

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	-
Number of Cores/Bus Width	-
Speed	-
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	-
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	-
Operating Temperature	-
Security Features	-
Package / Case	
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc7457rx1267lc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Branch instructions that do not update the count register (CTR) or link register (LR) are often removed from the instruction stream.
- Eight-entry link register stack to predict the target address of Branch Conditional to Link Register (bclr) instructions

- Four integer units (IUs) that share 32 GPRs for integer operands
 - Three identical IUs (IU1a, IU1b, and IU1c) can execute all integer instructions except multiply, divide, and move to/from special-purpose register instructions
 - IU2 executes miscellaneous instructions including the CR logical operations, integer multiplication and division instructions, and move to/from special-purpose register instructions
- Five-stage FPU and a 32-entry FPR file
 - Fully IEEE 754-1985 compliant FPU for both single- and double-precision operations
 - Supports non-IEEE mode for time-critical operations
 - Hardware support for denormalized numbers
 - Thirty-two 64-bit FPRs for single- or double-precision operands
- Four vector units and 32-entry vector register file (VRs)
 - Vector permute unit (VPU)
 - Vector integer unit 1 (VIU1) handles short-latency AltiVec[™] integer instructions, such as vector add instructions (for example, vaddsbs, vaddsbs, and vaddsws)
 - Vector integer unit 2 (VIU2) handles longer-latency AltiVec integer instructions, such as vector multiply add instructions (for example, vmhaddshs, vmhraddshs, and vmladduhm)
 - Vector floating-point unit (VFPU)
- Three-stage load/store unit (LSU)
 - Supports integer, floating-point, and vector instruction load/store traffic
 - Four-entry vector touch queue (VTQ) supports all four architected AltiVec data stream operations
 - Three-cycle GPR and AltiVec load latency (byte, half-word, word, vector) with one-cycle throughput
 - Four-cycle FPR load latency (single, double) with one-cycle throughput
 - No additional delay for misaligned access within double-word boundary
 - Dedicated adder calculates effective addresses (EAs)
 - Supports store gathering
 - Performs alignment, normalization, and precision conversion for floating-point data
 - Executes cache control and TLB instructions
 - Performs alignment, zero padding, and sign extension for integer data
 - Supports hits under misses (multiple outstanding misses)
 - Supports both big- and little-endian modes, including misaligned little-endian accesses
- Three issue queues FIQ, VIQ, and GIQ can accept as many as one, two, and three instructions, respectively, in a cycle. Instruction dispatch requires the following:
 - Instructions can be dispatched only from the three lowest IQ entries—IQ0, IQ1, and IQ2
 - A maximum of three instructions can be dispatched to the issue queues per clock cycle

3 Comparison with the MPC7455, MPC7445, MPC7450, MPC7451, and MPC7441

Table 1 compares the key features of the MPC7457 with the key features of the earlier MPC7455, MPC7445, MPC7450, MPC7451, and MPC7441. To achieve a higher frequency, the number of logic levels per cycle is reduced. Also, to achieve this higher frequency, the pipeline of the MPC7457 is extended (compared to the MPC7400), while maintaining the same level of performance as measured by the number of instructions executed per cycle (IPC).

Microarchitectural Specs	MPC7457/MPC7447	MPC7455/MPC7445	MPC7450/MPC7451/ MPC7441		
	Basic Pipeline Funct	ions			
Logic inversions per cycle	18	18 18			
Pipeline stages up to execute	5	5	5		
Total pipeline stages (minimum)	7	7	7		
Pipeline maximum instruction throughput	3 + Branch	3 + Branch	3 + Branch		
	Pipeline Resource	S			
Instruction buffer size	12	12	12		
Completion buffer size	16	16	16		
Renames (integer, float, vector)	16, 16, 16	16, 16, 16	16, 16, 16		
	Maximum Execution Three	oughput			
SFX	3	3	3		
Vector	2 (any 2 of 4 units)	2 (any 2 of 4 units)	2 (any 2 of 4 units)		
Scalar floating-point	1	1	1		
Out-of-	Order Window Size in Exe	ecution Queues			
SFX integer units	1 entry × 3 queues	1 entry × 3 queues	1 entry × 3 queues		
Vector units	In order, 4 queues	In order, 4 queues	In order, 4 queues		
Scalar floating-point unit	In order	In order	In order		
	Branch Processing Res	ources			
Prediction structures	BTIC, BHT, link stack	BTIC, BHT, link stack	BTIC, BHT, link stack		
BTIC size, associativity	128-entry, 4-way	128-entry, 4-way	128-entry, 4-way		
BHT size	2K-entry	2K-entry	2K-entry		
Link stack depth	8	8	8		
Unresolved branches supported	3	3	3		
Branch taken penalty (BTIC hit)	1	1	1		

