

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC 603e
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	166MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 110°C (TC)
Security Features	-
Package / Case	255-BCBGA Exposed Pad
Supplier Device Package	255-CI-CBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/tspc603rvgs6lc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TSPC603R

Figure 5-1. Functional Signal Groups

6. Detailed Specifications

This specification describes the specific requirements for the microprocessor TSPC603R, in compliance with MIL-STD-883 class B or Atmel standard screening.

7. Applicable Documents

- 1. MIL-STD-883: Test methods and procedures for electronics
- 2. MIL-PRF-38535: General specifications for microcircuits

The microcircuits are in accordance with the applicable documents and as specified herein.

8. Thermal Characteristics

8.1 CBGA 255 and CI-CGA 255 Packages

The data found in this section concerns 603R devices packaged in the 255-lead 21 mm multi-layer ceramic (MLC) and ceramic BGA package. Data is included for use with a Thermalloy #2328B heat sink.

The internal thermal resistance for this package is negligible due to the exposed die design. A thermal interface material is recommended at the package lid to heat sink interface to minimize the thermal contact resistance.

Additionally, the CBGA package offers an excellent thermal connection to the card and power planes. Heat generated at the chip is dissipated through the package, the heat sink (when used) and the card. The parallel heat flow paths result in the lowest overall thermal resistance as well as offer significantly better power dissipation capability if a heat sink is not used.

The thermal characteristics for the flip-chip CBGA and CI-CGA packages are as follows:

Thermal resistance (junction-to-case) = R_{jc} or θ_{ic} = 0.095°C/Watt for the 2 packages.

Thermal resistance (junction-to-ball) = R_{jb} or θ_{jb} = 3.5°C/Watt for the CBGA package.

Thermal resistance (junction-to-bottom SCI) = R_{js} or $\theta_{is} = 3.7^{\circ}$ C/Watt for the CI-CGA package.

The junction temperature can be calculated from the junction to ambient thermal resistance, as follow:

Junction temperature:

 $T_{i} = T_a + (R_{ic} + R_{cs} + R_{sa}) \times P$

where:

T_a is the ambient temperature in the vicinity of the device

R_{ic} is the die junction to case thermal resistance of the device

R_{cs} is the case to heat sink thermal resistance of the interface material

R_{sa} is the heat sink to ambient thermal resistance

P is the power dissipated by the device

During operation, the die-junction temperatures (T_j) should be maintained at a lower value than the value specified in "Recommended Operating Conditions" on page 6.

The thermal resistance of the thermal interface material (R_{cs}) is typically about 1°C/Watt.

Assuming a T_a of 85°C and a consumption (P) of 3.6 Watts, the junction temperature of the device would be as follow:

 $T_{i=}85^{\circ}C + (0.095^{\circ}C/Watt + 1^{\circ}C/Watt + R_{sa}) \times 3.5$ Watts.

For the Thermalloy heat sink #2328B, the heat sink-to-ambient thermal resistance (R_{sa}) versus airflow velocity is shown in Figure 8-1.

Signal Name	Abbreviation	Signal Function	Signal Type
Address Bus	A[0-31]	If output, physical address of data to be transferred If input, represents the physical address of a snoop operation	I/O
Data Bus	DH[0-31]	Represents the state of data, during a data write operation if output, or during a data read operation if input	I/O
Data Bus	DL[0-31]	Represents the state of data, during a data write operation if output, or during a data read operation if input	I/O

Table 10-5. Address and Data Bus Signal Index for Cerquad, CBGA 255 and CI-CGA 255 Packages

Table 10-6. Signal Index for Cerquad, CBGA 255, HiTCE CBGA 255 and CI-CGA 255 Packages

