E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM926EJ-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	454MHz
Co-Processors/DSP	Data; DCP
RAM Controllers	LVDDR, LVDDR2, DDR2
Graphics Acceleration	No
Display & Interface Controllers	Keypad
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.8V, 3.3V
Operating Temperature	-20°C ~ 70°C (TA)
Security Features	Boot Security, Cryptography, Hardware ID
Package / Case	289-LFBGA
Supplier Device Package	289-MAPBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx286dvm4br

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

such as memories and SD cards, as well as provide battery charging capability for Li-Ion batteries.

The i.MX28 processor includes an additional 128-Kbyte on-chip SRAM to make the device ideal for eliminating external RAM in applications with small footprint RTOS.

The i.MX28 supports connections to various types of external memories, such as mobile DDR, DDR2 and LV-DDR2, SLC and MLC NAND Flash.

The i.MX28 can be connected to a variety of external devices such as high-speed USB2.0 OTG, CAN, 10/100 Ethernet, and SD/SDIO/MMC.

1.1 Device Features

The following lists the features of the i.MX28:

- ARM926EJ-S CPU running at 454 MHz:
 - 16-Kbyte instruction cache and 32-Kbyte data cache
 - ARM embedded trace macrocell (CoreSightTM ETM9TM)
 - Parallel JTAG interface
- 128 KBytes of integrated low-power on-chip SRAM
- 128 KBytes of integrated mask-programmable on-chip ROM
- 1280 bits of on-chip one-time-programmable (OCOTP) ROM
- 16-bit mobile DDR (mDDR) (1.8 V), DDR2 (1.8 V) and LV-DDR2 (1.5 V), up to 205 MHz DDR clock frequency with voltage overdrive
- Support for up to eight NAND Flash memory devices with up to 20-bit BCH ECC
- Four synchronous serial ports (SSP) for SDIO/MMC/MS/SPI: SSP0, SSP1, SSP2, and SSP3. SSP0 and SSP1 can support three modes, 1-bit, 4-bit, and 8-bit, whereas SSP2 and SSP3 can support only 1-bit and 4-bit modes.
- 10/100-Mbps Ethernet MAC compatible with IEEE Std 802.3TM:
 - Single 10/100 Ethernet with GMII/RMII or Dual 10/100 Ethernet with RMII interface
 - Supporting IEEE Std 1588TM-compatible hardware timestamp
 - Supporting 50-MHz/25-MHz clock output for external Ethernet PHY
- Two 2.0B protocol-compatible Controller Area Network (CAN) interfaces
- One USB2.0 OTG device/host controller and PHY
- One USB2.0 host controller and PHY
- LCD controller, up to 24-bit RGB (DOTCK) modes and 24-bit system-mode
- Pixel-processing pipeline (PXP) supports full path from color-space conversion, scaling, alpha-blending to rotation without intermediate memory access.
- SPDIF transmitter
- Dual serial audio interface (SAIF) to support full-duplex transmit and receive operations; each SAIF supports three stereo pairs
- Five application Universal Asynchronous Receiver-Transmitters (UARTs), up to 3.25 Mbps with hardware flow control

Table 4 describes the digital and analog modules of the device.

NP

Table 4. i.MX28	Digital	and A	nalog	Modules
-----------------	---------	-------	-------	---------

Block Mnemonic	Block Name	Subsystem	Brief Description
APBHDMA	AHB to APBH Bridge with DMA	System control	The AHB to APBH bridge with DMA includes the AHB-to-APB PIO bridge for memory-mapped I/O to the APB devices, as well a central DMA facility for devices on this bus. The bridge provides a peripheral attachment bus running on the AHB's HCLK. (The 'H' in APBH denotes that the APBH is synchronous to HCLK, as compared to APBX, which runs on the crystal-derived XCLK.) The DMA controller transfers read and write data to and from each peripheral on APBH bridge.
APBXDMA	AHB to APBX Bridge with DMA	System control	The AHB-to-APBX bridge includes the AHB-to-APB PIO bridge for memory-mapped I/O to the APB devices, as well a central DMA facility for devices on this bus. The AHB-to-APBX bridge provides a peripheral attachment bus running on the AHB's XCLK. (The 'X' in APBX denotes that the APBX runs on a crystal-derived clock, as compared to APBH, which is synchronous to HCLK.) The DMA controller transfers read and write data to and from each peripheral on APBX bridge.
ARM9 or ARM926	ARM926EJ-S CPU	ARM [®]	The ARM926 Platform consists of the ARM926EJ-S [™] core and the ETM real-time debug modules. It contains the 16-Kbyte L1 instruction cache, 32-Kbyte L1 data cache, 128-Kbyte ROM and 128-Kbyte RAM.
AUART(5)	Application UART interface	Connectivity peripherals	 Each of the UART modules supports the following serial data transmit/receive protocols and configurations: 7- or 8-bit data words, one or two stop bits, programmable parity (even, odd, or none) Programmable baud rates up to 3.25 MHz. This is a higher maximum baud rate than the 1.875 MHz specified by the TIA/EIA-232-F standard and previous Freescale UART modules. 16-byte FIFO on Tx and 16-byte FIFO on Rx supporting auto-baud detection
BCH	Bit-correcting ECC accelerator	Connectivity peripherals	The Bose, Ray-Chaudhuri, Hocquenghem (BCH) Encoder and Decoder module is capable of correcting from 2 to 20 single bit errors within a block of data no larger than about 900 bytes (512 bytes is typical) in applications such as protecting data and resources stored on modern NAND Flash devices.
BSI	Boundary Scan Interface	Connectivity peripherals	The boundary scan interface is provided to enable board level testing. There are five pins on the device which is used to implement the IEEE Std 1149.1™ boundary scan protocol.
CLKCTRL	Clock control module	Clocks	The clock control module, or CLKCTRL, generates the clock domains for all components in the i.MX28 system. The crystal clock or PLL clock are the two fundamental sources used to produce most of the clock domains. For lower performance and reduced power consumption, the crystal clock is selected. The PLL is selected for higher performance requirements but requires increased power consumption. In most cases, when the PLL is used as the source, a Phase Fractional Divider (PFD) can be programmed to reduce the PLL clock frequency by up to a factor of 2.
DCP	Data co-processor	Security	This module provides support for general encryption and hashing functions typically used for security functions. Because its basic job is moving data from memory to memory, it also incorporates a memory-copy (memcopy) function for both debugging and as a more efficient method of copying data between memory blocks than the DMA-based approach.

