

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC05
Core Size	8-Bit
Speed	2.1MHz
Connectivity	SCI, SPI
Peripherals	POR, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	304 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68hc705c8acfn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section 1. General Description

1.1 Contents

1.2	Introduction
1.3	Features
1.4	Programmable Options23
1.5	Block Diagram
1.6	Pin Assignments
1.7	Pin Functions
1.7.1	V _{DD} and V _{SS}
1.7.2	V _{PP}
1.7.3	OSC1 and OSC2
1.7.3.	1 Crystal Resonator
1.7.3.	2 Ceramic Resonator
1.7.3.	
1.7.4	External Reset Pin (RESET)
1.7.5	External Interrupt Request Pin (IRQ)
1.7.6	Input Capture Pin (TCAP)
1.7.7	Output Compare Pin (TCMP)
1.7.8	Port A I/O Pins (PA7–PA0)
1.7.9	Port B I/O Pins (PB7–PB0)
1.7.10	
1.7.11	Port D I/O Pins (PD7 and PD5–PD0)

MC68HC705C8A — Rev. 3

Freescale Semiconductor, Inc.

1.7.7 Output Compare Pin (TCMP)

The TCMP pin is the output compare pin for the on-chip capture/compare timer. See Section 8. Capture/Compare Timer .

1.7.8 Port A I/O Pins (PA7 -PA0)

These eight I/O lines comprise port A, a general-purpose, bidirectional I/O port. The pins are programmable as either inputs or outputs under software control of the data direction registers. See 7.3 Port A.

1.7.9 Port B I/O Pins (PB7 -PB0)

These eight I/O pins comprise port B, a general-purpose, bidirectional I/O port. The pins are programmable as either inputs or outputs under software control of the data direction registers. Port B pins also can be configured to function as external interrupts. See 7.4 Port B.

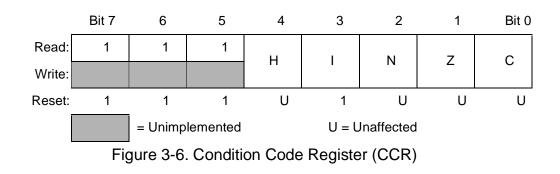
1.7.10 Port C I/O Pins (PC7 -PC0)

These eight I/O pins comprise port C, a general-purpose, bidirectional I/O port. The pins are programmable as either inputs or outputs under software control of the data direction registers. PC7 has a high current sink and source capability. See 7.5 Port C.

1.7.11 Port D I/O Pins (PD7 and PD5 -PD0)

These seven lines comprise port D, a fixed input port. All special functions that are enabled (SPI and SCI) affect this port. See 7.6 Port D.

MC68HC705C8A — Rev. 3


Technical Data

Freescale Semiconductor, Inc.

3.3.5 Condition Code Register

The condition code register (CCR) shown in Figure 3-6 is an 8-bit register whose three most significant bits are permanently fixed at 111. The condition code register contains the interrupt mask and four bits that indicate the results of prior instructions.

H — Half-Carry Bit

The CPU sets the half-carry flag when a carry occurs between bits 3 and 4 of the accumulator during an add without carry (ADD) or add with carry (ADC) operation. The half-carry bit is required for binary-coded decimal (BCD) arithmetic operations. Reset has no affect on the half-carry flag.

I — Interrupt Mask Bit

Setting the interrupt mask (I) disables interrupts. If an interrupt request occurs while the interrupt mask is a logic 0, the CPU saves the CPU registers on the stack, sets the interrupt mask, and then fetches the interrupt vector. If an interrupt request occurs while the interrupt mask is set, the interrupt request is latched. The CPU processes the latched interrupt as soon as the interrupt mask is cleared again.

A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack, restoring the interrupt mask to its cleared state. After a reset, the interrupt mask is set and can be cleared only by a CLI, STOP, or WAIT instruction.

MC68HC705C8A — Rev. 3

MOTOROLA

Technical Data

Central Processor Unit (CPU)

N — Negative Flag

The CPU sets the negative flag when an arithmetic operation, logical operation, or data manipulation produces a negative result (bit 7 in the results is a logic 1). Reset has no effect on the negative flag.

Z — Zero Flag

The CPU sets the zero flag when an arithmetic operation, logical operation, or data manipulation produces a result of \$00. Reset has no effect on the zero flag.

C — Carry/Borrow Flag

The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some logical operations and data manipulation instructions also clear or set the carry/borrow bit. Reset has no effect on the carry/borrow flag.

3.4 Arithmetic/Logic Unit (ALU)

The arithmetic/logic unit (ALU) performs the arithmetic and logical operations defined by the instruction set. The binary arithmetic circuits decode instructions and set up the ALU for the selected operation. Most binary arithmetic is based on the addition algorithm, carrying out subtraction as negative addition. Multiplication is not performed as a discrete operation but as a chain of addition and shift operations within the ALU. The multiply instruction requires 11 internal clock cycles to complete this chain of operations.

reescale Semiconductor, Inc.

Technical Data

MC68HC705C8A — Rev. 3

Section 4. Interrupts

4.1 Contents

4.2	Introduction
4.3	Interrupt Sources
4.3.1	Software Interrupt
4.3.2	External Interrupt (IRQ)51
4.3.3	Port B Interrupts
4.3.4	Capture/Compare Timer Interrupts
4.3.5	SCI Interrupts
4.3.6	SPI Interrupts
4.4	Interrupt Processing

4.2 Introduction

This section describes how interrupts temporarily change the normal processing sequence.

