x8Bh	INTCON ⁽¹⁾	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 000x	0000 000u
x0Ch/ x8Ch 	_	Unimplemented							_	_	

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: These registers can be accessed from any bank.

2: PIC16LF1554.

3: PIC16LF1559.

4: These registers/bits are available at two address locations, in Bank 1 and Bank 14.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN	BORFS	_	_	_	_	_	BORRDY	66
PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	70
STATUS	—	—	-	TO	PD	Z	DC	С	22
WDTCON		_	WDTPS<4:0>					SWDTEN	86

 TABLE 6-5:
 SUMMARY OF REGISTERS ASSOCIATED WITH RESETS⁽¹⁾

Legend: — = unimplemented bit, reads as '0'. Shaded cells are not used by Resets.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8					CLKOUTEN	BORE	N<1:0>		50
CONFIGT	7:0	CP	MCLRE	PWRTE	WD	TE<1:0>	_	FOSC	<1:0>	53
	13:8	_	_	LVP	DEBUG	LPBOR	BORV	STVREN	—	54
CONFIG2	7:0	_	_	—	_	—	_	WRT	<1:0>	54

TABLE 6-6: SUMMARY OF CONFIGURATION WORD WITH RESETS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

U-0	R/W-0/0	U-0	U-0	R/W-0/0	U-0	U-0	U-0
	AD2IF	—	—	BCLIF		—	—
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	Unimplement	ted: Read as 'd)'				
bit 6	AD2IF: ADC 2	2 Interrupt Flag	bit				
	1 = Interrupt is	s pending					
	0 = Interrupt is	s not pending					
bit 5-4	Unimplement	ted: Read as '	כ'				
bit 3	BCLIF: MSSF	P Bus Collision	Interrupt Flag	ı bit			
1 = Interrupt is pending							
	0 = Interrupt is	s not pending					
bit 2-0	Unimplement	ted: Read as '	כ'				

REGISTER 7-5:	PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2	
---------------	---	--

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Interrupt Enable bit, GIE of the INTCON
	register. User software should ensure the
	appropriate interrupt flag bits are clear prior
	to enabling an interrupt.

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	77
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			166
PIE1	TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE	_	TMR2IE	TMR1IE	78
PIE2	_	AD2IE	_	_	BCLIE	_	_	_	79
PIR1	TMR1GIF	AD1IF	RCIF	TXIF	SSP1IF		TMR2IF	TMR1IF	80
PIR2		AD2IF	_	_	BCLIF	_	_	_	81

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

FIGURE 10-6: FLASH PROGRAM MEMORY WRITE FLOWCHART

15.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADxRESxH:ADxRESxL register pair). The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

The PIC16LF1554/1559 has two ADCs, which can operate together or separately. Both ADCs can generate an interrupt upon completion of a conversion. This interrupt can be used to wake up the device from Sleep. Figure 15-1 shows the block diagram of the two ADCs.

AAD1CON3 AD10N AAD1PRE AN1x AAD1ACQ AN0 AAD1GRD \boxtimes AN1 AAD1CAP AD1RES_xH AD1RESxL AN2 *** AN10 CH1x ΕN Hardware 16 AN11 CVD AN12 0 = Left Justify AN13 AN14⁽¹⁾ IN ADC1 OUT 1 = Right Justify AAD1CH - Secondary Channel Select AN15⁽¹⁾ AN16⁽¹⁾ VPOS GO CLK Automatic Trigger $\mathsf{V}_{\mathsf{REFH}}$ Temp Indicator Sources FVR Buffer1 AAD1CON2 CHS<4.0> GO/DONE1 OR Positive Voltage Clock GO/DONE_ALL Reference Source ADFM ADPREF<1:0> ADCS<2:0> GO/DONE2 OR Automatic Trigger Sources AAD2CON2 GO CLK AN20 V_{POS} AN21 AAD2CH - Secondary Channel Select AN22 0 = Left Justify AN23 AN24⁽¹⁾ IN ADC2 OUT 1 = Right Justify AN25⁽¹⁾ Hardware 16 AN26⁽¹⁾ CVD CH2x ΕN VREEH AD2RESxH AD2RESxL AAD2CAP Temp Indicator \boxtimes AAD2GRD . FVR Buffer2 AAD2ACO AN2x AD2ON AAD2PRE CHS<4:0> AAD2CON3 (1) PIC16LF1559 only.

