

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
	Obsolate
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	14
Program Memory Size	2KB (2K x 8)
Program Memory Type	ROM
EEPROM Size	-
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-DIP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86c0712pecr51ya

GENERAL DESCRIPTION (Continued)

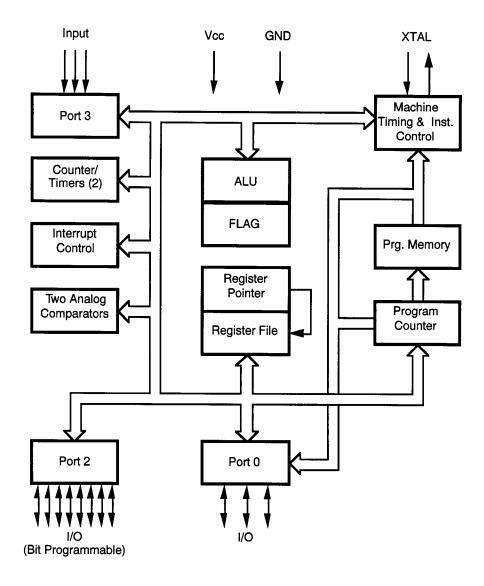


Figure 1. Z86C05/C07 Functional Block Diagram

DC ELECTRICAL CHARACTERISTICS

				: 0°C 70°C		-40°C 105°C	Typical			
Sym	Parameter	V _{CC} [4]	Min	Max	Min	Max	@ 25°C	Units	Conditions	Note
V _{CH}	Clock Input High Voltage	3.0V	0.8 V _{cc}	V _{cc} +0.3	0.8 V _{cc}	V _{cc} +0.3	1.7	V	Driven by External Clock Generator	
		5.5V	0.8 V _{cc}	V _{cc} +0.3	0.8 V _{cc}	V _{cc} +0.3	2.8	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	3.0V	V _{ss} -0.3	0.2 Vcc	V _{ss} -0.3	0.2 V _{cc}	0.8	V	Driven by External Clock Generator	
		5.5V	V _{ss} -0.3	0.2 V _{cc}	Vss-0.3	0.2 V _{cc}	1.7	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	3.0V	0.7 V _{cc}	V _{cc} +0.3	0.7 V _{cc}	V _{cc} +0.3	1.8	V		1
		5.5V	0.7 V _{cc}	V _{cc} +0.3	0.7 V _{cc}	V _{cc} +0.3	2.8	٧	-	1
\overline{V}_{IL}	Input Low Voltage	3.0V	V _{ss} -0.3	0.2 V _{cc}	V _{ss} -0.3	0.2 V _{cc}	0.8	V		1
		5.5V	V _{ss} -0.3	0.2 V _{cc}	V _{ss} -0.3	0.2 V _{cc}	1.5	V		1
V _{OH}	Output High Voltage	3.0V	V _{cc} -0.4		V _{cc} -0.4		3.0	V	$I_{OH} = -2.0 \text{ mA}$	5
		5.5V	V _{cc} -0.4		V _{cc} -0.4		4.8	V	$I_{OH} = -2.0 \text{ mA}$	5
		3.0V	V _{cc} -0.4		V _{cc} -0.4		3.0	V	Low Noise @ I_{OH} = -0.5 mA	
		5.5V	V _{cc} -0.4		V _{cc} -0.4		4.8	V	Low Noise @ I_{OH} = -0.5 mA	
V _{OL1}	Output Low Voltage	3.0V		0.8		0.8	0.2	V	$I_{OL} = +4.0 \text{ mA}$	5
		5.5V		0.4		0.4	0.1	٧	$I_{OL} = +4.0 \text{ mA}$	5
		3.0V		0.4		0.4	0.2	V	Low Noise @ I _{OL} = 1.0 mA	
		5.5V		0.4		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	
V _{OL2}	Output Low Voltage	3.0V		1.0		1.0	8.0	V	$I_{OL} = +12 \text{ mA}$	5
		5.5V		8.0		0.8	0.3	V	I _{OL} = +12 mA	5
VOFFSE	Comparator Input	3.0V		25		25	10	mV		
	Onset voltage	5.5V		25		25	10	m۷		
V _{LV}	V _{CC} Low Voltage Auto Reset		2.2	2.8			2.6	V	Int. CLK Freq @ 6 MHz Max.	
					2.0	3.0	2.6		Int. CLK Freq @ 4 MHz Max.	
I ^{IL}	Input Leakage	3.0V	-1.0	1.0	-1.0	1.0		μΑ	$V_{IN} = OV, V_{CC}$	
	(Input Bias Current of Comparator)	5.5V	-1.0	1.0	-1.0	1.0		μА	$V_{I_N} = OV, V_{CC}$	

DC ELECTRICAL CHARACTERISTICS (CONT.)