Signal Name	Abbreviation	Signal Function	Signal Type			
Address Acknowledge	AACK	The address phase of a transaction is complete	Input			
Address Bus Busy	ABB	If output, the 603R is the address bus master If input, the address bus is in use	I/O			
Address Bus Parity	AP[0-3]	If output, represents odd parity for each of 4 bytes of the physical address for a transaction If input, represents odd parity for each of 4 bytes of the physical address for snooping operations				
Address Parity Error	APE	Incorrect address bus parity detected on a snoop	Output			
Address Retry	ARTRY	If output, detects a condition in which a snooped address tenure must be retried If input, must retry the preceding address tenure	I/O			
Bus Grant	BG	May, with the proper qualification, assume mastership of the address bus	Input			
Bus Request	BR	Request mastership of the address bus	Output			
Cache Inhibit	CI	A single-beat transfer will not be cached	Output			
Checkstop Input	CKSTP_IN	Must terminate operation by internally gating off all clocks, and release all outputs				
Checkstop Output	CKSTP_OUT	Has detected a checkstop condition and has ceased operation	Output			
Cache Set Entry	CSE[0-1]	Cache replacement set element for the current transaction reloading into or writing out of the cache	Output			
Data Bus Busy	DBB	If output, the 603R is the data bus master If input, another device is bus master	I/O			
Data Bus Disable	DBDIS	(For a write transaction) must release data bus and the data bus parity to high impedance during the following cycle	Input			
Data Bus Grant	DBG	May, with the proper qualification, assume mastership of the data bus	Input			
Data Bus Write Only	DBW0	May run the data bus tenure	Input			
Data Bus Parity	DP[0-7]	If output, odd parity for each of 8 bytes of data write transactions If input, odd parity for each byte of read data	I/O			
Data Parity Error	DPE	Incorrect data bus parity	Output			
Data Retry	DRTRY	Must invalidate the data from the previous read operation	Input			

Signal Name	Abbreviation	Signal Function	Signal Type
Transfer Start	TS	If output, begun a memory bus transaction and the address bus and transfer attribute signals are valid If input, another master has begun a bus transaction and the address bus and transfer attribute signals are valid for snooping (see GBL)	I/O
Transfer Type	TT[0-4]	Type of transfer in progress	I/O
Write-through	WT	A single-beat transaction is write-through	Output

Table 10-6. Signal Index for Cerquad, CBGA 255, HiTCE CBGA 255 and CI-CGA 255 Packages (Continued)

11. Electrical Characteristics

11.1 General Requirements

All static and dynamic electrical characteristics specified for inspection purposes and the relevant measurement conditions are given below:

- Table 11-1: Static electrical characteristics for the electrical variants
- Table 11-2: Dynamic electrical characteristics for the 603R

The processor core frequency is determined by the bus (SYSCLK) frequency and the settings of the PLL_CFG0 to PLL_CFG3 signals. All timings are respectively specified to the rising edge of SYSCLK.

These specifications are for 166 MHz to 300 MHz processor core frequencies for CBGA 255, HiTCE CBGA 255 and CI-CGA 255 packages and 166 MHz to 200 MHz processor core frequencies for the Cerquad 240 package.

11.2 Static Characteristics

Table 11-1.	Electrical Characteristics with V	$V_{DD} = AV_{DD} = 2.5V \pm 5^{\circ}$	%; OV _{DD} = 3.3 ±5%V, GNE	$D = 0V, -55^{\circ}C \le T_{C} \le 125^{\circ}C$
-------------	-----------------------------------	---	-------------------------------------	---

Characteristics	Symbol	Min	Max	Unit	
Input High Voltage (all inputs except SYSCLK)		V _{IH}	2	5.5	V
Input Low Voltage (all inputs except SYSCLK)		V _{IL}	GND	0.8	V
SYSCLK Input High Voltage		CVIH	2.4	5.5	V
SYSCLK Input Low Voltage		CVIL	GND	0.4	V
	V _{IN} = 3.465V ⁽¹⁾⁽³⁾	I _{IN}	-	30	μA
	$V_{IN} = 5.5 V^{(1)(3)}$	I _{IN}	-	300	μA
Hi-Z (off-state)	V _{IN} = 3.465V ⁽¹⁾⁽³⁾	I _{TSI}	-	30	μA
Leakage Current	$V_{IN} = 5.5 V^{(1)(3)}$	I _{TSI}	-	300	μA
Output High Voltage	I _{OH} = -7 mA	V _{OH}	2.4	-	V
Output Low Voltage	I _{OL} = +7 mA	V _{OL}	-	0.4	V
Capacitance, $V_{IN} = 0V$, f = 1 MHz ⁽²⁾ (excludes TS, ABB, DBB, and ARTRY)			-	10	pF
Capacitance, $V_{IN} = 0V$, f = 1 MHz ⁽²⁾ (for TS, ABB,	DBB, and ARTRY)	C _{IN}	-	15	pF

Notes: 1. Excludes test signals (LSSD_MODE, L1_TSTCLK, L2_TSTCLK, and JTAG signals).