FIGURE 15-1: ADC SIMPLIFIED BLOCK DIAGRAM

ADC Clock	Period (TAD)	Device Frequency (Fosc)								
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz			
Fosc/2	000	62.5 ns	100 ns	125 ns	250 ns	500 ns	2.0 μs			
Fosc/4	100	125 ns	200 ns	250 ns	500 ns	1.0 μs	4.0 μs			
Fosc/8	001	250 ns	400 ns	500 ns	1.0 μs	2.0 μs	8.0 μs			
Fosc/16	101	500 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs			
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs	32.0 μs			
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs	16.0 μs	64.0 μs			
FRC	x11	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs			

TABLE 15-1: ADC CLOCK PERIOD (TAD) vs. DEVICE OPERATING FREQUENCIES⁽¹⁾

Legend: Shaded cells are outside of recommended range.

Note 1: The TAD period when using the FRC clock source can fall within a specified range, (see TAD parameter). The TAD period when using the FOSC-based clock source can be configured for a more precise TAD period. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

15.2 ADC Operation

15.2.1 STARTING A CONVERSION

To enable the ADCx module, the ADxON bit of the ADxCON0 register must be set to a '1'. Setting the GO/DONEx bit of the ADxCON0 register to a '1' will start the Analog-to-Digital Conversion.

Setting the GO/DONE_ALL bit of the ADCON1/ ADCOMCON register to a '1' will start the Analog-to-Digital conversion for both ADC1 and ADC2, which is called synchronized conversion.

Note: The GO/DONEx bit should not be set in the same instruction that turns on the ADC. Refer to Section 15.2.6 "Individual ADC Conversion Procedure".

15.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONEx bit
- Clear the GO/DONE_ALL bit if a synchronized conversion is done
- Set the ADxIF interrupt flag bit
- Update the ADxRESxH and ADxRESxL registers with new conversion result

Note: Only ADxRES0 will be updated after a single sample conversion. The completion of a double sample conversion will update both ADxRES0 and ADxRES1 registers. Refer to Section 16.1.6 "Double Sample Conversion" for more information.

15.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the <u>GO/DONEx</u> bit can be cleared in software. If the <u>GO/DONE_ALL</u> bit is cleared in software, the synchronized conversion will stop. The ADxRESxH and ADxRESxL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note:	A device Reset forces all registers to their
	Reset state. Thus, the ADC module is
	turned off and any pending conversion is
	terminated.

15.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. Performing the ADC conversion during Sleep can reduce system noise. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADXON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADxON bit remains set.

15.2.5 AUTO-CONVERSION TRIGGER

The auto-conversion trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/ DONEx bit is set by hardware.

The auto-conversion trigger source is selected with the TRIGSEL<2:0> bits of the ADxCON2 register.

Using the auto-conversion trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See Table 15-2 for auto-conversion sources.

TABLE 15-2: AUTO-CONVERSION SOURCES

Source Peripheral	Trigger Event
Timer0	Timer0 Overflow
Timer1	Timer1 Overflow
Timer2	Timer2 matches PR2
ADTRIG pin	ADTRIG Rising Edge
ADTRIG pin	ADTRIG Falling Edge