	,			= 0°C +70°C		-40°C 105°C				
Sym	Parameter	V _{CC} [4]	Min	Max	Min	Max	@ 25°C	Units	Conditions	Note
I _{OL}	Output Leakage	3.0V	-1.0	1.0	-1.0	1.0		μА	V _{IN} = OV, V _{CC}	
		5.5V	-1.0	1.0	-1.0	1.0		μА	V _{IN} = OV, V _{CC}	
V _{VICR}	Comparator Input Common Mode Voltage Range		0	V _{cc} -1.0	0	V _{cc} -1.5		V		****
I _{CC1}	Standby Current (Low Noise Mode)	3.0V		2.5		2.5	0.7	mA	HALT mode V _{IN} = 0V, V _{cc} @ 1 MHz	
		5.5V		4.0		4.0	2.5	mA	HALT mode V _{IN} = 0V, V _{cc} @ 1 MHz	
		3.0V		3.0		3.0	0.9	mA	HALT mode $V_{IN} = 0V$, V_{cc} @ 1 MHz	
		5.5V	•	4.5		4.5	2.8	mA	HALT mode $V_{IN} = 0V$, V_{cc} @ 2 MHz	
		3.0V		4.0		4.0	1.0	mA	HALT mode $V_{IN} = 0V$, V_{cc} @ 2 MHz	
		5.5V		5.0		5.0	3.0	mA	HALT mode $V_{IN} = 0V$, V_{cc} @ 4 MHz	
CC2	Standby Current	3.0V		10		20	1.0	μА	STOP mode V _{IN} = OV, V _{cc} WDT is not Running	
		5.5V		10		20	1.0	μА	STOP mode V _{IN} = OV, V _{cc} WDT is not Running	-
I _{ALL}	Auto Latch Low	3.0V		12		8.0	3.0	μА	OV < V _{IN} < V _{CC}	
	Current	5.5V		32		30	16	μА	OV < V _{IN} < V _{CC}	-
ALH	Auto Latch High	3.0V		-8	_	-5.0	-1.5	μΑ	OV < V _{IN} < V _{CC}	
	Current	5.5V		-16		-20	-8.0	μΑ	OV < V _{IN} < V _{CC}	-

Notes:

- 1. Port 0, 2, and 3 only.
- 2. $V_{SS} = 0V = GND$.
- 3. The device operates down to V_{LV} . The minimum operational V_{CC} is determined on the value of the voltage V_{LV} at the ambient temperature. The V_{LV} increases as the temperature decreases.
- 4. V_{CC} = 3.0V to 5.5V, typical values measured at V_{CC} = 3.3V and V_{CC} = 5.0V.
- 5. Standard Mode (not Low EMI mode).
- 6. Z86C07/C08 only.
- 7. CL1 = 100 pF, CL2 = 220 pF, RF = 30 kOhm

AC ELECTRICAL CHARACTERISTICS

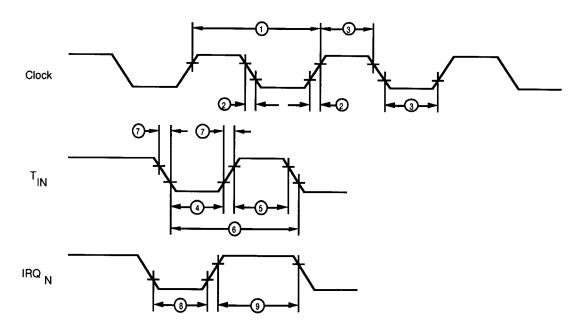


Figure 5. AC Electrical Timing Diagram

AC ELECTRICAL CHARACTERISTICS (Continued)

Timing Table (Standard Mode for SCLK/TCLK = XTAL/2)