2. Capacitance is periodically sampled rather than 100% tested.

11.3.3 Output AC Specifications

Table 11-4 provides the output AC timing specifications for the 603R (shown in Figure 11-4).

Table 11-4.Output AC Timing Specifications⁽¹⁾⁽²⁾ with $V_{DD} = AV_{DD} = 2.5V \pm 5\%$; $OV_{DD} = 3.3 \pm 5\%V$, GND = 0V, $C_L = 50$ pF, $55^{\circ}C \le T_C \le 125^{\circ}C$

		CBGA 25 CBGA 255 255 and 240 Pac	CBGA 255, HiTCE CBGA 255, CI-CGA 255 and Cerquad 240 Packages		CBGA 255, HiTCE CBGA 255 and CI-CGA 255				
		166, 20	0 MHz	233, 266	6 MHz	300 M	lHz		
Number	Characteristics	Min	Max	Min	Max	Min	Мах	Unit	Note
12	SYSCLK to output driven (output enable time)	1	_	1	-	1	-	ns	
13a	SYSCLK to output valid (5.5V to 0.8V – TS, ABB, ARTRY, DBB)	_	9	_	9	_	9	ns	(4)
13b	SYSCLK to output valid (TS, ABB, ARTRY, DBB)	_	8	_	8	_	8	ns	(6)
14a	SYSCLK to output valid (5.5V to 0.8V – all except TS, ABB, ARTRY, DBB)	_	11	_	11	_	11	ns	(4)
14b	SYSCLK to output valid (all except \overline{TS} , ABB, ARTRY, DBB)	_	9	_	9	_	9	ns	(6)
15	SYSCLK to output invalid (output hold)	1	_	1	_	1	_	ns	(3)
16	SYSCLK to output high impedance (all except ARTRY, ABB, DBB)	_	8.5	_	8	_	8	ns	
17	SYSCLK to ABB, DBB, high impedance after precharge	_	1	_	1	_	1	t _{SYSCLK}	(5)(7)
18	SYSCLK to ARTRY high impedance before precharge	_	8	_	7.5	_	7.5	ns	
19	SYSCLK to ARTRY precharge enable	0.2 × t _{SYSCLK} + 1	_	0.2 × t _{SYSCLK} + 1	_	0.2 × t _{sysclk}	_	ns	(3)(5) (8)
20	Maximum delay to ARTRY precharge	_	1	_	1	_	1	t _{SYSCLK}	(5)(8)
21	SYSCLK to ARTRY high impedance after precharge	-	2	-	2	-	2	t _{SYSCLK}	(6)(8)

11.4 JTAG AC Timing Specifications

Table 11-5.JTAG AC Timing Specifications (independent of SYSCLK); $V_{DD} = AV_{DD} = 2.5V \pm 5\%$; $OV_{DD} = 3.3 \pm 5\%V$,
GND = 0V, $C_L = 50 \text{ pF}$, $-55^{\circ}C \le T_C \le 125^{\circ}C$

Number	Characteristics	Min	Max	Unit	Notes
	TCK frequency of operation	0	16	MHz	
1	TCK cycle time	62.5	-	ns	
2	TCK clock pulse width measured at 1.4V	25	-	ns	
3	TCK rise and fall times	0	3	ns	
4	TRST setup time to TCK rising edge	13	-	ns	(1)
5	TRST assert time	40	-	ns	
6	Boundary scan input data setup time	6	-	ns	(2)
7	Boundary scan input data hold time	27	-	ns	(2)
8	TCK to output data valid	4	25	ns	(3)
9	TCK to output high impedance	3	24	ns	(3)
10	TMS, TDI data setup time	0	-	ns	
11	TMS, TDI data hold time	25	-	ns	
12	TCK to TDO data valid	4	24	ns	
13	TCK to TDO high impedance	3	15	ns	

Notes: 1. TRST is an asynchronous signal. The setup time is for test purposes only.

2. Non-test signal input timing with respect to TCK.

3. Non-test signal output timing with respect to TCK.

VM = Midpoint Voltage (1.4V)

Figure 11-7. Boundary-scan Timing Diagram

12. Functional Description

12.1 PowerPC Registers and Programming Model

The PowerPC architecture defines register-to-register operations for most computational instructions. Source operands for these instructions are accessed from the registers or are provided as immediate values embedded in the instruction opcode. The three-register instruction format allows specification of a target register distinct from the two source operands. Load and store instructions transfer data between registers and memory.