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0/ AD1CON0		CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE1	AD10N	133
AD2CON0	_	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE2	AD2ON	134
ADCON1/ ADCOMCON	ADFM	ADCS<2:0>		_	GO/DONE_ALL	ADPREF<1:0>		135	
ADxCON2	_	TR	IGSEL<2:()>	_	_		_	136
ADxRESxH	ADC Result Register High						136, 137		
ADxRESxL	ADC Result Register Low				137, 137				
ANSELA			ANSA5	ANSA4		ANSA2	ANSA1	ANSA0	109
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4		—	_	_	113
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	117
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	77
PIE1	TMR1GIE	AD1IE	RCIE	TXIE	SSP1IE	—	TMR2IE	TMR1IE	78
PIR1	TMR1GIF	AD1IF	RCIF	TXIF	SSP1IF	_	TMR2IF	TMR1IF	80
TRISA	_		TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	108
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_		112
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	116
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_		ADFVR-	<1:0>	124

TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

Note 1: Unimplemented, read as '1'.

	REGI	STER ^(1,2,3,4)					
U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	CH16	CH15	CH14	CH13	CH12	CH11	CH10
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'	
u = Bit is unc	hanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set	t	'0' = Bit is cle	ared				
bit 7	Unimplemer	nted: Read as '	0'				
bit 6	CH16: Chan	nel 16 to ADC1	Connection bi	t ⁽⁵⁾			
	1 = AN16 is	s connected to					
hit 5	CH15: Chap		Connection bi	₊ (5)			
DIU	1 = AN15 is	s connected to	ADC1				
	0 = AN15 is	not connected	I to ADC1				
bit 4	4 CH14: Channel 14 to ADC1 Connection bit ⁽⁵⁾						
	1 = AN14 is	s connected to					
hit 0	0 = AN 14 Is		Connection bi				
DILS	1 = AN13 is	s connected to	ADC1	L			
	0 = AN13 is not connected to ADC1						
bit 2	CH12: Chani	nel 12 to ADC1	Connection bi	t			
	1 = AN12 is	s connected to	ADC1				
1.11.4	0 = AN12 is	s not connected	to ADC1				
DIT 1	CH11: Channel 1 = AN11 is	connected to		I			
	0 = AN11 is	not connected	to ADC1				
bit 0	CH10: Chani	nel 10 to ADC1	Connection bi	t			
1 = AN10 is connected to ADC1							
	0 = AN10 is	s not connected	to ADC1				
Note 1: This	s register select	s secondary ch	annels which a	are connected i	n parallel to the	e primary chann	el selected in
2: If the	e same channel	l is selected as	both primarv a	ie primary and ind secondary i	then the selecti	on as primarv t	akes
prec	cedence.		· · ····· · · · · · · · · · · · · · ·				

REGISTER 16-3: AAD1CH: HARDWARE CVD 1 SECONDARY CHANNEL SELECT

3: Enabling these bits automatically overrides the corresponding TRIS bit to tri-state the selected pin.

4: In the same way that the CHS bits in AAD1CON0 only close the switch when the ADC is enabled, these connections and the TRISx overrides are only active if the ADC is enabled by setting ADxON.

5: PIC16LF1559 only. Unimplemented/Read as '0' on PIC16LF1554.

20.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPSTAT register is set when the CPU writes to SSPBUF and is cleared when all eight bits are shifted out.

20.6.6.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

20.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPCON2 register is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

20.6.6.4 Typical Transmit Sequence

- 1. The user generates a Start condition by setting the SEN bit of the SSPCON2 register.
- 2. SSP1IF is set by hardware on completion of the Start.
- 3. SSP1IF is cleared by software.
- 4. The MSSP module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPBUF with the slave address to transmit.
- 6. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPBUF is written to.
- 7. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 8. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSP1IF bit.
- 9. The user loads the SSPBUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all eight bits are transmitted.
- 11. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

22.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 22-4.

EQUATION 22-4: PWM RESOLUTION

Resolution = $\frac{\log[4(PR2 + 1)]}{\log(2)}$ bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 22-1:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 32 MHz)

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 22-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 22-3:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

22.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

22.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to **Section 5.0** "**Oscillator Module**" for additional details.