3.1.2 DC Operating Conditions

Table 8 provides the DC recommended operating conditions.

Parameter	Symbol	Min	Тур	Max	Unit
Analog Core Supply Voltage	V _{DDA}	1.62		2.10	V
Digital Core Supply Voltage Specification dependent on frequency. ^{1, 2}	V _{DDD}	1.35	—	1.55	V
Digital Supply Voltages: • VDDIO33/VDDIO33_EMI • VDDIO18	V _{DDIO33} /V _{DDIO33} _EMI/V _{DDI} O18	3.0 1.7		3.6 1.9	V
EMI Digital I/O Supply Voltage: • DDR2/mDDR • LVDDR2	V _{DDIO.EMI} /V _{DDIO_EMIQ}	1.7 1.425	1.8 1.5	1.9 1.625	V
Battery / DCDC Input Voltage—BATT, DCDC_BATT	BATT DCDC_BATT	3.10 ³	—	4.242	V
VDD5V Supply Voltage	—	4.75	5.00	5.25	V
Offstate Current: ⁴					
• 32-kHz RTC off, BATT = 4.2 V	—	—	21	47	μA
• 32-kHz RTC on, BATT = 4.2 V	—	—	23	51	μA

¹ For optimum USB jitter performance, V_{DDD} = 1.35 V or greater.

 2 V_{DDD} supply minimum voltage includes 75 mV guardband.

³ Tested with only the i.MX28 processor loading the MX28 PMU output rails during start up. With external loadings (for example, one DDR2 device and SD Card/NAND Flash), MX28 PMU was tested at BATT/DCDC_BATT > 3.30 V.

⁴ When the real-time clock is enabled, the chip consumes additional current in the OFF state to keep the crystal oscillator and the real-time clock running.

Table 9 provides the DC operating temperature conditions.

Table 9. Op	erating Te	mperature	Conditions
-------------	------------	-----------	------------

Parameter ^{1, 2, 3}	Symbol	Min	Тур	Max	Unit
Commercial Ambient Operating Temperature Range	T _A	-20	_	70	°C
Commercial Junction Temperature Range	Т _Ј	-20	_	85	°C
Industrial Ambient Operating Temperature Range	T _A	-40	_	85	°C
Industrial Junction Temperature Range	ТJ	-40	—	105	°C

¹ In most portable systems designs, battery and display specifications limits the operating range to well within these specifications. Most battery manufacturers recommend enabling battery charge only when the ambient temperature is between 0°C and 40°C. To ensure that battery charging does not occur outside the recommended temperature range, the system ambient temperature may be monitored by connecting a thermistor to the LRADC0 or LRADC6 pin on the i.MX28.

² For applications powered by external 5V only, the Maximum Ambient Operating Temperature specified in Table 9 may not be achieved. Application developers need to do the worst-case power consumption estimation, and then calculate the Total On-chip Power Dissipation based on the equations specified in note 3 below.

- ³ Maximum Ambient Operating Temperature may be limited due to on-chip power dissipation. $T_{A (MAX)} \leq T_{J} (\Theta_{JA} \times P_{D})$ where:
 - $T_J = Maximum Junction Temperature$

 Θ_{JA} = Package Thermal Resistance. See Section 3.2, "Thermal Characteristics."

P_D = Total On-chip Power Dissipation =PVDD4P2 + PBatteryCharger + PDCDC + PLinearRegulators + PInternal. Depending on the application, some of these power dissipation terms may not apply.