Table 1. Microarchitecture Comparison

Comparison with the MPC7455, MPC7445, MPC7450, MPC7451, and MPC7441

Microarchitectural Specs	MPC7457/MPC7447	MPC7455/MPC7445	MPC7450/MPC7451/ MPC7441
Minimum misprediction penalty	6	6	6
Execu	tion Unit Timings (Latenc	y-Throughput)	
Aligned load (integer, float, vector)	3-1, 4-1, 3-1	3-1, 4-1, 3-1	3-1, 4-1, 3-1
Misaligned load (integer, float, vector)	4-2, 5-2, 4-2	4-2, 5-2, 4-2	4-2, 5-2, 4-2
L1 miss, L2 hit latency	9 data/13 instruction	9 data/13 instruction	9 data/13 instruction
SFX (aDd Sub, Shift, Rot, Cmp, logicals)	1-1	1-1	1-1
Integer multiply (32×8 , 32×16 , 32×32)	3-1, 3-1, 4-2	3-1, 3-1, 4-2	3-1, 3-1, 4-2
Scalar float	5-1	5-1	5-1
VSFX (vector simple)	1-1	1-1	1-1
VCFX (vector complex)	4-1	4-1	4-1
VFPU (vector float)	4-1	4-1	4-1
VPER (vector permute)	2-1	2-1	2-1
	MMUs		
TLBs (instruction and data)	128-entry, 2-way	128-entry, 2-way	128-entry, 2-way
Tablewalk mechanism	Hardware + software	Hardware + software	Hardware + software
Instruction BATs/data BATs	8/8	8/8	4/4
	L1 I Cache/D Cache Fe	atures	
Size	32K/32K	32K/32K	32K/32K
Associativity	8-way	8-way	8-way
Locking granularity	Way	Way	Way
Parity on I cache	Word	Word	Word
Parity on D cache	Byte	Byte	Byte
Number of D cache misses (load/store)	5/1	5/1	5/1
Data stream touch engines	4 streams	4 streams	4 streams
	On-Chip Cache Feat	ures	
Cache level	L2	L2	L2
Size/associativity	512-Kbyte/8-way	256-Kbyte/8-way	256-Kbyte/8-way
Access width	256 bits	256 bits	256 bits
Number of 32-byte sectors/line	2	2	2
Parity	Byte	Byte	Byte
	Off-Chip Cache Supp	ort ¹	

Table 1. Microarchitecture Comparison (continued)

General Parameters

Microarchitectural Specs	MPC7457/MPC7447	MPC7455/MPC7445	MPC7450/MPC7451/ MPC7441
Cache level	L3	L3	L3
Total SRAM space supported	1 MB, 2MB, 4 MB ²	1 MB, 2 MB	1 MB, 2 MB
On-chip tag logical size (cache space)	1 MB, 2 MB	1 MB, 2 MB	1 MB, 2 MB
Associativity	8-way	8-way	8-way
Number of 32-byte sectors/line	2, 4	2, 4	2, 4
Off-Chip data SRAM support	MSUG2 DDR, LW, PB2	MSUG2 DDR, LW, PB2	MSUG2 DDR, LW, PB2
Data path width	64	64	64
Direct mapped SRAM sizes	1 MB, 2 MB, 4 MB	1 MB, 2 MB	1 MB, 2 MB
Parity	Byte	Byte	Byte

Table 1. Microarchitecture Comparison (continued)

Notes:

1. Not implemented on MPC7447, MPC7445, or MPC7441.

2. The MPC7457 supports up to 4 MB of SRAM, of which a maximum of 2 MB can be configured as cache memory; the remaining 2 MB may be unused or configured as private memory.

