

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08gt60cfd

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section Number

Title

Page

Chapter 8 Central Processor Unit (CPU)

8.1	Introduct	tion		
8.2	Features			126
8.3	Program	mer's Moo	del and CPU Registers	
	8.3.1	Accumul	ator (A)	127
	8.3.2	Index Re	gister (H:X)	127
	8.3.3	Stack Po	inter (SP)	
	8.3.4	Program	Counter (PC)	
	8.3.5	Condition	n Code Register (CCR)	
8.4	Addressi	ng Modes		130
	8.4.1	Inherent	Addressing Mode (INH)	130
	8.4.2	Relative	Addressing Mode (REL)	130
	8.4.3	Immedia	te Addressing Mode (IMM)	130
	8.4.4	Direct A	ddressing Mode (DIR)	130
	8.4.5	Extended	Addressing Mode (EXT)	131
	8.4.6	Indexed A	Addressing Mode	131
		8.4.6.1	Indexed, No Offset (IX)	131
		8.4.6.2	Indexed, No Offset with Post Increment (IX+)	131
		8.4.6.3	Indexed, 8-Bit Offset (IX1)	131
		8.4.6.4	Indexed, 8-Bit Offset with Post Increment (IX1+)	131
		8.4.6.5	Indexed, 16-Bit Offset (IX2)	131
		8.4.6.6	SP-Relative, 8-Bit Offset (SP1)	131
		8.4.6.7	SP-Relative, 16-Bit Offset (SP2)	132
8.5	Special C	Operations		
	8.5.1	Reset See	quence	132
	8.5.2	Interrupt	Sequence	132
	8.5.3	Wait Mo	de Operation	
	8.5.4	Stop Mo	de Operation	
	8.5.5	BGND II	nstruction	134
8.6	HCS08 I	nstruction	Set Summary	

Chapter 9 Keyboard Interrupt (KBI) Module

9.1	Introduc	tion	145
	9.1.1	Port A and Keyboard Interrupt Pins	145
9.2	Features		145
9.3	KBI Blo	ck Diagram	147
9.4	Keyboar	d Interrupt (KBI) Module	147
	-	Pin Enables	
	9.4.2	Edge and Level Sensitivity	147
	9.4.3	KBI Interrupt Controls	
9.5		gisters and Control Bits	
	9.5.1	KBI Status and Control Register (KBI1SC)	
	9.5.2	KBI Pin Enable Register (KBI1PE)	

Section Number

Page

		14.2.1.2 ATD Reference Pins — V _{REFH} , V _{REFL}	223
		14.2.1.3 ATD Supply Pins — V _{DDAD} , V _{SSAD}	223
14.3	Function	al Description	223
	14.3.1	Mode Control	223
	14.3.2	Sample and Hold	224
	14.3.3	Analog Input Multiplexer	226
		ATD Module Accuracy Definitions	
14.4		- 	
14.5	Interrupt	S	229
		gisters and Control Bits	
	14.6.1	ATD Control (ATDC)	230
	14.6.2	ATD Status and Control (ATD1SC)	232
		ATD Result Data (ATD1RH, ATD1RL)	
		ATD Pin Enable (ATD1PE)	

Chapter 15 Development Support

15.1	Introduct	tion	235
15.2	Features		236
15.3	Backgrou	und Debug Controller (BDC)	237
	15.3.1	BKGD Pin Description	237
	15.3.2	Communication Details	238
	15.3.3	BDC Commands	242
	15.3.4	BDC Hardware Breakpoint	244
15.4	On-Chip	Debug System (DBG)	245
	15.4.1	Comparators A and B	245
	15.4.2	Bus Capture Information and FIFO Operation	245
	15.4.3	Change-of-Flow Information	246
	15.4.4	Tag vs. Force Breakpoints and Triggers	246
	15.4.5	Trigger Modes	247
	15.4.6	Hardware Breakpoints	249
15.5	Registers	s and Control Bits	249
	15.5.1	BDC Registers and Control Bits	249
		15.5.1.1 BDC Status and Control Register (BDCSCR)	250
		15.5.1.2 BDC Breakpoint Match Register (BDCBKPT)	251
	15.5.2	System Background Debug Force Reset Register (SBDFR)	251
	15.5.3	DBG Registers and Control Bits	252
		15.5.3.1 Debug Comparator A High Register (DBGCAH)	252
		15.5.3.2 Debug Comparator A Low Register (DBGCAL)	252
		15.5.3.3 Debug Comparator B High Register (DBGCBH)	252
		15.5.3.4 Debug Comparator B Low Register (DBGCBL)	252