PVDD4P2 = VDD4P2 On-Chip Power Dissipation = (VDD5V - VDD4P2) x IDD4P2

PBatteryCharger = Battery Charger On-Chip Power Dissipation = (VDD5V - BATT) x ICHARGE

PDCDC = DC-DC Converter On-Chip Power Dissipation = (BATT x DCDC Input Current) x (1 - efficiency)

PLinearRegulators = Linear Regulator On-Chip Power Dissipation = (VDD5V - VDDIO) x (IDDIO + IDDA + IDDD + IDD1P5) +

(VDDIO - VDDA) x (IDDA + IDDD) + (VDDA - VDDD) x IDDD + (VDDA - VDD1P5) x IDD1P5

PInternal = Internal Digital On-Chip Power Dissipation = ~VDDD x IDDD

Table 10 provides the recommended analog operating conditions.

Table 10. Recommended Analog Operating Conditions

Parameter	Min	Тур	Max	Unit
Low Resolution ADC Input Impedance (CH0 - CH5)	>1		_	MΩ

Table 11 shows the PSWITCH input characteristics. See the reference schematics for the recommended PSWITCH button circuitry.

Table 11. PSWITCH Input Characteristics

Parameter	HW_PWR_STS_PSWITCH	Min	Мах	Unit
PSWITCH LOW LEVEL	0x00	0.00	0.30	V
PSWITCH MID LEVEL & STARTUP ¹	0x01	0.65	1.50	V
PSWITCH HIGH LEVEL ²	0x11	(1.1 * VDDXTAL) + 0.58	2.45	V

¹ A MID LEVEL PSWITCH state can be generated by connecting the VDDXTAL output of the SoC to PSWITCH through a switch.

² PSWITCH acts like a high impedance input (>300 k Ω) when the voltage applied to it is less than 1.5V. However, above 1.5V it becomes lower impedance. To simplify design, it is recommended that a 10 k Ω resistor to VDDIO be applied to PSWITCH to set the HIGH LEVEL state (the PSWITCH input can tolerate voltages greater than 2.45 V as long as there is a 10 k Ω resistor in series to limit the current).

Table 12 shows a test case example for Run IDD.

Table 12. Run IDD Test Case^{1,2}

Power Rail	Conditions	Min	Тур	Max	Unit
VDDD	1.57 V	—	150	188	mA
VDDIO33	3.62 V	—	31	34	mA
VDDA	2.12 V	—	1.11	1.17	mA
VDDIO_EMI	1.92 V	—	1.01	1.08	mA
VDDIO18	1.92 V	_	0.61	2.97	μΑ

¹ CPUCLK = 300 MHz, AHBCLK = 150 MHz

² Continuous read / write to the cache memory

Table 25.	Digital Pin	DC Characteristics	for GPIO in 3.3-	V Mode (continued)
-----------	--------------------	---------------------------	------------------	--------------------

Parameter	Symbol	Min	Мах	Unit
10-K pull-up resistance ²	Rpu10k	8	12	kΩ
47-K pull-up resistance	Rpu47k	39	56	kΩ

¹ The conditions of the current measurements for all different drives are as follows:

IOL: at 0.4 V

IOH: at VDDIO * 0.8 V

Maximum corner for 3.3 V mode: 3.6 V, -40°C, fast process.

Minimum corner for 3.3 V mode: 3.0 V, 105°C, slow process.

8 gpio pins (LCD_D0-D7) and 2 gpio_clk pins (LCD_DOTCLK and LCD_WR_RWN) simultaneously loaded.

² See the i.MX28 reference manual for detailed pull-up configuration of each I/O.

Table 26 shows the digital pin DC characteristics for GPIO in 1.8 V mode. Table 26. Digital Pin DC Characteristics for GPIO in 1.8 V Mode

	Symbol	Min	Мах	Unit
Input voltage high (DC)	VIH	0.7 × VDDIO18	VDDIO18	V
Input voltage low (DC)	VIL	_	0.3 imes VDDIO18	V
Output voltage high (DC)	VOH	0.8 * VDDIO18	—	V
Output voltage low (DC)	VOL	_	$0.2 \times VDDIO18$	V
Output source current ¹	IOH – Iow	-2.2	—	mA
(DC) gpio	IOH – medium	-3.5	—	mA
	IOH – high	-4.0	—	mA
Output sink current (DC)	IOL – Iow	3.3	—	mA
gpio	IOL – medium	7.0	—	mA
	IOL – high	7.5	—	mA
Output source current	IOH – Iow	-4.2	—	mA
(DC) gpio_clk	IOH – high	-6.0	—	mA
Output sink current (DC)	IOL – low	6.8	—	mA
gpio_clk	IOL – high	11.5	—	mA
10-K pull-up resistance ²	Rpu10k	8	12	kΩ
47-K pull-up resistance	Rpu47k	39	56	kΩ

¹ The condition of the current measurements for all different drives are as follows:

Maximum corner for 1.8 V mode: 1.9 V, -40°C, Fast process.

Minimum corner for 1.8 V mode: 1.7 V, 105°C, Slow process.