4 General Parameters

The following list provides a summary of the general parameters of the MPC7457:

Technology	0.13 µm CMOS, nine-layer metal
Die size	$9.1 \text{ mm} \times 10.8 \text{ mm}$
Transistor count	58 million
Logic design	Fully-static
Packages	MPC7447: Surface mount 360 ceramic ball grid array (CBGA)
	MPC7457: Surface mount 483 ceramic ball grid array (CBGA)
Core power supply	1.3 V ±50 mV DC nominal
I/O power supply	1.8 V ±5% DC, or
	2.5 V ±5% DC, or
	1.5 V \pm 5% DC (L3 interface only, not implemented on MPC7447)

5 Electrical and Thermal Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC7457.

5.1 DC Electrical Characteristics

The tables in this section describe the MPC7457 DC electrical characteristics. Table 2 provides the absolute maximum ratings.

Characteristic			Maximum Value	Unit	Notes
Core supply voltage		V _{DD}	-0.3 to 1.60	V	2
PLL supply voltage		AV _{DD}	-0.3 to 1.60	V	2
Processor bus supply voltage	BVSEL = 0	OV _{DD}	-0.3 to 1.95	V	3, 4
	$BVSEL = \overline{HRESET} \text{ or } OV_{DD}$	OV _{DD}	-0.3 to 2.7	V	3, 5
L3 bus supply voltage	L3VSEL = ¬HRESET	GV _{DD}	-0.3 to 1.65	V	3, 6
	L3VSEL = 0	GV _{DD}	-0.3 to 1.95	V	3, 7
	L3VSEL = $\overline{\text{HRESET}}$ or GV_{DD}	GV _{DD}	-0.3 to 2.7	V	3, 8
Input voltage	Processor bus	V _{in}	-0.3 to OV _{DD} + 0.3	V	9, 10
	L3 bus	V _{in}	–0.3 to GV _{DD} + 0.3	V	9, 10
	JTAG signals	V _{in}	-0.3 to OV _{DD} + 0.3	V	
Storage temperature range		T _{stg}	-55 to 150	°C	

Table 2. Absolute Maximum Ratings ¹

Notes:

1. Functional and tested operating conditions are given in Table 4. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

 Caution: V_{DD}/AV_{DD} must not exceed OV_{DD}/GV_{DD} by more than 1.0 V during normal operation; this limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

3. **Caution**: OV_{DD}/GV_{DD} must not exceed V_{DD}/AV_{DD} by more than 2.0 V during normal operation; this limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.

4. BVSEL must be set to 0, such that the bus is in 1.8-V mode.

5. BVSEL must be set to HRESET or 1, such that the bus is in 2.5-V mode.

6. L3VSEL must be set to ¬HRESET (inverse of HRESET), such that the bus is in 1.5-V mode.

7. L3VSEL must be set to 0, such that the bus is in 1.8-V mode.

8. L3VSEL must be set to HRESET or 1, such that the bus is in 2.5-V mode.

9. Caution: V_{in} must not exceed OV_{DD} or GV_{DD} by more than 0.3 V at any time including during power-on reset.

10.V_{in} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.

Figure 2 shows the undershoot and overshoot voltage on the MPC7457.

Table 6. DC Electrical Specifications (continued)

At recommended operating conditions. See Table 4.

Characte	ristic	Nominal Bus Voltage ¹	Symbol	Min	Max	Unit	Notes
Capacitance,	L3 interface	—	C _{in}	—	9.5	pF	5
V _{in} = 0 V, f = 1 MHz	All other inputs			_	8.0		

Notes:

1. Nominal voltages; see Table 4 for recommended operating conditions.

2. For processor bus signals, the reference is OV_{DD} while GV_{DD} is the reference for the L3 bus signals.

3. Excludes test signals and IEEE 1149.1 boundary scan (JTAG) signals.

- The leakage is measured for nominal OV_{DD}/GV_{DD} and V_{DD}, or both OV_{DD}/GV_{DD} and V_{DD} must vary in the same direction (for example, both OV_{DD} and V_{DD} vary by either +5% or −5%).
- 5. Capacitance is periodically sampled rather than 100% tested.

6. Applicable to L3 bus interface only.

Table 7 provides the power consumption for the MPC7457.

Table 7. Power Consumption for MPC7457

Processor (CPU) Frequency					Unit	Natas		
	867 MHz	1000 MHz	1200 MHz	1267 MHz		Notes		
		Full-Power Mo	ode					
Typical	14.8	15.8	17.5	18.3	W	1, 2		
Maximum	21.0	22.0	24.2	25.6	W	1, 3		
		Nap Mode						
Typical	5.2	5.2	5.2	5.2	W	1, 2		
	Sleep Mode							
Typical	5.1	5.1	5.1	5.1	W	1, 2		
Deep Sleep Mode (PLL Disabled)								
Typical	5.0	5.0	5.0	5.0	W	1, 2		

Notes:

These values apply for all valid processor bus and L3 bus ratios. The values do not include I/O supply power (OV_{DD} and GV_{DD}) or PLL supply power (AV_{DD}). OV_{DD} and GV_{DD} power is system dependent, but is typically <5% of V_{DD} power. Worst case power consumption for AV_{DD} < 3 mW.