22.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

Mnemonic, Operands		Description		14-Bit Opcode				Status	Notos
		Description	Cycles	MSb			LSb	Affected	NOLES
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS			-	-
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED SKIP C	PERATIC	ONS					
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE REGIST	ER OPER	ATION	S				
BCF	f. b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED SKIP OF	PERATIO	٧S					
BTESC	fb	Bit Test f. Skip if Clear	1 (2)	01	10bb	bfff	ffff		12
BTFSS	f. b	Bit Test f. Skip if Set	1 (2)	01	11bb	bfff	ffff		1.2
	, -	LITERAL OPERAT	TIONS						,
ADDIW	k	Add literal and W	1	11	1110	kkkk	kkkk	C DC 7	
ANDIW	k	AND literal with W	1	11	1001	kkkk	kkkk	7	
IORIW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	7	
MOVIB	k	Move literal to BSR	1	00	0000	001	kkkk	-	
MOVLD	k	Move literal to PCI ATH	1	11	0001	1kkk	kkkk		
MOVIW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal		11	1100	kkkk	kkkk		
XORIW	k	Exclusive OR literal with W		11	1010	rrr kkkk	KKKK KKKK	7	
NOILEN	N		L '	1 I I	TOTO	VVVV	VVVK	4	

TABLE 24-3: ENHANCED MID-RANGE INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

BCF	Bit Clear f
Syntax:	[<i>label</i>]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label]BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BRWRelative Branch with WSyntax:[label] BRWOperands:None

Operation:	$(PC) + (W) \rightarrow PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be $PC + 1 + (W)$. This instruction is a 2-cycle instruc- tion.
	uon.

BSF	Bit Set f
Syntax:	[<i>label</i>]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

TABLE 25-4: I/O PORTS

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$								
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions			
	VIL	Input Low Voltage								
		I/O PORT:								
D030		with TTL buffer	—	_	0.15 VDD	V	$1.8V \leq V\text{DD} \leq 3.6V$			
D031		with Schmitt Trigger buffer	—	_	0.2 VDD	V	$2.0V \leq V\text{DD} \leq 3.6V$			
D032		MCLR	—	_	0.2 VDD	V				
	VIH	Input High Voltage								
		I/O ports:		_	—					
D040		with TTL buffer	0.25 VDD + 0.8		—	V	$1.8V \leq V\text{DD} \leq 3.6V$			
D041		with Schmitt Trigger buffer	0.8 VDD		—	V	$2.0V \le V\text{DD} \le 3.6V$			
D042		MCLR	0.8 VDD	_		V				
	lı∟	Input Leakage Current ⁽¹⁾								
D060		I/O ports	—	± 5	± 125	nA	$VSS \le VPIN \le VDD$, Pin at			
				± 5	± 1000	nA	high-impedance at 85°C 125°C			
D061		MCLR ⁽²⁾	—	± 50	± 200	nA	$V\text{SS} \leq V\text{PIN} \leq V\text{DD} \text{ at } 85^\circ\text{C}$			
	IPUR	Weak Pull-up Current			•					
D070*			25	100	200	μA	VDD = 3.3V, VPIN = VSS			
	Vol	Output Low Voltage ⁽³⁾								
D080		I/O ports	_	_	0.6	V	IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V			
	Voн	Output High Voltage ⁽³⁾								
D090		I/O ports	Vdd - 0.7	_	_	V	ІОН = 3mA, VDD = 3.3V ІОН = 1mA, VDD = 1.8V			
		Capacitive Loading Specs on Output Pins								
D101A*	Сю	All I/O pins	_	_	50	pF				

* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Including OSC2 in CLKOUT mode.

27.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

27.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

27.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

27.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- Rich directive set
- · Flexible macro language
- · MPLAB X IDE compatibility

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

VIEW A-A

Microchip Technology Drawing No. C04-065C Sheet 1 of 2