1 gpio pin (GPMI_D0) and 1 gpio_clk pin (GPMI_WRN) simultaneously loaded.

² See the i.MX28 reference manual for detailed pull-up configuration of each I/O.

3.4 I/O AC Timing and Parameters

Figure 3 and Figure 4 show the Driver Used for AC Simulation Testpoint and the Output Pad Transition Waveform.

Driver Used for AC simulation

Figure 3. Driver Used for AC Simulation Testpoint

Output Pad Transition Waveform

Table 27 shows the base GPIO AC timing and parameters.

Table 27. Base GPIO

Parameters	Symbol	Test Voltage	Test Capacitance	M Rise	in e/Fall	MaxRi	se/Fall	Unit	Notes
Duty cycle	Fduty	—	—	_	_	-	_	%	
Output pad transition	tpr	1.7~1.9V	10 pF	0.82	0.91	1.93	1.97	ns	-
times (maximum drive)	imum arive)	1.7~1.9V	20 pF	1.18	1.22	2.69	2.71		_
		1.7~1.9V	50 pF	2.11	2.03	4.62	4.44	-	_
		3.0~3.6V	10 pF	1.04	1.08	2.46	2.18		_
	3.0	3.0~3.6V	20 pF	1.42	1.5	3.29	3		_
		3.0~3.6V	50 pF	2.46	2.61	5.34	5.12		

Parameters	Symbol	Test Voltage	Test Capacitance	M Rise	in e/Fall	MaxRi	se/Fall	Unit	Notes
Output pad transition	tpr	1.7~1.9V	10 pF	1.02	1.08	2.34	2.38	ns	_
times (medium drive)		1.7~1.9V	20 pF	1.51	1.5	3.34	3.28		
		1.7~1.9V	50 pF	2.91	2.62	6.24	5.67		
		3.0~3.6V	10 pF	1.26	1.29	2.9	2.6		_
		3.0~3.6V	20 pF	1.8	1.88	4	3.67		_
		3.0~3.6V	50 pF	3.3	3.46	6.91	6.64		_
Output pad transition	tpr	1.7~1.9V	10 pF	1.62	1.68	3.65	3.68	ns	_
times (low drive)		1.7~1.9V	20 pF	2.55	2.45	5.59	5.37		_
		1.7~1.9V	50 pF	5.42	4.62	11.46	10.01		
		3.0~3.6V	10 pF	1.95	2.12	4.43	4.25		_
		3.0~3.6V	20 pF	2.96	3.21	6.36	6.25		_
		3.0~3.6V	50 pF	5.89	6.39	12.02	12.18		_
Output pad slew rate	tps	1.7~1.9V	10 pF	1.39	1.25	0.53	0.52	V/ns	_
(maximum drive)		1.7~1.9V	20 pF	0.97	0.93	0.38	0.38		_
		1.7~1.9V	50 pF	0.54	0.56	0.22	0.23		_
		3.0~3.6V	10 pF	2.08	2.00	0.73	0.83		—
		3.0~3.6V	20 pF	1.52	1.44	0.55	0.60		_
		3.0~3.6V	50 pF	0.88	0.83	0.34	0.35		_
Output pad slew rate	tps	1.7~1.9V	10 pF	1.12	1.06	0.44	0.43	V/ns	_
(meaium arive)		1.7~1.9V	20 pF	0.75	0.76	0.31	0.31		_
		1.7~1.9V	50 pF	0.39	0.44	0.16	0.18		_
		3.0~3.6V	10 pF	1.71	1.67	0.62	0.69		_
		3.0~3.6V	20 pF	1.20	1.15	0.45	0.49		_
		3.0~3.6V	50 pF	0.65	0.62	0.26	0.27		_
Output pad slew rate	tps	1.7~1.9V	10 pF	1.17	1.13	0.47	0.46	V/ns	_
(low drive)		1.7~1.9V	20 pF	0.75	0.78	0.30	0.32		_
		1.7~1.9V	50 pF	0.35	0.41	0.15	0.17		-
		3.0~3.6V	10 pF	1.11	1.02	0.41	0.42		-
		3.0~3.6V	20 pF	0.73	0.67	0.28	0.29		_
		3.0~3.6V	50 pF	0.37	0.34	0.15	0.15		_
Input pad average	tih	1.7 V–1.9 V	_	10	00	7	5	mV	_
nysteresis		3.0 V–3.6 V	_	10	00	5	0		

Table 27. Base GPIO (continued)

Parameters	Symbol	Test Voltage	Test Capacitance	Min Ri	se/Fall	Max Rise/Fall		units	Notes
Output pad slew rate	tps	1.7~1.9V	10 pF	1.50	1.50	0.61	0.63	ns	—
(meaium arive)		1.7~1.9V	20 pF	0.93	1.00	0.39	0.42		_
		1.7~1.9V	50 pF	0.43	0.52	0.18	0.22		_
		3.0~3.6V	10 pF	2.40	2.43	0.98	1.05		_
		3.0~3.6V	20 pF	1.58	1.53	0.65	0.67		_
		3.0~3.6V	50 pF	0.76	0.71	0.32	0.31		_
Input pad average	tih	1.7 V–1.9 V	_	1(100		75		—
nysteresis		3.0 V–3.6 V	_	1(00	5	0		_

Table 29. CLK-Type GPIO (continued)

3.5 Module Timing and Electrical Parameters

3.5.1 ADC Electrical Specifications

This section describes the electrical specifications, including DC and AC information, of Low-Resolution ADC (LRADC) and High-Speed ADC (HSADC).