Address	Register Name	Bit 7	6	5	4	3	2	1	Bit 0			
\$00 28	SPI1C1	SPIE	SPE	SPTIE	MSTR	CPOL	CPHA	SSOE	LSBFE			
\$00 29	SPI1C2	0	0	0	MODFEN	BIDIROE	0	SPISWAI	SPC0			
\$00 2A	SPI1BR	0	SPPR2	SPPR1	SPPR0	0	SPR2	SPR1	SPR0			
\$00 2B	SPI1S	SPRF	0	SPTEF	MODF	0	0	0	0			
\$00 2C	Reserved	0	0	0	0	0	0	0	0			
\$00 2D	SPI1D	Bit 7	6	5	4	3	2	1	Bit 0			
\$00 2E	Reserved	0	0	0	0	0	0	0	0			
\$00 2F	Reserved	0	0	0	0	0	0	0	0			
\$00 30	TPM1SC	TOF	TOIE	CPWMS	CLKSB	CLKSA	PS2	PS1	PS0			
\$00 31	TPM1CNTH	Bit 15	14	13	12	11	10	9	Bit 8			
\$00 32	TPM1CNTL	Bit 7	6	5	4	3	2	1	Bit 0			
\$00 33	TPM1MODH	Bit 15	14	13	12	11	10	9	Bit 8			
\$00 34	TPM1MODL	Bit 7	6	5	4	3	2	1	Bit 0			
\$00 35	TPM1C0SC	CH0F	CH0IE	MS0B	MS0A	ELS0B	ELS0A	0	0			
\$00 36	TPM1C0VH	Bit 15	14	13	12	11	10	9	Bit 8			
\$00 37	TPM1C0VL	Bit 7	6	5	4	3	2	1	Bit 0			
\$00 38	TPM1C1SC	CH1F	CH1IE	MS1B	MS1A	ELS1B	ELS1A	0	0			
\$00 39	TPM1C1VH	Bit 15	14	13	12	11	10	9	Bit 8			
\$00 3A	TPM1C1VL	Bit 7	6	5	4	3	2	1	Bit 0			
\$00 3B	TPM1C2SC	CH2F	CH2IE	MS2B	MS2A	ELS2B	ELS2A	0	0			
\$00 3C	TPM1C2VH	Bit 15	14	13	12	11	10	9	Bit 8			
\$00 3D	TPM1C2VL	Bit 7	6	5	4	3	2	1	Bit 0			
\$00 3E – \$00 3F	Reserved	_		_	_	_	_	_	_			
\$00 40	PTFD	PTFD7	PTFD6	PTFD5	PTFD4	PTFD3	PTFD2	PTFD1	PTFD0			
\$00 41	PTFPE	PTFPE7	PTFPE6	PTFPE5	PTFPE4	PTFPE3	PTFPE2	PTFPE1	PTFPE0			
\$00 42	PTFSE	PTFSE7	PTFSE6	PTFSE5	PTFSE4	PTFSE3	PTFSE2	PTFSE1	PTFSE0			
\$00 43	PTFDD	PTFDD7	PTFDD6	PTFDD5	PTFDD4	PTFDD3	PTFDD2	PTFDD1	PTFDD0			
\$0044	PTGD	PTGD7	PTGD6	PTGD5	PTGD4	PTGD3	PTGD2	PTGD1	PTGD0			
\$00 45	PTGPE	PTGPE7	PTGPE6	PTGPE5	PTGPE4	PTGPE3	PTGPE2	PTGPE1	PTGPE0			
\$00 46	PTGSE	PTGSE7	PTGSE6	PTGSE5	PTGSE4	PTGSE3	PTGSE2	PTGSE1	PTGSE0			
\$00 47	PTGDD	PTGDD7	PTGDD6	PTGDD5	PTGDD4	PTGDD3	PTGDD2	PTGDD1	PTGDD0			
\$00 48	ICGC1	0	RANGE	REFS	CL	KS	OSCSTEN	0*	0			
\$00 49	ICGC2	LOLRE		MFD		LOCRE		RFD				
\$00 4A	ICGS1	CL	KST	REFST	LOLS	LOCK	LOCS	ERCS	ICGIF			
\$00 4B	ICGS2	0	0	0	0	0	0	0	DCOS			
\$00 4C	ICGFLTU	0	0	0	0		FL	T				
\$00 4D	ICGFLTL				FI	L LT						
\$00 4E	ICGTRM				TF	RIM						
		TRIM										

* This bit is reserved for Freescale Semiconductor internal use only. Always write a 0 to this bit.