PowerPC processors have two levels of privilege—supervisor mode of operation (typically used by the operating system) and user mode of operation (used by the application software). The programming models incorporate 32 GPRs, 32 FPRs, Special-purpose Registers (SPRs) and several miscellaneous registers. Each PowerPC microprocessor also has its own unique set of Hardware Implementation (HID) registers. Having access to privilege instructions, registers, and other resources allows the operating system to control the application environment (providing virtual memory and protecting operating system and critical machine resources). Instructions that control the state of the processor, the address translation mechanism, and supervisor registers can be executed only when the processor is operating in supervisor mode.

The following sections summarize the PowerPC registers that are implemented in the 603R.

12.1.1 General-purpose Registers (GPRs)

The PowerPC architecture defines 32 user-level, General-purpose Registers (GPRs). These registers are either 32 bits wide in 32-bit PowerPC microprocessors or 64 bits wide in 64-bit PowerPC microprocessors. The GPRs serve as the data source or destination for all integer instructions.

12.1.2 Floating-point Registers (FPRs)

The PowerPC architecture also defines 32 user-level, 64-bit Floating-point Registers (FPRs). The FPRs serve as the data source or destination for floating-point instructions. These registers can contain data objects of either single- or double-precision floating-point formats.

12.1.3 Condition Register (CR)

The CR is a 32-bit user-level register that consists of eight four-bit fields that reflect the results of certain operations, such as move, integer and floating-point compare, arithmetic, and logical instructions, and provide a mechanism for testing and branching.

12.1.4 Floating-Point Status and Control Register (FPSCR)

The Floating-point Status and Control Register (FPSCR) is a user-level register that contains all exception signal bits, exception summary bits, exception enable bits, and rounding control bits needed for compliance with the IEEE 754 standard.

12.1.5 Machine State Register (MSR)

The Machine State Register (MSR) is a supervisor-level register that defines the state of the processor. The contents of this register are saved when an exception is taken and restored when the exception handling is completed. The 603R implements the MSR as a 32-bit register, 64-bit PowerPC processors implement a 64-bit MSR.

12.1.6 Segment Registers (SRs)

For memory management, 32-bit PowerPC microprocessors implement sixteen 32-bit Segment Registers (SRs). To speed access, the 603R implements the segment registers as two arrays; a main array (for data memory accesses) and a shadow array (for instruction memory accesses). Loading a segment entry with the Move to Segment Register (STSR) instruction loads both arrays.

12.1.7 Special-purpose Registers (SPRs)

The powerPC operating environment architecture defines numerous special-purpose registers that serve a variety of functions, such as providing controls, indicating status, configuring the processor, and performing special operations. During normal execution, a program can access the registers, shown in Figure 12-1 on page 32, depending on the program's access privilege (supervisor or user, determined by the privilege-level (PR) bit in the MSR. Note that registers such as the GPRs and FPRs are accessed through operands that are part of the instructions. Access to registers can be explicit (that is, through the use of specific instructions for that purpose such as Move to special-purpose register (**mtspr**) and move from special-purpose register (**mtspr**) instructions or implicit, as the part of the execution of an instruction. Some registers are accessed both explicitly and implicitly.

In the 603R, all SPRs are 32 bits wide.

• User-level SPRs:

The following 603R SPRs are accessible by user-level software:

- Link Register (LR) The link register can be used to provide the branch target address and to hold the return address after branch and link instructions. The LR is 32 bits wide in 32-bit implementations.
- Count Register (CTR) The CRT is decremented and tested automatically as a result of branch-and-count instructions. The CTR is 32 bits wide in 32-bit implementations.
- Integer Exception Register (XER) The 32-bit XER contains the summary overflow bit, integer carry bit, overflow bit, and a field specifying the number of bytes to be transferred by a Load String Word Indexed (LSWX) or Store String Word Indexed (STSWX) instruction.
- Supervisor-level SPRs:

The 603R also contains SPRs that can be accessed only by supervisor-level software. These registers consist of the following:

- The 32-bit DSISR defines the cause of data access and alignment exceptions.
- The Data Address Register (DAR) is a 32-bit register that holds the address of an access after an alignment or DSI exception.
- Decrementer register (DEC) is a 32-bit decrementing counter that provides a mechanism for causing a decrementer exception after a programmable delay.
- The 32-bit SDR1 specifies the page table format used in virtual-to-physical address translation for pages. (Note that physical address is referred to as real address in the architecture specification).
- The machine status Save/Restore Register 0 (SRR0) is a 32-bit register that is used by the 603R for saving the address of the instruction that caused the exception, and the address to return to when a Return from Interrupt (**RFI**) instruction is executed.
- The machine status Save/Restore Register 1 (SRR1) is a 32-bit register used to save machine status on exceptions and to restore machine status when an RFI instruction is executed.
- The 32-bit SPRG0-SPRG3 registers are provided for operating system use.
- The External Access Register (EAR) is a 32-bit register that controls access to the external control facility through the External Control In Word Indexed (ECIWX) and External Control Out Word Indexed (ECOWX) instructions.

12.2.2 PowerPC 603R Microprocessor Instruction Set

The 603R instruction set is defined as follows:

- The 603R provides hardware support for all 32-bit PowerPC instructions.
- The 603R provides two implementation-specific instructions used for software table search operations following TLB misses:
 - Load Data TLB Entry (tlbld)
 - Load Instruction TLB Entry (tlbli)
- The 603R implements the following instructions which are defined as optional by the PowerPC architecture :
 - External Control in Word Indexed (eciwx)
 - External Control Out Word Indexed (ecowx)
 - Floating Select (**fsed**)
 - Floating Reciprocal Estimate Single-Precision (fres)
 - Floating Reciprocal Square Root Estimate (frsqrte)
 - Store Floating-Point as Integer Word (stfiwx)

12.3 Cache Implementation

The following subsections describe the way the PowerPC architecture deals with cache in general, and the 603R's specific implementation.

12.3.1 PowerPC Cache Characteristics

The PowerPC architecture does not define hardware aspects of cache implementations. For example, some PowerPC processors, including the 603R, have separate instruction and data caches (harvard architecture).

The PowerPC microprocessor controls the following memory access modes on a page or block basis:

- Write-back/write-through mode
- Cache-inhibited mode
- Memory coherency

Note that in the 603R, a cache line is defined as eight words. The VEA defines cache management instructions that provide a means by which the application programmer can affect the cache contents.

12.3.2 PowerPC 603R Microprocessor Cache Implementation

The 603R has two 16-Kbyte, four-way set-associative (instruction and data) caches. The caches are physically addressed, and the data cache can operate in either write-back or write-through modes as specified by the PowerPC architecture.

The data cache is configured as 128 sets of four lines each. Each line consists of 32 bytes, two state bits, and an address tag. The two state bits implement the three-state MEI (Modified/Exclusive/Invalid) protocol. Each line contains eight 32-bit words. Note that the PowerPC architecture defines the term block as the cacheable unit. For the 603R, the block size is equivalent to a cache line. A block diagram of the data cache organization is shown in Figure 12-2 on page 36.

Exception Type	Vector Offset (hex)	Causing Conditions
Instruction address breakpoint	01300	An instruction address breakpoint exception occurs when the address (bits 0-29) in the IABR matches the next instruction to complete in the completion unit, and the IABR enable bit (bit 30) is set to 1
System management interrupt	01400	A system management interrupt is caused when MSR[EE] = 1 and the \overline{SMI} input signal is asserted
Reserved	01500-02FFF	-

Table 12-2. Exceptions and Conditions (Continued)

12.4 Memory Management

The following subsections describe the memory management features of the PowerPC architecture, and the 603R implementation, respectively.

12.4.1 PowerPC Memory Management

The primary functions of the MMU are to translate logical (effective) addresses to physical addresses for memory accesses, and to provide access protection on blocks and pages of memory.

There are two types of accesses generated by the 603R that require address translation — instruction accesses, and data accesses to memory generated by load and store instructions.

The PowerPC MMU and exception model support demand-paged virtual memory. Virtual memory management permits execution of programs larger than the size of physical memory; demand-paged implies that individual pages are loaded into physical memory from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between virtual page numbers and physical page numbers. The page table size is a power of 2, and its starting address is a multiple of its size.

The page table contains a number of Page Table Entry Groups (PTEGs). A PTEG contains eight Page Table Entries (PTEs) of eight bytes each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points for table search operations.

Address translations are enabled by setting bits in the MSR-MSR[IR] enables instruction address translations and MSR[DR] enables data address translations.