 Typical power is an average value measured at the nominal recommended V_{DD} (see Table 4) and 65°C while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz.

3. Maximum power is the average measured at nominal V_{DD} and maximum operating junction temperature (see Table 4) while running an entirely cache-resident, contrived sequence of instructions which keep all the execution units maximally busy.

4. Doze mode is not a user-definable state; it is an intermediate state between full-power and either nap or sleep mode. As a result, power consumption for this mode is not tested.

5.2.4 L3 Bus AC Specifications

The MPC7457 L3 interface supports three different types of SRAM: source-synchronous, double data rate (DDR) MSUG2 SRAM, Late Write SRAMs, and pipeline burst (PB2) SRAMs. Each requires a different protocol on the L3 interface and a different routing of the L3 clock signals. The type of SRAM is programmed in L3CR[22:23] and the MPC7457 then follows the appropriate protocol for that type. The designer must connect and route the L3 signals appropriately for each type of SRAM. Following are some observations about the L3 interface.

- The routing for the point-to-point signals (L3_CLK[0:1], L3DATA[0:63], L3DP[0:7], and L3_ECHO_CLK[0:3]) to a particular SRAM must be delay matched.
- For 1-Mbyte of SRAM, use L3_ADDR[16:0] (L3_ADDR[0] is LSB)
- For 2-Mbyte of SRAM, use L3_ADDR[17:0] (L3_ADDR[0] is LSB)
- For 4-Mbyte of SRAM, use L3_ADDR[18:0] (L3_ADDR[0] is LSB)
- No pull-up resistors are required for the L3 interface
- For high-speed operations, L3 interface address and control signals should be a 'T' with minimal stubs to the two loads; data and clock signals should be point-to-point to their single load. Figure 8 shows the AC test load for the L3 interface.

Figure 8. AC Test Load for the L3 Interface

In general, if routing is short, delay-matched, and designed for incident wave reception and minimal reflection, there is a high probability that the AC timing of the MPC7457 L3 interface will meet the maximum frequency operation of appropriately chosen SRAMs. This is despite the pessimistic, guard-banded AC specifications (see Table 12, Table 13, and Table 14), the limitations of functional testers described in Section 5.2.3, "L3 Clock AC Specifications," and the uncertainty of clocks and signals which inevitably make worst-case critical path timing analysis pessimistic.

More specifically, certain signals within groups should be delay-matched with others in the same group while intergroup routing is less critical. Only the address and control signals are common to both SRAMs and additional timing margin is available for these signals. The double-clocked data signals are grouped with individual clocks as shown in Figure 9 or Figure 11, depending on the type of SRAM. For example, for the MSUG2 DDR SRAM (see Figure 9); L3DATA[0:31], L3DP[0:3], and L3_CLK[0] form a closely coupled group of outputs from the MPC7457; while L3DATA[0:15], L3DP[0:1], and L3_ECHO_CLK[0] form a closely coupled group of inputs.

The MPC7450 RISC Microprocessor Family User's Manual refers to logical settings called 'sample points' used in the synchronization of reads from the receive FIFO. The computation of the correct value for this setting is system-dependent and is described in the MPC7450 RISC Microprocessor Family User's Manual. Three specifications are used in this calculation and are given in Table 11. It is essential that all three specifications are included in the calculations to determine the sample points, as incorrect settings can result in errors and unpredictable behavior. For more information, see the MPC7450 RISC Microprocessor Family User's Microprocessor Family User's Manual.

Table 12. Effect of L3OHCR Settings on L3 Bus AC Timing (continued)

At recommended operating conditions. See Table 4.