3.5.1.1 LRADC Electrical Specifications

Table 30 shows the electrical specifications for the LRADC.

Table 30. LRADC Electrical Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit				
	AC Electrical Specification								
Input capacitance (C_p)	No pin/pad capacitance included	—	0.5		pF				
Resolution	_		12		bits				
Maximum sampling rate ¹ (fs)	_	—	_	428	kHz				
Power-up time ²	_		1		sample cycles				
	DC Electrical Specification								
DC input voltage		0		1.85	V				
Current consumption ³ VDDA	_	_	10	_	μA				
	Touchscreen Interface								
Expected plate resistance		200	_	50000	Ω				

¹ There is no sample and hold circuit in LRADC, so it is only for DC input voltage or ones with very small slope.

² This comprises only the required initial dummy conversion cycle, NOT including the Analog part power-up time.

3.5.2 DPLL Electrical Specifications

This section includes descriptions of the USB PLL electrical specifications and Ethernet PLL electrical specifications.

3.5.2.1 USB PLL Electrical Specifications

The i.MX28 integrates a high-frequency USB PLL that provides the 480-MHz clock for the USB and other system blocks.

Table 32 lists the USB PLL output electrical specifications.

Table 32. USB PLL Specifications

Parameter	Test Conditions	Min	Тур	Мах	Unit
PLL lock time	—	-	-	10	μs

3.5.2.2 Ethernet PLL Electrical Specifications

i.MX28 provides a 50-MHz/25-MHz output clock, called the Ethernet PLL output.

Table 33 lists the Ethernet PLL output electrical specifications.

 Table 33. Ethernet PLL Specifications

Parameter	Test Conditions	Min	Тур	Мах	Unit
Output Duty Cycle	—	45	50	55	%
PLL lock time	—	—	—	10	μs
Cycle to cycle jitter	—	—	25	—	ps
Clock output frequency tolerance ¹	—	—	—	+/-20	ppm

¹ This Ethernet output clock tolerance specification is the contribution from the PLL only and assumes a perfect 24 MHz clock/crystal source with 0 ppm deviation. The 24 MHz crystal frequency tolerance/deviation should be added to this number for the total Ethernet clock output frequency tolerance.

Figure 10 shows MII transmit signal timings. Table 39 describes the timing parameters (M5–M8) shown in the figure.

Figure 10. MII Transmit Signal Timing Diagram

Table 39. MII Transmit Signal Timing

ID	Characteristic ¹	Min.	Max.	Unit
M5	ENET0_TX_CLK to ENET0_TXD[3:0], ENET0_TX_EN, ENET0_TX_ER invalid	5	—	ns
M6	ENET0_TX_CLK to ENET0_TXD[3:0], ENET0_TX_EN, ENET0_TX_ER valid	—	20	ns
M7	ENET0_TX_CLK pulse width high	35%	65%	ENET0_TX_CLK period
M8	ENET0_TX_CLK pulse width low	35%	65%	ENET0_TX_CLK period

¹ ENET0_TX_EN, ENET0_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.

3.5.4.1.3 MII Asynchronous Inputs Signal Timing (ENET0_CRS and ENET0_COL)

Figure 11 shows MII asynchronous input timings. Table 40 describes the timing parameter (M9) shown in the figure.

Figure 11. MII Async Inputs Timing Diagram

Table 40. MII Asynchronous Inputs Signal Timing

ID	Characteristic	Min.	Max.	Unit
M9 ¹	ENET0_CRS to ENET0_COL minimum pulse width	1.5		ENET0_TX_CLK period

¹ ENET0_COL has the same timing in 10-Mbit 7-wire interface mode.

Figure 14 shows TRACECLK signal timings. Table 43 describes the timing parameters shown in the figure.

Figure 14. TRACECLK Signal Timing Diagram

Table 43. TRACECLK Signal Timing

ID	Characteristic ¹	Min.	Max.	Unit
Tr	Clock and data raise time	3	_	ns
Tf	Clock and data fall time	3	_	ns
Twh	High pulse wide	2	_	ns
Twl	Low pulse wide	2	_	ns
Тсус	Clock period	12.5	—	ns

3.5.5.2 Trace Data Signal Timing

Figure 15 shows the setup and hold requirements of the trace data pins with respect to TRACECLK. Table 44 describes the timing parameters shown in the figure.