MC68HC705C8A — Rev. 3

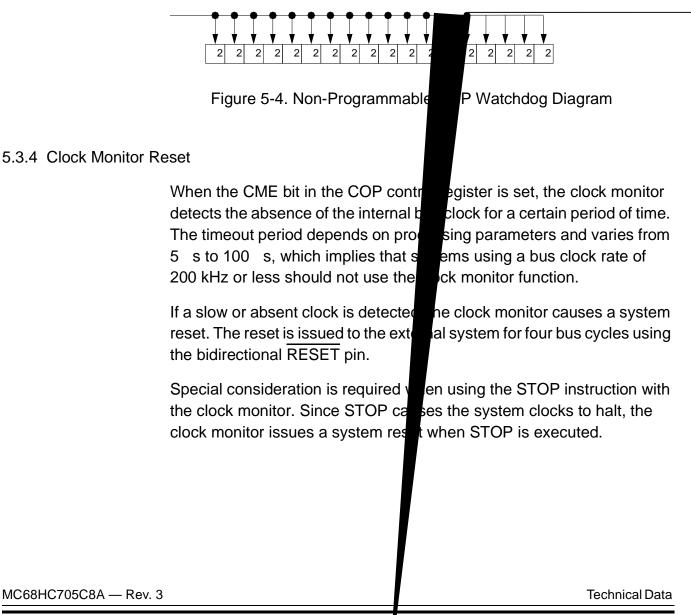
4.3.2 External Interrupt (IRQ)

An interrupt signal on the \overline{IRQ} pin latches an external interrupt request. After completing the current instruction, the CPU tests these bits:

- IRQ latch
- I bit in the CCR

Setting the I bit in the CCR disables external interrupts.

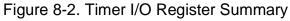
If the IRQ latch is set and the I bit is clear, the CPU then begins the interrupt sequence. The CPU clears the IRQ latch while it fetches the interrupt vector, so that another external interrupt request can be latched during the interrupt service routine. As soon as the I bit is cleared during the return-from-interrupt (RTI) instruction, the CPU can recognize the new interrupt request. Figure 4-1 shows the logic for external interrupts.


Figure 4-1 shows an external interrupt functional diagram. Figure 4-2 shows an external interrupt timing diagram for the interrupt line. The tiL15()v9 Tc6(r)-4(upt)21(func012 111015()v9 e)18(ter)4(u)15(he)]TJon, i7.44.

2. COP clear bit (COPC) at address \$1FF0

To clear the non-programmable COP watchdog and start a new COP timeout period, write a logic 0 to bit 0 of address \$1FF0. Reading address \$1FF0 returns the mask option register 1 (MOR1) data at that location. See 9.5.2 Mask Option Register 1 .

NOTE: The non-programmable watchdog COP is disabled in bootloader mode, even if the NCOPE bit is programmed.


Figure 5-4 is a diagram of the non-programmable COP.

Freescale Semiconductor, Inc.

Addr.	Register Name	Bit 7	7 6	5	4	3	2		1 B	it O	
\$0012	Read: Timer Control Register (TCR) Write:		OCIE	TOIE	0	0	0	IEI	DG O	LVL	
	See page 94 Reset:	0	0	0	0	0	0	U	0	-	
\$0013	Read: Timer Status Register	ICF	OCF	TOF	0	0	0	(φ	φ	
	(ISR) Write										
	See page 96 Reset:	U	U	U	0	0	0	0	0	-	
\$0014	F	Bit 15	Bit 1	Bit 13	3 Bit	12 Bit	11 E	Bit 10	Bit 9	Bit 8	
	Read: Input Capture Register High (ICRH)Write										
	See page 100 Reset:	t: Unaffected by reset									
	г		Bit 6	Bit 5	Bit	-		it 2	Bit 1	Bit 0	
\$0015	Read: Input Capture Register Low (ICRL)Write										
	See page 100 Reset:	Unaffected by reset									
	Output Compare Regis Re ad: High (OCRH) _{Write}]	
\$0016		Bit 15	Bit 14	Bit 13	Bit 1	2 Bit	11 Bi	t 10	Bit 9	Bit 8	
φουτο	See page 101. ^{WIIIE} Reset:										
	Read: Output Compare Register Low (OCRL)Write:				onane		501			_	
\$0017		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	8 Bit	2 E	3it 1	Bit O	
	See page 101 Reset:	Unaffected by reset									
	Read: Timer Register High		Bit 1	Bit 13				Bit 10	Bit 9	Bit 8	
\$0018		DICTO	DIL 14	F DIL I	5 Bit	TZ BI			Bit 9	ыго	
	(TRH) Write See page 97 Reset:										
	F								bira		
\$0019	Timer Register Low	Bit 7	Bit 6	Bit 5	Bit	4 Bit	3 В	it 2	Bit 1	Bit 0	
	(TRL) Write See page 97 Reset:										
	F										
\$001A	Read: Alternate Timer Register	Bit 15	Bit 1	Bit 13	3 Bit	12 Bit	11 E	Bit 10	Bit 9	Bit 8	
	HIGN (AT RH)VVIITE										
	See page 99 Reset:										
\$001B	Alternate Timer Register	Bit 7	Bit 6	Bit 5	Bit	4 Bit	3 B	it 2	Bit 1	Bit 0	
	Low (ALRI)Write										
	See page 99 Reset:			R	eset initia	alizes ATR	L to \$FC				
= Unimplemented U = Unaffected											
	Figure 8	R-2 Tin	ner I/O I	Reaister	Summa	arv/					

MC68HC705C8A — Rev. 3

MOTOROLA

Technical Data