12.4.2 PowerPC 603R Microprocessor Memory Management

The instruction and data memory management units in the 603R provide 4 Gbytes of logical address space accessible to the supervisor and user programs with a 4 Kbyte page size and 256M byte segment size. Block sizes range from 128 Kbytes to 256 Mbytes and are software selectable. In addition, the 603R uses an interim 52-bit virtual address and hashed page tables for generating 32-bit physical addresses. The MMUs in the 603R rely on the exception process-ing mechanism for the implementation of the paged virtual memory environment and for enforcing protection of designated memory areas.

Instruction and data TLBs provide address translation in parallel with the on-chip cache access, incurring no additional time penalty in the event of a TLB hit. A TLB is a cache of the most recently used page table entries. The software is responsible for maintaining the consistency of the TLB with memory.

The 603R's TLBs are 64-entry, 2-way set-associative caches that contain instruction and data address translations. The 603R provides hardware assistance for software table search operations through the ashed page table on the TLB misses. The supervisor software can invalidate TLB entries selectively.

The 603R also provides independent four-entry BAT arrays for instructions and data that maintain address translations for blocks of memory. These entries define blocks that can vary from 128 Kbytes to 256 Mbytes. The BAT arrays are maintained by system software.

As specified by the PowerPC architecture, the hashed page table is a variable-sized data structure that defines the mapping between virtual page numbers and physical page numbers. The page table size is a power of 2, and its starting address is a multiple of its size.

Also as specified by the PowerPC architecture, the page table contains a number of Page Table Entry Groups (PTEGs). A PTEG contains eight Page Table Entries (PTEs) of eight bytes each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points for table search operations.

12.4.3 Instruction Timing

The 603R is a pipelined superscalar processor. A pipelined processor is one in which the processing of an instruction is reduced into discrete stages. Because the processing of an instruction is broken into a series of stages, an instruction does not require the entire resources of an execution unit. For example, after an instruction completes the decode stage, it can pass on to the next stage, while the subsequent instruction can advance into the decode stage. This improves the throughput of the instruction flow. For example, it may take three cycles for a floating-point instruction to complete, but if there are no stalls in the floating-point pipeline, a series of floating-point instructions can have a throughput of one instruction per cycle.

The instruction pipeline in the 603R has four major pipeline stages, described as follows:

- The fetch pipeline stage primarily involves retrieving instructions from the memory system and determining the location of the next instruction retrieval. Additionally, the BPU decodes branches during the fetch stage and folds out branch instructions before the dispatch stage if possible.
- The dispatch pipeline stage is responsible for decoding the instructions supplied by the instruction retrieval stage, and determining which of the instructions are eligible to be dispatched in the current cycle. In addition, the source operands of the instructions are read from the appropriate register file and dispatched with the instruction to the execute pipeline stage. At the end of the dispatch pipeline stage, the dispatched instructions and their operands are latched by the appropriate execution unit.
- During the execute pipeline stage each execution unit that has an executable instruction executes the selected instruction (perhaps over multiple cycles), writes the instruction's result into the appropriate rename register, and notifies the completion stage when the instruction has finished execution. In the case of an internal exception, the execution unit reports the exception to the completion/writeback pipeline stage and discontinues instruction execution until the exception is handled. The exception is not signaled until that instruction is the next to be completed. Execution of most floating-point instructions is pipelined within the FPU allowing up to three instructions to be executing in the FPU concurrently. The pipeline stages for the floating-point unit are multiply, add, and round-convert. Execution of most load/store instructions is also pipelined. The load/store unit has two pipeline stages. The first stage is for effective address calculation and MMU translation and the second stage is for accessing the data in the cache.

In Table 13-1, the horizontal scale represents the bus frequency (SYSCLK) and the vertical scale represents the PLL-CFG[0-3] signals.

For a given SYSCLK (bus) frequency, the PLL configuration signals set the internal CPU and VCO frequency of operation.