			Output V	alid Time	Output H	old Time		
Field Name ¹	Affected Signals	Value	Parameter Symbol ²	Change ³	Parameter Symbol ²	Change ³	Unit	Notes
L3CLKn_OH	All signals latched by	0b000	t _{L3CHOV} ,	0	t _{L3CHOX} ,	0	ps	4
	SRAM connected to L3 CLKn	0b001	t _{L3CHDV} ,	- 50	t _{L3CHDX} , t _{L3CLDX}	- 50		5
		0b010	LUCEDV	- 100	LOOLDX	- 100		5
		0b011		- 150		- 150		5
		0b100		- 200		- 200		5
		0b101		- 250		- 250		5
		0b110		- 300		- 300	,	5
		0b111		- 350		- 350		5
L3DOHn	L3_DATA[<i>n</i> : <i>n</i> +7],	0b000	t _{L3CHDV} ,	0	t _{L3CHDX} , t _{L3CLDX}	0	ps	4
	L3_DP[<i>n</i> /8]	0b001	t _{L3CLDV}	+ 50		+ 50		
		0b010		+ 100		+ 100		
		0b011		+ 150		+ 150		
		0b100		+ 200		+ 200		
		0b101		+ 250		+ 250		
		0b111		+ 300		+ 300		
		0b111		+ 350		+ 350		

Notes:

1. See the MPC7450 RISC Microprocessor Family User's Manual for specific information regarding L3OHCR.

2. See Table 13 and Table 14 for more information.

3. Approximate delay verified by simulation; not tested or characterized.

4. Default value.

5. Increasing values of L3CLK*n*_OH delay the L3_CLK*n* signal, effectively decreasing the output valid and output hold times of all signals latched relative to that clock signal by the SRAM; see Figure 9 and Figure 11.

5.2.4.2 L3 Bus AC Specifications for DDR MSUG2 SRAMs

When using DDR MSUG2 SRAMs at the L3 interface, the parts should be connected as shown in Figure 9. Outputs from the MPC7457 are actually launched on the edges of an internal clock phase-aligned to SYSCLK (adjusted for core and L3 frequency divisors). L3_CLK0 and L3_CLK1 are this internal clock output with 90° phase delay, so outputs are shown synchronous to L3_CLK0 and L3_CLK1. Output valid times are typically negative when referenced to L3_CLK*n* because the data is launched one-quarter period before L3_CLK*n* to provide adequate setup time at the SRAM after the delay-matched address, control, data, and L3_CLK*n* signals have propagated across the printed-wiring board.

Inputs to the MPC7457 are source-synchronous with the CQ clock generated by the DDR MSUG2 SRAMs. These CQ clocks are received on the L3_ECHO_CLK*n* inputs of the MPC7457. An internal circuit delays the incoming L3_ECHO_CLK*n* signal such that it is positioned within the valid data

Table 13. L3 Bus Interface AC Timing Specifications for MSUG2 (continued)

At recommended operating conditions. See Table 4.

	Device Revision (L3 I/O Voltage) ⁹						
Parameter	Symbol	Rev 1.1. (Al Rev 1.2 (1.5	Rev 1.1. (All I/O Modes) Rev 1.2 (1.5-V I/O Mode)		Rev 1.2 (1.8-, 2.5-V I/O Modes)		Notes
		Min	Мах	Min	Мах		
L3_CLK to high impedance: All other outputs	t _{L3CHOZ}	_	(t _{L3CLK} /4) + 0.65	_	(t _{L3CLK} /4) + 0.65	ns	

Notes:

1. Rise and fall times for the L3_CLK output are measured from 20% to 80% of GV_{DD}.

- 2. For DDR, all input specifications are measured from the midpoint of the signal in question to the midpoint voltage of the rising or falling edge of the input L3_ECHO_CLK*n* (see Figure 10). Input timings are measured at the pins.
- 3. For DDR, the input data will typically follow the edge of L3_ECHO_CLK*n* as shown in Figure 10. For consistency with other input setup time specifications, this will be treated as negative input setup time.
- 4. t_{L3_CLK}/4 is one-fourth the period of L3_CLK*n*. This parameter indicates that the MPC7457 can latch an input signal that is valid for only a short time before and a short time after the midpoint between the rising and falling (or falling and rising) edges of L3_ECHO_CLK*n* at any frequency.
- 5. All output specifications are measured from the midpoint voltage of the rising (or for DDR write data, also the falling) edge of L3_CLK to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 8).
- 6. For DDR, the output data will typically lead the edge of L3_CLK*n* as shown in Figure 10. For consistency with other output valid time specifications, this will be treated as negative output valid time.
- 7. t_{L3_CLK}/4 is one-fourth the period of L3_CLKn. This parameter indicates that the specified output signal is actually launched by an internal clock delayed in phase by 90°. Therefore, there is a frequency component to the output valid and output hold times such that the specified output signal will be valid for approximately one L3_CLK period starting three-fourths of a clock before the edge on which the SRAM will sample it and ending one-fourth of a clock period after the edge it will be sampled.
- 8. Assumes default value of L3OHCR. See Section 5.2.4.1, "Effects of L3OHCR Settings on L3 Bus AC Specifications," for more information.
- 9. L3 I/O voltage mode must be configured by L3VSEL as described in Table 3, and voltage supplied at GV_{DD} must match mode selected as specified in Table 4. See Table 22 for revision level information and part marking.