Figure 15. Trace Data Signal Timing Diagram

Table 44. Trace Data Signal Timing

ID	Characteristic ¹	Min.	Max.	Unit
Ts	Data setup	2	—	ns
Th	Data hold	2	—	ns

3.5.6 FlexCAN AC Timing

Table 45 and Table 46 show voltage requirements for the FlexCAN transceiver Tx and Rx pins.

Table 45. Tx Pin Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
High-level output voltage	Vон	2	—	Vcc ¹ + 0.3	V
Low-level output voltage	Vol		0.8	_	V

¹ Vcc = $+3.3 V \pm 5\%$

Table 46. Rx Pin Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
High-level input voltage	Vih	$0.8 imes Vcc^1$	—	Vcc ¹	V
Low-level input voltage	VIL	—	0.4	—	V

¹ Vcc = +3.3 V \pm 5%

Figure 16 through Figure 19 show the FlexCAN timing, including timing of the standby and shutdown signals.

Figure 16. FlexCAN Timing Diagram

3.5.9 Inter IC (I²C) Timing

The I²C module is designed to support up to 400-Kbps I²C connection compliant with I²C bus protocol. The following section describes I²C SDA and SCL signal timings.

Figure 25 shows the timing of the I^2C module. Table 49 describes the I^2C module timing parameters (IC1–IC11) shown in the figure.

Figure 25. I²C Module Timing Diagram

	Parameter	Standard Mode		Fast Mode		Unit
		Min.	Max.	Min.	Max.	Unit
IC1	I2C_SCL cycle time	10		2.5	_	μs
IC2	Hold time (repeated) START condition	4.0		0.6	_	μs
IC3	Set-up time for STOP condition	4.0	_	0.6		μs
IC4	Data hold time	0 ¹	3.45 ²	0 ¹	0.9 ²	μs
IC5	HIGH Period of I2C_SCL clock	4.0	_	0.6		μs
IC6	LOW Period of the I2C_SCL clock	4.7	_	1.3	_	μs
IC7	Set-up time for a repeated START condition	4.7	_	0.6	_	μs
IC8	Data set-up time	250	_	100 ³	_	ns
IC9	Bus free time between a STOP and START condition	4.7	_	1.3		μs
IC10	Rise time of both I2C_SDA and I2C_SCL signals	_	1000	20+0.1C _b ⁴	300	ns
IC11	Fall time of both I2C_SDA and I2C_SCL signals	_	300	20+0.1C _b ⁴	300	ns
IC12	Capacitive load for each bus line (C _b)	—	400	—	400	pF

Table 49. I²C Module Timing Parameters: 1.8 V – 3.6 V

¹ A device must internally provide a hold time of at least 300 ns for the I2C_SDA signal in order to bridge the undefined region of the falling edge of I2C_SCL.

² The maximum IC4 has to be met only if the device does not stretch the LOW period (ID no IC5) of the I2C_SCL signal.

³ A fast-mode I2C bus device can be used in a standard-mode I²C bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the I2C_SCL signal. If such a device does stretch the LOW period of the I2C_SCL signal, it must output the next data bit to the I2C_SDA line max_rise_time (ID No IC9) + data_setup_time (ID No IC7) = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the I2C_SCL line is released.

⁴ C_b = total capacitance of one bus line in pF.

Figure 29. TRST Timing Diagram

Table 50	. SJC	Timing	Parameters
----------	-------	--------	-------------------

п	Parameter	All Freq	uencies	Unit
		Min.	Max.	
SJ1	TCK cycle time	100		ns
SJ2	TCK clock pulse width measured at V_M^1	40	_	ns
SJ3	TCK rise and fall times	—	3	ns
SJ4	Boundary scan input data set-up time	10	—	ns
SJ5	Boundary scan input data hold time	50	—	ns
SJ6	TCK low to output data valid	—	50	ns
SJ7	TCK low to output high impedance	—	50	ns
SJ8	TMS, TDI data set-up time	10	_	ns
SJ9	TMS, TDI data hold time	50		ns

ID	Parameter	Min.	Max.	Unit
SS1	BITCLK period	81.4	_	ns
SS2	BITCLK high period	36.0	—	ns
SS3	BITCLK rise time	—	6.0	ns
SS4	BITCLK low period	36.0	—	ns
SS5	BITCLK fall time	—	6.0	ns
SS6	BITCLK high to LRCLK high	—	15.0	ns
SS7	BITCLK high to LRCLK low	—	15.0	ns
SS8	LRCLK rise time	—	6.0	ns
SS9	LRCLK fall time	—	6.0	ns
SS10	BITCLK high to SDATA valid from high impedance	—	15.0	ns
SS11	BITCLK high to SDATA high/low	—	15.0	ns
SS12	BITCLK high to SDATA high impedance	—	15.0	ns
SS13	SDATA rise/fall time	—	6.0	ns

Table 54. SAIF Transmitter Timing

3.5.12.2 SAIF Receiver Timing

Figure 34 shows the timing for the SAIF receiver with internal clock. Table 55 describes the timing parameters (SS1–SS17) shown in the figure.