					$T_A = 0$ °C	to +70°C	;	TA	= -40°C	to +105°	°C	- 11	
				8 MH:	z(C05)	12 MH	z(C07)		z(C05)	12 MH			
No	Symbol	Parameter	V_{CC}	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
1	TpC	Input Clock Period	3.0V	125	DC	83	DC	125	DC	83	DC	ns	1
			5.5V	125	DC	83	DC	125	DC	83	DC	ns	1
2	TrC,TfC	Clock Input Rise	3.0V		25	***	15		25		15	ns	1
		and Fall Times	5.5V		25	.,,,,,	15		25		15	ns	
3	TwC	Input Clock Width	3.0V	62		41			62		41		1
		•	5.5V	62	•	41			62		41	ns	1
4	TwTinL	Timer Input Low	3.0V	100	γ=	100		100	***-	100		ns	1
		Width	5.5V	70		70		70		70		ns	1
5	TwTinH	Timer Input High	3.0V	5TpC		5TpC		5TpC		5TpC			1
		Width	5.5V	5TpC		5TpC		5TpC	****	5TpC			1
6	TpTin	Timer Input Period	3.0V	8TpC	***************************************	8TpC		8TpC		8TpC			1
			5.5V	8TpC		8TpC	, .	8TpC		8TpC			1
7	TrTin,	Timer Input Rise	3.0V		100		100		100		100	ns	1
	TtTin	and Fall Timer	5.5V	***************************************	100		100		100		100	ns	1
8	TwlL	Int. Request Input	3.0V	100		100		100		100		ns	1,2
		Low Time	5.5V	70		70		70		70		ns	1,2
9	TwlH	Int. Request Input	3.0V	5TpC		5TpC		5TpC		5TpC			1
		High Time	5.5V	5TpC		5TpC		5TpC		5TpC			1,2
10	Twdt	Watch-Dog Timer	3.0V		25	<u> </u>	25	<u> </u>	25		25	ms	1
		Delay Time	5.5V		12		12		10		10	ms	1
11	Tpor		3.0V	24		24		24		24		ms	1
		•	5.5V	12		12		12		12		ms	1

Notes:

Timing Reference uses 0.7 V_{cc} for a logic 1 and 0.2 V_{cc} for a logic 0.
Interrupt request through Port 3 (P33-P31).

AC ELECTRICAL CHARACTERISTICS

Low Noise Mode

				$T_A = 0$ °C to +70°C				$T_A = -40^{\circ}C \text{ to } +105^{\circ}C$					
				1 MHz		4 MHz		4 MHz		1 MHz			
No	Symbol	Parameter	V_{CC}	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
1	TPC	Input Clock	3.0V	1000	DC	250	DC	1000	DC	250	DC	ns	1
		Period	5.5V	1000	DC	250	DC	1000	DC	250	DC	ns	1
2	TrC	Clock Input Rise	3.0V		25		25		25		25	ns	1
	TfC	and Fall Times	5.5V		25		25		25		25	ns	1
3	TwC	Input Clock Width	3.0V	500		125		500		125		ns	1
		-	5.5V	500	1- 910	125		500		125		ns	1
4.	TwTinL	Timer Input Low	3.0V	100		100		100		100		ns	1
		Width	5.5V	70		70		70		70		ns	1
5	TwTinH	Timer Input High	3.0V	2.5TpC	*********	2.5TpC		2.5TpC		2.5TpC		-	1
		Width	5.5V	2.5TpC		2.5TpC		2.5TpC		2.5TpC			1
6	TpTin	Timer Input	3.0V	4TpC		4TpC		4TpC		4TpC	***		1
		Period	5.5V	4TpC		4TpC		4TpC		4TpC			1
7	TrTin,	Timer Input Rise	3.0V		100		100		100		100	ns	1
	TtTin	and Fall Timer	5.5V		100		100		100		100	ns	1
8	TwlL	Int. Request	3.0V	100		100		100		100		ns	1,2
		Input Low Time	5.5V	70		70		70		70	, .	ns	1,2
9	TwlH	Int. Request	3.0V	2.5TpC		2.5TpC		2.5TpC		2.5TpC			1
		Input High Time	5.5V	2.5TpC		2.5TpC		2.5TpC		2.5TpC			1,2
10	Twdt	Watch-Dog Timer	3.0V		25		25	·	25		25	ms	1
		Delay Time	5.5V		12		12		10		10	ms	1

Notes:

^{1.} Timing Reference uses 0.7 $V_{\rm CC}$ for a logic 1 and 0.2 $V_{\rm CC}$ for a logic 0. 2. Interrupt request through Port 3 (P33-P31).