Chapter 4 Memory

Table 4-2. Direct-Page Register Summary (Sheet 3 of 3)

Address	Register Name	Bit 7	6	5	4	3	2	1	Bit 0						
\$00 4F	Reserved	0	0	0	0	0	0	0	0						
\$00 50	ATD1C	ATDPU	DJM	RES8	SGN		PF	RS							
\$00 51	ATD1SC	CCF	ATDIE	ATDCO			ATDCH								
\$00 52	ATD1RH	Bit 7	6	5	4	3	2	1	Bit 0						
\$00 53	ATD1RL	Bit 7	6	5	4	3	2	1	Bit 0						
\$00 54	ATD1PE	ATDPE7	ATDPE6	ATDPE5	ATDPE4	ATDPE3	ATDPE2	ATDPE1	ATDPE0						
\$00 55 – \$00 57	Reserved	_	_			_			_						
\$00 58	IIC1A				ADDR				0						
\$00 59	IIC1F	MU	ILT			IC	R	0 0 PRS ATDCH 2 1 2 1 2 1 2 1 2 1 2 1 2 ATDPE1 ATDPE2 ATDPE1 ATDPE2 ATDPE1 ATDPE2 ATDPE1 RSTA 0 SRW IICIF R PS2 PS1 PS2 PS1 PS2 PS1 10 9 2 1 ELS0A 0 10 9 2 1 ELS1A 0 10 9 2 1 2 1 ELS2A 0 10 9							
\$00 5A	IIC1C	IICEN	IICIE	MST	ΤX	TXAK	RSTA	0	0						
\$00 5B	IIC1S	TCF	IAAS	BUSY	ARBL	0	SRW	IICIF	RXAK						
\$00 5C	IIC1D				DA	TA		PRS ATDCH 2 1 Bit 0 2 1 Bit 0 2 1 Bit 0 2 1 ATDPE0 PS2 PS1 PS0 10 9 Bit 8 2 1 Bit 0 10 9 Bit 8 2 1 Bit 0 ELS0A 0 0 10 9 Bit 8 2 1 Bit 0 ELS1A 0 0 10 9 Bit 8 2 1 Bit 0 ELS2A 0 0 10 9 Bit 8 2 1 Bit 0 ELS2A 0 0 10 9 Bit 8							
\$00 5D – \$00 5F	Reserved	_	_	_	_	_	_	_	_						
\$00 60	TPM2SC	TOF	TOIE	CPWMS	CLKSB	CLKSA	PS2	PS1	PS0						
\$00 61	TPM2CNTH	Bit 15	14	13	12	11	10	9	Bit 8						
\$00 62	TPM2CNTL	Bit 7	6	5	4	3	2	1	Bit 0						
\$00 63	TPM2MODH	Bit 15	14	13	12	11	10	9	Bit 8						
\$00 64	TPM2MODL	Bit 7	6	5	4	3	2	1	Bit 0						
\$00 65	TPM2C0SC	CH0F	CH0IE	MS0B	MS0A	ELS0B	ELS0A	0	0						
\$00 66	TPM2C0VH	Bit 15	14	13	12	11	10	9	Bit 8						
\$00 67	TPM2C0VL	Bit 7	6	5	4	3	2	1	Bit 0						
\$00 68	TPM2C1SC	CH1F	CH1IE	MS1B	MS1A	ELS1B	ELS1A	0	0						
\$00 69	TPM2C1VH	Bit 15	14	13	12	11	10	9	Bit 8						
\$00 6A	TPM2C1VL	Bit 7	6	5	4	3	2	1	Bit 0						
\$00 6B	TPM2C2SC	CH2F	CH2IE	MS2B	MS2A	ELS2B	ELS2A	0	0						
\$00 6C	TPM2C2VH	Bit 15	14	13	12	11	10	9	Bit 8						
\$00 6D	TPM2C2VL	Bit 7	6	5	4	3	2	1	Bit 0						
\$00 6E	TPM2C3SC	CH3F	CH3IE	MS3B	MS3A	ELS3B	ELS3A	0	0						
\$00 6F	TPM2C3VH	Bit 15	14	13	12	11	10	9	Bit 8						
\$00 70	TPM2C3VL	Bit 7	6	5	4	3	2	1	Bit 0						
\$00 71	TPM2C4SC	CH4F	CH4IE	MS4B	MS4A	ELS4B	ELS4A	0	0						
\$00 72	TPM2C4VH	Bit 15	14	13	12	11	10	9	Bit 8						
\$00 73	TPM2C4VL	Bit 7	6	5	4	3	2	1	Bit 0						
\$00 74 – \$00 7F	Reserved	—		—	—		—	—	_						