Figure 34. SAIF Receiver Timing Diagram

3.5.14 Synchronous Serial Port (SSP) AC Timing

This section describes the electrical information of the SSP, which includes SD/MMC4.3 (Single Data Rate) timing, MMC4.4 (Dual Date Rate) timing, MS (Memory Stick) timing, and SPI timing.

3.5.14.1 SD/MMC4.3 (Single Data Rate) AC Timing

Figure 36 depicts the timing of SD/MMC4.3, and Table 57 lists the SD/MMC4.3 timing characteristics.

Figure 36. SD/MMC4.3 Timing

ID	Parameter	Symbols	Min	Мах	Unit
Card Inp	ut Clock			I	
SD1	Clock Frequency (Low Speed)	f _{PP} ¹	0	400	kHz
	Clock Frequency (SD/SDIO Full Speed/High Speed)	f _{PP} ²	0	25/50	MHz
	Clock Frequency (MMC Full Speed/High Speed)	f _{PP} ³	0	20/52	MHz
	Clock Frequency (Identification Mode)	f _{OD}	100	400	kHz
SD2	Clock Low Time	t _{WL}	7	—	ns
SD3	Clock High Time	t _{WH}	7	—	ns
SD4	Clock Rise Time	t _{TLH}	—	3	ns
SD5	Clock Fall Time	t _{THL}	—	3	ns
SSP Output / Card Inputs CMD, DAT (Reference to CLK)					
SD6	SSP Output Delay	t _{OD}	-5	5	ns
SSP Inpu	SSP Input / Card Outputs CMD, DAT (Reference to CLK)				

Package Information and Contact Assignments

Contact Name	Contact Assignment
VDDIO_EMIQ	K15,J13,R15
VDDXTAL	C12
VSS	E15,L11,A1,K10,K11,J11,M14,H11,U1,H9,H12,H3,K9,C16,L10,H16,J12,H10,B7,E5,J15,A9,N4
VSSA1	B13
VSSA2	B11
VSSIO_EMI	F16,R10,H14,M16,F14,L12,P16,U17,T14,P14,R12

Table 64. MAPBGA Power and Ground Contact Assignments (continued)

4.3 Signal Contact Assignments

Table 65 lists the i.MX287 MAPBGA package signal contact assignments.

TUDIC VOLIMIALOT MAL DOA CONTROL ASSIGNMENTS
--

Signal Name	Contact Assignment	Signal Name	Contact Assignment
AUART0_CTS	J6	EMI_DQS1N	J16
AUART0_RTS	J7	EMI_ODT0	R17
AUART0_RX	G5	EMI_ODT1	T17
AUART0_TX	H5	EMI_RASN	R16
AUART1_CTS	K5	EMI_VREF0	R14
AUART1_RTS	J5	EMI_VREF1	K13
AUART1_RX	L4	EMI_WEN	T15
AUART1_TX	K4	ENET0_COL	J4
AUART2_CTS	H6	ENET0_CRS	J3
AUART2_RTS	H7	ENET0_MDC	G4
AUART2_RX	F6	ENET0_MDIO	H4
AUART2_TX	F5	ENET0_RXD0	H1
AUART3_CTS	L6	ENET0_RXD1	H2
AUART3_RTS	К6	ENET0_RXD2	J1
AUART3_RX	M5	ENET0_RXD3	J2
AUART3_TX	L5	ENET0_RX_CLK	F3
BATTERY	A15	ENET0_RX_EN	E4
DCDC_BATT	B15	ENET0_TXD0	F1
DCDC_GND	A17	ENET0_TXD1	F2
DCDC_LN1	B17	ENET0_TXD2	G1
DCDC_LP	A16	ENET0_TXD3	G2

Signal Name	Contact Assignment
LCD_D17	R3
LCD_D18	U4
LCD_D19	T4
LCD_D20	R4
LCD_D21	U5
LCD_D22	T5
LCD_D23	R5
LCD_DOTCLK	N1
LCD_ENABLE	N5
LCD_HSYNC	M1
LCD_RD_E	P4
LCD_RESET	M6
LCD_RS	M4
LCD_VSYNC	L1
LCD_WR_RWN	K1
LRADC0	C15
LRADC1	C9
LRADC2	C8
LRADC3	D9
LRADC4	D13
LRADC5	D15

Package Information and Contact Assignments

Signal Name	Contact Assignment
EMI_D04	P13
EMI_D05	P17
EMI_D06	L14
EMI_D07	M17
EMI_D08	G16
EMI_D09	H15
EMI_D10	G14
EMI_D11	J14
EMI_D12	H13
EMI_D13	H17
EMI_D14	F13
EMI_D15	F17
EMI_DDR_OPE N	K14
EMI_DDR_OPE N_FB	L15
EMI_DQM0	M15
EMI_DQM1	F15
EMI_DQS0	K17
EMI_DQS0N	K16
EMI_DQS1	J17

Table 65. i.MX287 MAPBGA	Contact Assignments	(continued)
--------------------------	----------------------------	-------------