LOW NOISE VERSION

Low EMI Emission

The Z8 can be programmed to operate in a Low EMI emission mode by means of a mask ROM bit option. Use of this feature results in:

- All pre-driver slew rates reduced to 10 ns typical.
- Internal SCLK/TCLK operation limited to a maximum of 4 MHz - 250 ns cycle time.
- Output drivers have resistances of 200 ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

The Low EMI mode is mask-programmable to be selected by the customer at the time the ROM code is submitted.

EMI Characteristics

The Z8 operating in the Low EMI mode generates EMI as measured in the following chart:

The measurements, shown in Figure 6, were made while operating the Z8 in three states: (1) idle condition, (2) static output; (3) switched output.

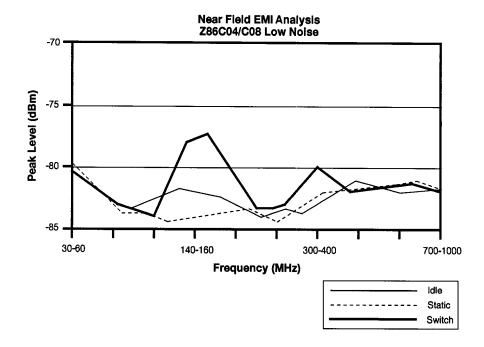


Figure 6. Typical Low Noise Measurements

PIN DESCRIPTION

XTAL1, XTAL2 Crystal In, Crystal Out (time-based input and output, respectively). These pins connect a RC, parallel-resonant crystal, LC, or an external single-phase clock to the on-chip clock oscillator and buffer.

Auto Latch. The auto latch puts valid CMOS levels on all CMOS inputs (except P33, P32, P31) that are not externally driven. After Power-On Reset, this level is 0 or 1 cannot be determined. A valid CMOS level, rather than a floating

node, reduces excessive supply current flow in the input buffer. To change the auto latch state, the auto latches must be over driven with current greater than IALH (high to low) or latt (low to high).

Port 0 (P02-P00). Port 0 is a 3-bit I/O, bidirectional, Schmitt-triggered CMOS-compatible I/O port. These three I/O lines can be configured under software control to be all inputs or all outputs (Figure 7).

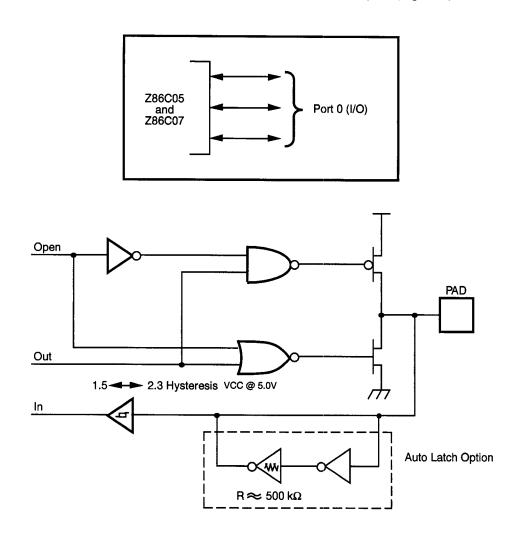


Figure 7. Port 0 Configuration

PIN DESCRIPTION (Continued)

Port 2 (P27-P20). Port 2 is an 8-bit I/O, bit-programmable, bidirectional, Schmitt-triggered CMOS-compatible I/O port. These eight I/O lines can be configured under soft-

ware control to be an input or output, independently. Bits programmed as outputs may be globally programmed as either push-pull or open-drain (Figure 8).

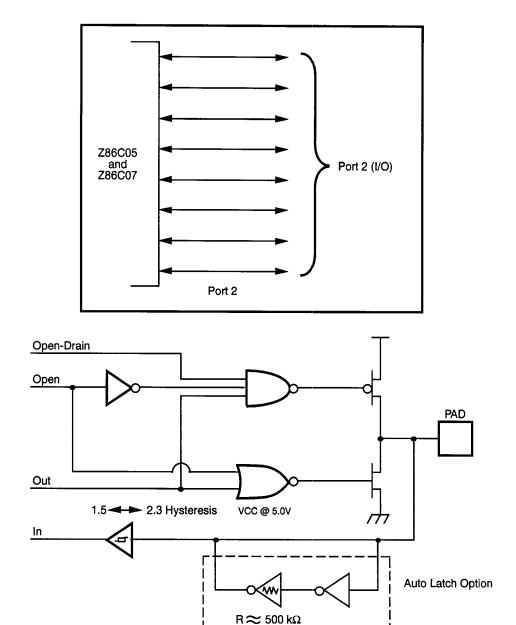
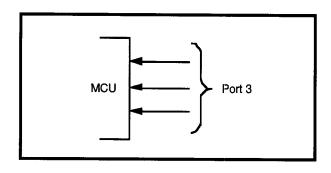