	CPU Frequency in MHZ (VCO Frequency in MHz) specific to CBGA 255, HiTCE CBGA 255 and CI-CGA 255									
PLL_CFG[0-3]	Bus-to- Core Multiplier	Core-to VCO Multiplier	Bus 25 MHz	Bus 33.33 MHz	Bus 40 MHz	Bus 50 MHz	Bus 60 MHz	Bus 66.67 MHz	Bus 75 MHz	
0100	2x	2x	-	-	-	-	-	-	150 (300)	
0101	2x	4x	-	-	-	-	-	-	-	
0110	2.5x	2x	-	-	-	-	150 (300)	166 (333)	187 (375)	
1000	Зx	2x	-	-	-	150 (300)	180 (360)	200 (400)	225 (450)	
1110	3.5x	2x	-	-	-	175 (350)	210 (420)	233 (466)	263 (525)	
1010	4x	2x	-	-	160 (320)	200 (400)	240 (480)	267 (533)	300 (600)	
0111	4.5x	2x	-	150 (300)	180 (360)	225 (450)	270 (540)	300 (600)	-	
1011	5x	2x	-	166 (333)	200 (400)	250 (500)	300 (600)	-	-	
1001	5.5x	2x	-	183 (366)	220 (440)	275 (550)	-	-	-	
1101	6x	2x	150 (300)	200 (400)	240 (480)	300 (600)	-	-	-	
0011					PLL bypass					
1111					Clock off					

 Table 13-1.
 CPU Frequencies for Common Bus Frequencies and Multipliers

	CPU Frequency in MHZ (VCO Frequency in MHz) specific to CERQUAD										
PLL_CFG[0-3]	Bus-to-Core Multiplier	Core-to VCO Multiplier	Bus 25 MHz	Bus 33.33 MHz	Bus 40 MHz	Bus 50 MHz	Bus 60 MHz	Bus 66.67 MHz			
0100	2x	2x	-	-	_	_	-	_			
0101	2x	4x	_	_	_	_	_	_			
0110	2.5x	2x	_	_	_	_	150 (300)	166 (333)			
1000	Зх	2x	_	_	_	150 (300)	180 (360)	200 (400)			
1110	3.5x	2x	_	_	_	175 (350)	_	-			

	CPU Frequency in MHZ (VCO Frequency in MHz) specific to CERQUAD											
PLL_CFG[0-3]	Bus-to-Core Multiplier	Core-to VCO Multiplier	Bus 25 MHz	Bus 33.33 MHz	Bus 40 MHz	Bus 50 MHz	Bus 60 MHz	Bus 66.67 MHz				
1010	4x	2x	-	-	160 (320)	200 (400)	_	-				
0111	4.5x	2x	_	150 (300)	180 (360)	_	_	-				
1011	5x	2x	_	166 (333)	200 (400)	_	_	-				
1001	5.5x	2x	_	183 (366)	_	_	_	-				
1101	6x	2x	150 (300)	200 (400)	_	_	_	_				
0011		PLL bypass										
1111				Clock off								

Notes: 1. Some PLL configurations may select bus, CPU or VCO frequencies which are not supported.

2. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is disabled, and the bus mode is set for 1:1 mode operation. This mode is intended for factory use only.

The AC timing specifications given in this document do not apply in PLL-bypass mode.

3. In clock-off mode, no clocking occurs inside the 603e regardless of the SYSCLK input.

14. System Design Information

14.1 PLL Power Supply Filtering

The AV_{DD} power signal is implemented on the 603e to provide power to the clock generation phase-locked loop. To ensure stability of the internal clock, the power supplied to the AV_{DD} input signal should be filtered using a circuit similar to the one shown in Figure 14-1. The circuit should be placed as close as possible to the AV_{DD} pin to ensure it filters out as much noise as possible. The 0.1 μ F capacitor should be closest to the AV_{DD} pin, followed by the 10 μ F capacitor, and finally the 10 Ω resistor to V_{DD}. These traces should be kept short and direct.

Figure 14-1. PLL Power Supply Filter Circuit

14.2 Decoupling Recommendations

Due to the 603e's dynamic power management feature, large address and data buses, and high operating frequencies, the 603e can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the 603e system, and the 603e itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} and OV_{DD} pin of the 603e. It is also recommended that these decoupling capacitors receive their power from separate V_{DD} , OV_{DD} , and GND power planes in the PCB, utilizing short traces to minimize inductance.

These capacitors should vary in value from 220 pF to 10 μ F to provide both high and low frequency filtering, and should be placed as close as possible to their associated V_{DD} or OV_{DD} pin. The suggested values for the V_{DD} pins are 220 pF (ceramic), 0.01 μ F (ceramic) and 0.1 μ f (ceramic). The suggested values for the OV_{DD} pins are 0.01 μ F (ceramic), 0.1 μ F (ceramic), and 10 μ F (tantalum). Only SMT (Surface Mount Technology) capacitors should be used to minimize lead inductance.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} and OV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should also have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. The suggested bulk capacitors are 100 μ F (AVX TPS tantalum) or 330 μ f (AVX TPS tantalum).