Figure 9 shows the typical connection diagram for the MPC7457 interfaced to MSUG2 DDR SRAMs.

Note:

1. Or as recommended by SRAM manufacturer for single-ended clocking.

Figure 9. Typical Source Synchronous 4-Mbyte L3 Cache DDR Interface

Figure 10 shows the L3 bus timing diagrams for the MPC7457 interfaced to MSUG2 SRAMs.

Figure 10. L3 Bus Timing Diagrams for L3 Cache DDR SRAMs

5.2.4.3 L3 Bus AC Specifications for PB2 and Late Write SRAMs

When using PB2 or Late Write SRAMs at the L3 interface, the parts should be connected as shown in Figure 11. These SRAMs are synchronous to the MPC7457; one L3_CLK*n* signal is output to each SRAM to latch address, control, and write data. Read data is launched by the SRAM synchronous to the delayed L3_CLK*n* signal it received. The MPC7457 needs a copy of that delayed clock which launched the SRAM read data to know when the returning data will be valid. Therefore, L3_ECHO_CLK1 and L3_ECHO_CLK3 must be routed halfway to the SRAMs and returned to the MPC7457 inputs L3_ECHO_CLK0 and L3_ECHO_CLK2, respectively. Thus, L3_ECHO_CLK0 and L3_ECHO_CLK2 are phase-aligned with the input clock received at the SRAMs. The MPC7457 will latch the incoming data on the rising edge of L3_ECHO_CLK0 and L3_ECHO_CLK2.

Table 14 provides the L3 bus interface AC timing specifications for the configuration shown in Figure 11, assuming the timing relationships of Figure 12 and the loading of Figure 8.

Table 15. JTAG AC Timing Specifications (Independent of SYSCLK)¹ (continued)

At recommended operating conditions. See Table 4.

Parameter	Symbol	Min	Мах	Unit	Notes
Valid times: Boundary-scan data TDO	t _{JLDV} t _{JLOV}	4 4	20 25	ns	4
Output hold times: Boundary-scan data TDO	t _{JLDX} t _{JLOX}	30 30		ns	4
TCK to output high impedance: Boundary-scan data TDO	t _{JLDZ} t _{JLOZ}	3 3	19 9	ns	4, 5

Notes:

 All outputs are measured from the midpoint voltage of the falling/rising edge of TCLK to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 13). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

3. Non-JTAG signal input timing with respect to TCK.

4. Non-JTAG signal output timing with respect to TCK.

5. Guaranteed by design and characterization.

Figure 13 provides the AC test load for TDO and the boundary-scan outputs of the MPC7457.

Figure 13. Alternate AC Test Load for the JTAG Interface

Figure 14 provides the JTAG clock input timing diagram.

Figure 14. JTAG Clock Input Timing Diagram

Figure 15 provides the $\overline{\text{TRST}}$ timing diagram.

Figure 19 (Part A) shows the pinout of the MPC7457, 483 CBGA package as viewed from the top surface. Part B shows the side profile of the CBGA package to indicate the direction of the top surface view.

Part A

Figure 19. Pinout of the MPC7457, 483 CBGA Package as Viewed from the Top Surface