Figure 8. Port 2 Configuration

Port 3 (P33-P31). Port 3 is a 3-bit, Schmitt-triggered CMOS-compatible port with three fixed input (P33-P31) lines. These three input lines can be configured under software control as digital inputs or analog inputs. These three

input lines can also be used as the interrupt sources IRQ0-IRQ3 and as the timer input signal ($T_{\rm IN}$) (Figure 9).

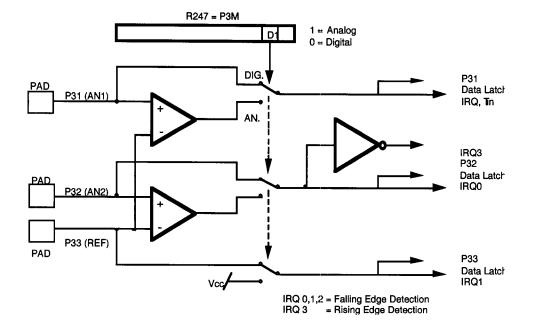


Figure 9. Port 3 Configuration

FUNCTIONAL DESCRIPTION (Continued)

Program Memory. The Z86C05/C07 can address up to 1K/2K bytes of internal program memory (Figure 11). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. Bytes 0-1023/2047 are on-chip mask-programmed ROM.

1023/2047 3FH/7FFH Location of On-Chip First Byte of ROM Instruction Executed After RESET 12 0CH 11 IRQ5 0BH 10 IRQ5 0AH 9 IRQ4 09H IRQ4 8 08H 7 IRQ3 07H Interrupt Vector 6 06H IRQ3 (Lower Byte) IRQ2 5 05H 4 04H IRQ2 Interrupt Vector 3 IRQ1 03H (Upper Byte) 2 IRQ1 02H 1 IRQ0 01H 0 IRQ0 00H

Figure 11. Program Memory Map

Register File. The Register File consists of three I/O port registers, 125 general-purpose registers, and 14 control and status registers (R0, R2-R3, R4-R127, and R241-R255, respectively; see Figure 12). Note that R254 is available for general purpose use. The Z8 instructions can access registers directly or indirectly through an 8-bit address field. This allows short 4-bit register addressing using the Register Pointer. In the 4-bit mode, the register file is divided into eight working register groups, each occupying 16 continuous locations. The Register Pointer (Figure 13) addresses the starting location of the active working-

register group. Upon power-up, the general purpose registers are undefined.

Location		Indentifiers
255 (FFH)	Stack Pointer (Bits 7-0)	SPL
254 (FEH)	General-Purpose Register	GPR
253 (FDH)	Register Pointer	RP
252 (FCH)	Program Control Flags	FLAGS
251 (FBH)	Interrupt Mask Register	IMR
250 (FAH)	Interrupt Request Register	IRQ
249 (F9H)	Interrupt Priority Register	IPR
248 (F8H)	Ports 0-1 Mode	P01M
247 (F7H)	Port 3 Mode	РЗМ
246 (F6H)	Port 2 Mode	P2M
245 (F5H)	T0 Prescaler	PRE0
244 (F4H)	Timer/Counter 0	ТО
243 (F3H)	T1 Prescaler	PRE1
242 (F2H)	Timer/Counter 1	T1
241 (F1H)	Timer Mode	TMR
240 (F0H) 128 (80H)	Not Implemented	
127 (7FH)	General-Purpose Registers	
4 (04H)		į
3 (03H)	Port 3	P3
2 (02H)	Port 2	P2
1 (01H)	Reserved	P1
0 (00H)	Port 0	P0

Figure 12. Register File

Figure 13. Register Pointer

Stack Pointer. The Z8 has an 8-bit Stack Pointer (R255) used for the internal stack that resides within the 124 general-purpose registers.