14.3 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to V_{DD} . Unused active high inputs should be connected to GND. All NC (non-connected) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , OV_{DD} , and GND pins of the 603e.

14.4 Pull-up Resistor Requirements

The 603e requires high-resistive (weak: 10 k Ω) pull-up resistors on several control signals of the bus interface to maintain the control signals in the negated state after they have been actively negated and released by the 603e or other bus master. These signals are: TS, \overline{ABB} , \overline{DBB} , and \overline{ARTRY} .

In addition, the 603e has three open-drain style outputs that require pull-up resistors (weak or stronger: 4.7 k Ω - 10 k Ω) if they are used by the system. These signals are: \overline{APE} , \overline{DPE} , and \overline{CKSTP}_{OUT} .

During inactive periods on the bus, the address and transfer attributes on the bus are not driven by any master and may float in the high-impedance state for relatively long periods of time. Since the 603e must continually monitor these signals for snooping, this floating condition may cause excessive power to be drawn by the input revivers on the 603e. It is recommended that these signals be pulled up through weak (10 k Ω) pull-up resistors or restored in some manner by the system. The snooped address and transfer attribute inputs are: A[0-3], AP[0-3], TT[0-4], TBST, and GBL.

The data bus input receivers are normally turned off when no read operation is in progress and do not require pull-up resistors on the data bus.

15.1.1 Mechanical Dimensions of the HiTCE CBGA Package

Figure 15-1 provides the mechanical dimensions and bottom surface nomenclature of the HiTCE CBGA package.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
А	2.42	3.08	0.095	0.12
A1	0.80	1.00	0.031	0.039
A2	0.90	1.14	0.035	0.045
A4	0.80	0.90	0.031	0.035
В	0.82	0.93	0.032	0.037
D	21.00 BASIC		0.827 BASIC	
D1	19.05	19.05 BASIC 0.75 BASIC		ASIC
D2	10.8 Тур		0.425 Тур	
D3	8.75 E	BASIC	0.344 BASIC	
D4	5.6	65	0.222	
E	21.00	BASIC	0.827 BASIC	
E1	19.05	BASIC	0.75 BASIC	
E2	12.0 Typ		0.472 Тур	
E3	6.15 BASIC		0.242 BASIC	
E4	7.7		0.303	
G, K	1.27 E	BASIC	0.05 BASIC	

48 **TSPC603R**

15.2 CBGA Package Parameters

The package parameters are as provided in the following list. The package type is 21 mm, 255-lead Ceramic Ball Grid Array (CBGA).

Package outline	21 mm × 21 mm
Interconnects	255
Pitch	1.27 mm
Maximum module height	3 mm

15.2.1 Mechanical Dimensions of the CBGA Package

Figure 15-2 provides the mechanical dimensions and bottom surface nomenclature of the CBGA package.

	11.4 JTAG AC Timing Specifications	27
12	Functional Description	
	12.1 PowerPC Registers and Programming Model	
	12.2 Instruction Set and Addressing Modes	33
	12.3 Cache Implementation	35
	12.4 Memory Management	41
13	Preparation for Delivery	43
	13.1 Packaging	43
	13.2 Certificate of Compliance	43
	13.3 Handling	43
	13.4 Choice of Clock Relationships	43
14	System Design Information	45
	14.1 PLL Power Supply Filtering	45
	14.2 Decoupling Recommendations	46
	14.3 Connection Recommendations	46
	14.4 Pull-up Resistor Requirements	46
15	Package Mechanical Data	47
	15.1 CBGA HiTCE Package Parameters	47
	15.2 CBGA Package Parameters	
	15.3 CI-CGA Package Parameters	50
	15.4 CERQUAD 240 Package	52
16	Ordering Information	53
	16.1 Ordering Information of the CBGA, CI-CGA and HiTCE Packages	53
	16.2 Ordering Information of the CERQUAD 240 Package	53
17	Definitions	54
	17.1 Life Support Applications	54
18	Document Revision History	54

ii

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life

© Atmel Corporation 2005. All rights reserved. Atmel[®], logo and combinations thereof, Everywhere You Are[®] and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. PowerPC[®] is the registered trademark of IBM Corp. Other terms and product names may be trademarks of others.

5410B-HIREL-09/05

iv TSPC603R

5410B-HIREL-09/05