Signal Name	Contact Assignment
JTAG_TRST	D14
LCD_CS	P5
LCD_D00	К2
LCD_D01	КЗ
LCD_D02	L2
LCD_D03	L3
LCD_D04	M2
LCD_D05	М3
LCD_D06	N2
LCD_D07	P1
LCD_D08	P2
LCD_D09	P3
LCD_D10	R1
LCD_D11	R2
LCD_D12	T1
LCD_D13	T2
LCD_D14	U2
LCD_D15	U3
LCD_D16	ТЗ

Signal Name	Contact Assignment
SSP2_MOSI	C3
SSP2_SCK	A3
SSP2_SS0	C4
SSP2_SS1	D3
SSP2_SS2	D4
SSP3_MISO	B2
SSP3_MOSI	C2
SSP3_SCK	A2
SSP3_SS0	D2
TESTMODE	C10
USB0DM	A10
USB0DP	B10
USB1DM	B8
USB1DP	A8
VDD1P5	D16
VDD4P2	A13
VDD5V	E17
XTALI	A12
XTALO	B12

4.4 i.MX280 Ball Map

Table 66 shows the i.MX280 MAPBGA ball map.

Table 66. 289-Pin i.MX280 MAPBGA Ball Map

	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	
A	VSS	NC	SSP2_SCK	SSP0_CMD	SSP0_DATA3	SSP0_SCK	VDDIO33	USB1DP	VSS	USBODM	PSWITCH	XTALI	VDD4P2	RESETN	BATTERY	DCDC_LP	DCDC_GND	٨

Revision History

5 Revision History

Table 70 summarizes revisions to this document.

Rev. Number	Date	Substantive Change(s)
Rev. 3	07/2012	 Removed the Power Consumption table, and added Table 12, "Run IDD Test Case'," on page 14. Updated Table 23, "ON Impedance of EMI Drivers for Different Drive Strengths," on page 20.
Rev. 2	03/2012	 In Section 1.1, "Device Features:" —Updated synchronous serial ports (SSP) support for the i.MX28 —Updated Ethernet support for the i.MX28 —Updated Low-Resolution A/D Converter (LRADC) support for the i.MX28 Updated Table 2, "i.MX28 Functional Differences," on page 4. In Table 6, "DC Absolute Maximum Ratings," on page 12, removed the PSWITCH parameter as this paramater is explained in detail in Table 11. In Table 8, "Recommended Power Supply Operating Conditions," on page 13: —Updated two parameters: "VDD5V Supply Voltage" and "Offstate Current" —Updated two parameters: "VDD5V Supply Voltage" and "Offstate Current" —Updated the third footnote In Table 9, "Operating Temperature Conditions," on page 13, added a new footnote in the "Parameter" column. In Table 13, "Power Supply Characteristics," on page 15, updated the "VDD4P2 Output Current Limit Accuracy" parameter. In Section 3.1.2.1, "Recommended Operating Conditions for Specific Clock Targets:" —Removed the "System Clocks" table —Updated two TBD values in the first row of Table 14 —Removed the first row in Table 15 —Removed the first row in Table 15 —Removed the first row in Table 16 In Table 20, "Power Mode Settings," on page 17, changed the second column name from "Deep Sleep" to "Offstate." Updated Table 22, "EMI Digital Pin DC Characteristics," on page 20. In Table 30, "LRADC Electrical Specifications," on page 28, updated the "DC Electrical Specification" section. In Table 31, "HSADC Electrical Specification," on page 28, updated the "DC Electrical Specification" section. In Section 3.5.5.1, "TRACECLK Timing," corrected the title of Table 43. In Section 3.5.5.1, "TRACECLK Timing," corrected the title of Figure 15 and Table 44.
Rev. 1	04/2011	 Updated Section 1.1, "Device Features." Added Section 3.2, "Thermal Characteristics." In Table 1, "Ordering Information," on page 3, added two rows. Updated Table 2, "i.MX28 Functional Differences," on page 4. Updated Table 4, "i.MX28 Digital and Analog Modules," on page 7. In Table 8, "Recommended Power Supply Operating Conditions," on page 13, updated BATT row. Updated Table 9, "Operating Temperature Conditions," on page 13. Replaced the term "DC Characteristics" with "Power Consumption" in the title and introduction of the Power Consumption table. Also changed Dissipation to Consumption in first row. Updated Table 25, "Digital Pin DC Characteristics for GPIO in 3.3-V Mode," on page 21. Updated Table 26, "Digital Pin DC Characteristics for GPIO in 1.8 V Mode," on page 22. Updated and added a footnote to Table 33, "Ethernet PLL Specifications," on page 29. Updated DDR1 row of Table 34, "EMI Command/Address AC Timing," on page 30. Added Section 4.4, "i.MX280 Ball Map." In Section 4.5, "i.MX283 Ball Map," updated Figure 67.

Table 70. Document Revision History

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited. ARM9 is a trademark of ARM Limited.

© 2012 Freescale Semiconductor, Inc. All rights reserved.

Document Number: IMX28CEC Rev. 3 07/2012