General-Purpose Register (GPR). The general-purpose register upon device power-up is undefined. The general-purpose register upon a Stop-Mode Recovery and reset stays in its last state. It may not keep its last state from a V_{LV} reset if the V_{CC} drops below 1.8V.

Note: Register R254 has been designated as a general-purpose register.

Opcode WDT (5FH). The first time opcode 5FH is executed, the WDT is enabled, and subsequent execution clears the WDT counter. This has to be done within the maximum T_{wot} period; otherwise, the WDT times out and generates a Reset. The generated Reset is the same as a Power-On Reset of T_{POR} plus 18 XTAL clock cycles. The WDT does not work (run) in STOP Mode. The WDT is disabled during and after a Reset, until the WDT is enabled again.

Opcode WDH (4FH). When this instruction is executed it will enable the WDT during HALT. If not, the WDT will stop when entering HALT. This instruction does not clear the counters, it facilitates running the WDT function during HALT Mode. A WDH instruction executed without executing WDT (5FH) has no effect.

Permanent WDT Mask Option. Only when the Permanent WDT Mask Option is selected, then the WDT is hardwired to be enabled after reset. The WDT will operate in Run Mode, HALT Mode, and STOP Mode. The Opcode 5FH is used to refresh or clear the WDT counter. The WDH instruction (4FH) has no effect.

Low Voltage Protection (V_{1V}) . Maximum (V_{1V}) Conditions:

Case 1:

T_a= -40°C, +85°C, Internal Clock

Frequency equal or less than 6 MHz

Case 2:

 $T_A = -40$ °C, +105°C, Internal Clock Frequency equal or less than 4 MHz Note: The internal clock frequency is one-half the external clock frequency in standard mode.

The device will function normally at or above 3.0V under all conditions. Below 3.0V, the device functions normally until the Low Voltage Protection trip point $(V_{t,v})$ is reached. The device is guaranteed to function normally at supply voltages above the low voltage trip point for the temperatures and operating frequencies in Cases 1 and 2. The actual low voltage trip point is a function of temperature and process parameters (Figure 17).

2 MHz (7	ГурісаІ				
Temp	–40°	0°C	+25°C	+70°C	+105°C
$V_{\scriptscriptstyle \mathrm{LV}}$	2.55	2.4		1.7	1.6
	3.0	2.75	2.6	2.3	2.1

ROM Protect. ROM Protect fully protects the Z86C04/C08 ROM code from being read internally. When ROM Protect is selected. ROM look-up tables can be used in this mode.

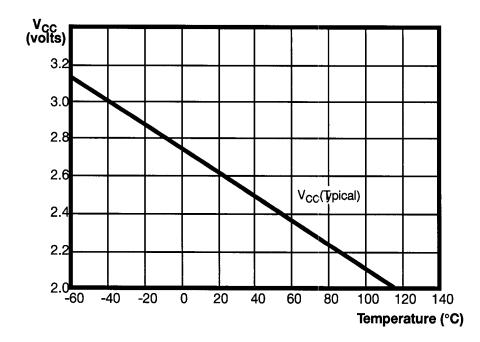


Figure 17. Typical Z86C04/C08 V₁, vs. Temperature

Z8® CONTROL REGISTER DIAGRAMS

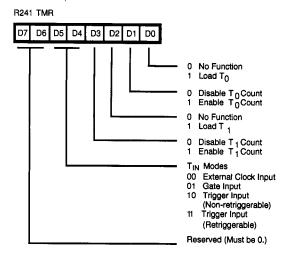


Figure 18. Timer Mode Register (F1_u: Read/Write)

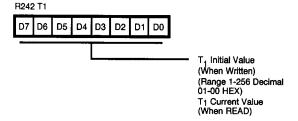


Figure 19. Counter Time 1 Register (F2_H: Read/Write)

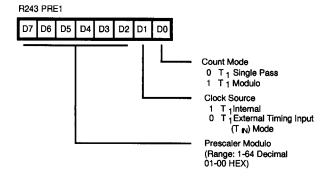


Figure 20. Prescaler 1 Register (F3_H: Write Only)

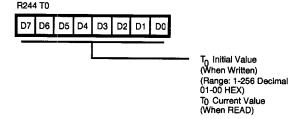


Figure 21. Counter/Timer 0 Register (F4_": Read/Write)