Signal Name	Pin Number	Active	I/O	I/F Select ¹	Notes
GND	B5, C3, D6, D13, E17, F3, G17, H4, H7, H9, H11, H13, J6, J8, J10, J12, K7, K3, K9, K11, K13, L6, L8, L10, L12, M4, M7, M9, M11, M13, N7, P3, P9, P12, R5, R14, R17, T7, T10, U3, U13, U17, V5, V8, V11, V15		_	N/A	
HIT	B2	Low	Output	BVSEL	7
HRESET	D8	Low	Input	BVSEL	
INT	D4	Low	Input	BVSEL	
L1_TSTCLK	G8	High	Input	BVSEL	9
L2_TSTCLK	В3	High	Input	BVSEL	10
No Connect	A6, A13, A14, A15, A16, A17, A18, A19, B13, B14, B15, B16, B17, B18, B19, C13, C14, C15, C16, C17, C18, C19, D14, D15, D16, D17, D18, D19, E12, E13, E14, E15, E16, E19, F12, F13, F14, F15, F16, F17, F18, F19, G11, G12, G13, G14, G15, G16, G19, H14, H15, H16, H17, H18, H19, J14, J15, J16, J17, J18, J19, K15, K16, K17, K18, K19, L14, L15, L16, L17, L18, L19, M14, M15, M16, M17, M18, M19, N12, N13, N14, N15, N16, N17, N18, N19, P15, P16, P18, P19	_	_	_	11
LSSD_MODE	E8	Low	Input	BVSEL	6, 12
MCP	C9	Low	Input	BVSEL	
OV _{DD}	B4, C2, C12, D5, E18, F2, G18, H3, J5, K2, L5, M3, N6, P2, P8, P11, R4, R13, R16, T6, T9, U2, U12, U16, V4, V7, V10, V14	_	—	N/A	
PLL_CFG[0:4]	B8, C8, C7, D7, A7	High	Input	BVSEL	
PMON_IN	D9	Low	Input	BVSEL	13
PMON_OUT	A9	Low	Output	BVSEL	
QACK	G5	Low	Input	BVSEL	
QREQ	P4	Low	Output	BVSEL	
SHD[0:1]	E4, H5	Low	I/O	BVSEL	3
SMI	F9	Low	Input	BVSEL	
SRESET	A2	Low	Input	BVSEL	
SYSCLK	A10		Input	BVSEL	
TA	К6	Low	Input	BVSEL	
TBEN	E1	High	Input	BVSEL	
TBST	F11	Low	Output	BVSEL	
тск	C6	High	Input	BVSEL	
TDI	В9	High	Input	BVSEL	6
TDO	A4	High	Output	BVSEL	

Table 16. Pinout Listing for the MPC7447, 360 CBGA Package (continued)

Package Description

8 Package Description

The following sections provide the package parameters and mechanical dimensions for the CBGA package.

8.1 Package Parameters for the MPC7447, 360 CBGA

The package parameters are as provided in the following list. The package type is 25×25 mm, 360-lead ceramic ball grid array (CBGA).

Package outline	$25 \times 25 \text{ mm}$				
Interconnects	360 (19 × 19 ball array – 1)				
Pitch	1.27 mm (50 mil)				
Minimum module height 2.72 mm					
Maximum module height	t3.24 mm				
Ball diameter	0.89 mm (35 mil)				

Core Frequency (MHz) ²	÷2	÷2.5	÷3	÷3.5	÷4	÷4.5	÷5	÷5.5	÷6	÷6.5	÷7	÷7.5	÷8
1050	525	420	350	300	263	233	191	191	175	162	150	140	131
1100	550	440	367	314	275	244	200	200	183	169	157	147	138
1150	575	460	383	329	288	256	209	209	192	177	164	153	144
1200	600	480	400	343	300	267	218	218	200	185	171	160	150
1250	638	500	417	357	313	278	227	227	208	192	179	167	156
1300	650	520	433	371	325	289	236	236	217	200	186	173	163

Notes:

The core and L3 frequencies are for reference only. Note that maximum L3 frequency is design dependent. Some examples
may represent core or L3 frequencies which are not useful, not supported, or not tested for the MPC7457; see Section 5.2.3,
"L3 Clock AC Specifications," for valid L3_CLK frequencies and for more information regarding the maximum L3 frequency.

2. Not all core frequencies are supported by all speed grades; see Table 8 for minimum and maximum core frequency specifications.

9.1.3 System Bus Clock (SYSCLK) and Spread Spectrum Sources

Spread spectrum clock sources are an increasingly popular way to control electromagnetic interference emissions (EMI) by spreading the emitted noise to a wider spectrum and reducing the peak noise magnitude in order to meet industry and government requirements. These clock sources intentionally add long-term jitter in order to diffuse the EMI spectral content. The jitter specification given in Table 8 considers short-term (cycle-to-cycle) jitter only and the clock generator's cycle-to-cycle output jitter should meet the MPC7457 input cycle-to-cycle jitter requirement. Frequency modulation and spread are separate concerns, and the MPC7457 is compatible with spread spectrum sources if the recommendations listed in Table 20 are observed.