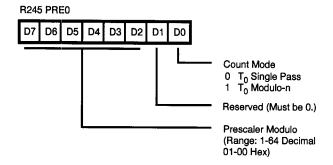


Figure 22. Prescaler 0 Register (F5_n: Write Only)

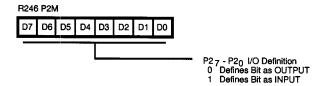


Figure 23. Port 2 Mode Register (F6_H: Write Only)

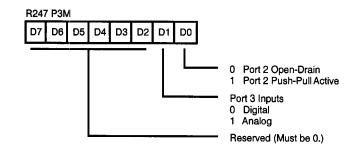


Figure 24. Port 3 Mode Register (F7_H: Write Only)

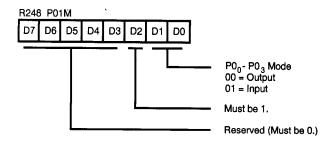


Figure 25. Port 0 and 1 Mode Register Figure 26. (F8,: Write Only)

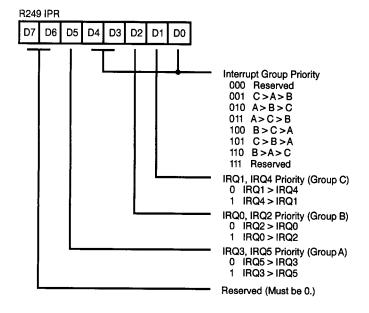


Figure 27. Interrupt Priority Register Figure 28. (F9_n: Write Only)

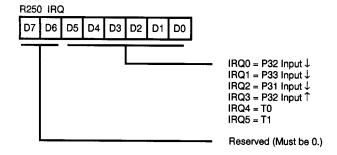


Figure 29. Interrupt Request Register Figure 30. (FA_H: Read/Write)

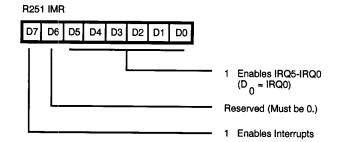


Figure 31. Interrupt Mask Register Figure 32. (FB_u: Read/Write)

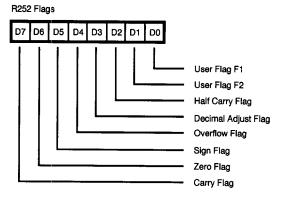


Figure 33. Flag Register Figure 34. (FC_u: Read/Write)

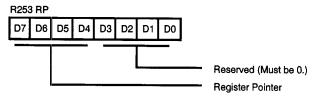


Figure 35. Register Pointer Figure 36. (FD_H: Read/Write)

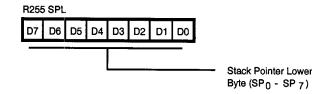


Figure 37. Stack Pointer Figure 38. (FF_H: Read/Write)

DEVICE CHARACTERISTICS

Standard Mode

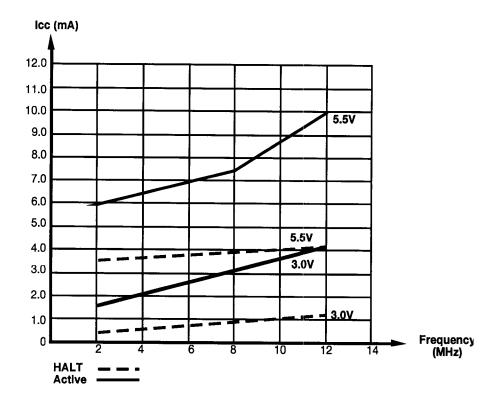


Figure 39. Typical $I_{\rm cc}$ vs. Frequency

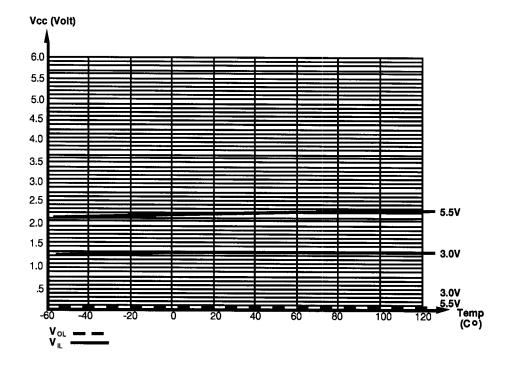


Figure 40. $V_{\rm IL}$, $V_{\rm OL}$ vs. Temperature

DEVICE CHARACTERISTICS (Continued)

Figure 43. Typical $\rm I_{oL}$ vs. $\rm V_{oL}$

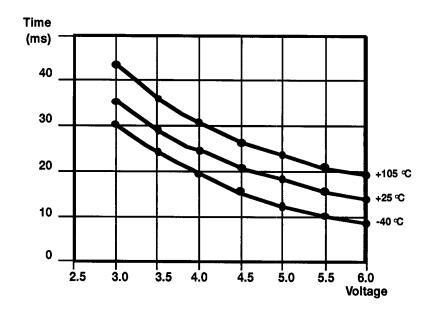
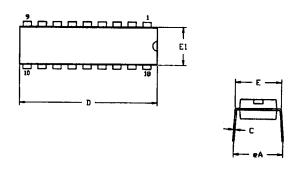
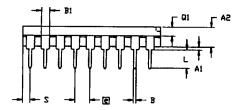
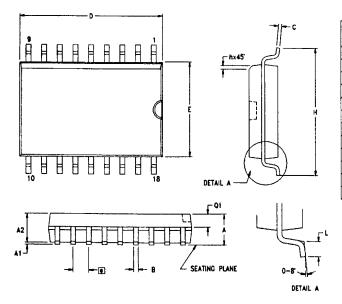




Figure 44. Typical WDT Time Out Period vs. $\rm V_{cc}$ Over Temperature

PACKAGE INFORMATION



SYMBOL	MILLI	METER	INCH		
	MIN	MAX	MIN	MAX	
Al	0.51	0.81	.020	.032	
A2	3.25	3.43	.128	.135	
В	0.38	0.53	.015	.021	
B1	1.14	1.65	.045	.065	
С	0.23	0.38	.009	.015	
D	22.35	23.37	.880	.920	
E	7.62	8.13	.300	.320	
El	6.22	6.48	.245	.255	
E	2.54	TYP	.100	TYP	
eA	7.87	8.89	.310	.350	
L	3.18	3.81	.125	.150	
Qί	1.52	1.65	.060	.065	
S	0.89	1.65	.035	.065	

CONTROLLING DIMENSIONS : INCH

Figure 45. 18-Pin DIP Package Diagram

SYMBOL	MILL	METER	INCH			
ZIMBUL	MIN	MAX	MIN	MAX		
A	2.40	2.65	0.094	0.104		
A1	0.10	0.30	0.004	0.012		
A2	2.24	2.44	0.088	0.096		
9	0.36	0.46	0.014	0.018		
С	0.23	0.30	0.009	0.012		
D	11.40	11.75	0.449	0.463		
Ε	7.40	7.60	0.291	0.299		
(6)	1.27	TYP	0.05	O TYP		
Н	10.00	10.65	0.394	0.419		
h	0.30	0.50	0.012	0.020		
L	0.60	1.00	0.024	0.039		
Q1	0.97	1.07	0.038	0.042		

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 46. 18-Pin SOIC Package Diagram

ORDERING INFORMATION

Z86C05

(8 MHz)

Z86C07 (12 MHz) Standard Temperature

Standard Temperature

18-Pin DIP Z86C0408PSC 18-Pin SOIC Z86C0408SSC

18-Pin DIP Z86C0812PSC

18-Pin SOIC Z86C0812SSC

Extended Temperature

18-Pin DIP Z86C0408PEC 18-Pin SOIC Z86C0408SEC Extended Temperature 18-Pin DIP Z86C0812PEC

18-Pin SOIC Z86C0812SEC

For fast results, contact your local Zilog sale offices for assistance in ordering the part(s) desired.

CODES

Preferred Package

P = DIP

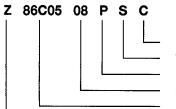
Longer Lead Time E = -40°C to +105°C

Longer Lead Time

S = SOIC

Speeds

08 = 8 MHz 12 = 12 MHz


Preferred Temperature

 $S = 0^{\circ}C$ to $+70^{\circ}C$

Environmental

C = Plastic Standard

Example:

is a Z86C05, 8 MHz, DIP, 0°C to +70°C, Plastic Standard Flow

Environmental Flow Temperature Package Speed

Product Number Zilog Prefix

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or non-conformance with some aspects of the CPS may be found,

either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up yield issues.

© 1997 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056 Internet: http://www.zilog.com