Table 20. Spread Specturm Clock Source Recommendations

At recommended operating conditions. See Table 4.

Parameter	Min	Max	Unit	Notes
Frequency modulation	—	50	kHz	1
Frequency spread	—	1.0	%	1, 2

Notes:

1. Guaranteed by design.

2. SYSCLK frequencies resulting from frequency spreading, and the resulting core and VCO frequencies, must meet the minimum and maximum specifications given in Table 8.

It is imperative to note that the processor's minimum and maximum SYSCLK, core, and VCO frequencies must not be exceeded regardless of the type of clock source. Therefore, systems in which the processor is operated at its maximum rated core or bus frequency should avoid violating the stated limits by using down-spreading only.

System Design Information

The \overline{QACK} signal shown in Figure 26 is usually connected to the PCI bridge chip in a system and is an input to the MPC7457 informing it that it can go into the quiescent state. Under normal operation this occurs during a low-power mode selection. In order for COP to work, the MPC7457 must see this signal asserted (pulled down). While shown on the COP header, not all emulator products drive this signal. If the product does not, a pull-down resistor can be populated to assert this signal. Additionally, some emulator products implement open-drain type outputs and can only drive \overline{QACK} asserted; for these tools, a pull-up resistor can be implemented to ensure this signal is deasserted when it is not being driven by the tool. Note that the pull-up and pull-down resistors on the \overline{QACK} signal are mutually exclusive and it is never necessary to populate both in a system. To preserve correct power-down operation, \overline{QACK} should be merged via logic so that it also can be driven by the PCI bridge.

System Design Information

9.8.2 Thermal Interface Materials

A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the thermal contact resistance. For those applications where the heat sink is attached by spring clip mechanism, Figure 29 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare joint results in a thermal resistance approximately seven times greater than the thermal grease joint.

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see Figure 27). Therefore, the synthetic grease offers the best thermal performance, considering the low interface pressure and is recommended due to the high power dissipation of the MPC7457. Of course, the selection of any thermal interface material depends on many factors—thermal performance requirements, manufacturability, service temperature, dielectric properties, cost, etc.

Figure 29. Thermal Performance of Select Thermal Interface Material

The board designer can choose between several types of thermal interface. Heat sink adhesive materials should be selected based on high conductivity, yet adequate mechanical strength to meet equipment shock/vibration requirements. There are several commercially available thermal interfaces and adhesive materials provided by the following vendors:

Document Revision History

11 Document Revision History

Table 26 provides a revision history for this hardware specification.

Table 26. Document Revision History

Revision Number	Date	Substantive Change(s)					
8	04/09/2013	Updated template. Updated Table 14 "L3 Bus Interface AC Timing Specifications for PB2 and Late Write SRAMs". Moved Revision History to the end of the document.					
7	3/28/2006	Updated template. Section 2, reworded L1 and L2 cache descriptions. Removed note references for CI and WT in Table 12. Added VG package signifier for 7457 only.					
6	7/22/2005	Revised Note in Section 9.2.					
		Added heat sink vendor to list in Section 9.8.					
		Corrected bump and underfill model dimension in Section 9.8.3.					
5	9/9/2004	Updated document to new Freescale template.					
		Updated section numbering and changed reference from part number specifications to addendums.					
		Added Rev. 1.2 devices, including increased L3 clock max frequency to 250 MHz and improved L3 AC timing.					
		Table 5: Added CTE information.					
		Table 8: Modified jitter specifications to conform to JEDEC standards, changed jitter specification to cycle-to-cycle jitter (instead of long- and short-term jitter); changed jitter bandwidth recommendations.					
		Table 13: Deleted note 9 and renumbered.					
		Table 14: Deleted note 5 and renumbered.					
		Table 17: Revised note 6.					
		Added Section 9.1.3.					
		Section 9.2: Changed filter resistor recommendations. Recommend 10 Ω resistor for all production devices, including production Rev. 1.1 devices. 400 Ω resistor needed only for early Rev. 1.1 devices.					
		Table 22: Reversed the order of revision numbers.					
		Added Tables 25 and 26.					
4.1		Section 9.1.1: Corrected note regarding different PLL configurations for earlier devices; all MPC7457 devices to date conform to this table.					
		Section 9.6: Added information about unused L3_ADDR signals.					
		Table 24: Changed title to include document order information for MPC74x7RXnnnnNx series part number specification.					