Chapter 5 Resets, Interrupts, and System Configuration

Each of these sources, with the exception of the background debug forced reset, has an associated bit in the system reset status register. Whenever the MCU enters reset, the internal clock generator (ICG) module switches to self-clocked mode with the frequency of f_{Self_reset} selected. The reset pin is driven low for 34 internal bus cycles where the internal bus frequency is half the ICG frequency. After the 34 cycles are completed, the pin is released and will be pulled up by the internal pullup resistor, unless it is held low externally. After the pin is released, it is sampled after another 38 cycles to determine whether the reset pin is the cause of the MCU reset.

5.4 Computer Operating Properly (COP) Watchdog

The COP watchdog is intended to force a system reset when the application software fails to execute as expected. To prevent a system reset from the COP timer (when it is enabled), application software must reset the COP timer periodically. If the application program gets lost and fails to reset the COP before it times out, a system reset is generated to force the system back to a known starting point. The COP watchdog is enabled by the COPE bit in SOPT (see Section 5.8.4, "System Options Register (SOPT)" for additional information). The COP timer is reset by writing any value to the address of SRS. This write does not affect the data in the read-only SRS. Instead, the act of writing to this address is decoded and sends a reset signal to the COP timer.

After any reset, the COP timer is enabled. This provides a reliable way to detect code that is not executing as intended. If the COP watchdog is not used in an application, it can be disabled by clearing the COPE bit in the write-once SOPT register. Also, the COPT bit can be used to choose one of two timeout periods (2¹⁸ or 2¹³ cycles of the bus rate clock). Even if the application will use the reset default settings in COPE and COPT, the user should still write to write-once SOPT during reset initialization to lock in the settings. That way, they cannot be changed accidentally if the application program gets lost.

The write to SRS that services (clears) the COP timer should not be placed in an interrupt service routine (ISR) because the ISR could continue to be executed periodically even if the main application program fails.

When the MCU is in active background mode, the COP timer is temporarily disabled.

5.5 Interrupts

Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine (ISR), and then restore the CPU status so processing resumes where it left off before the interrupt. Other than the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events such as an edge on the IRQ pin or a timer-overflow event. The debug module can also generate an SWI under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The CPU will not respond until and unless the local interrupt enable is set to 1 to enable the interrupt. The I bit in the CCR is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset which masks (prevents) all maskable interrupt sources. The user program initializes the stack pointer and performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.

Chapter 6 Parallel Input/Output

PTCD		Bit 7	6	5	4	3	2	1	Bit 0
	Read: Write:	PTCD7	PTCD6	PTCD5	PTCD4	PTCD3	PTCD2	PTCD1	PTCD0
	Reset:	0	0	0	0	0	0	0	0
PTCPE									
	Read: Write:	PTCPE7	PTCPE6	PTCPE5	PTCPE4	PTCPE3	PTCPE2	PTCPE1	PTCPE0
	Reset:	0	0	0	0	0	0	0	0
PTCSE									
	Read: Write:	PTCSE7	PTCSE6	PTCSE5	PTCSE4	PTCSE3	PTCSE2	PTCSE1	PTCSE0
	Reset:	0	0	0	0	0	0	0	0
PTCDD									
	Read: Write:	PTCDD7	PTCDD6	PTCDD5	PTCDD4	PTCDD3	PTCDD2	PTCDD1	PTCDD0
	Reset:	0	0	0	0	0	0	0	0
			Figure	6-11 Po	rt C Regis	sters			

Figure 6-11. Port C Registers

PTCDn — Port C Data Register Bit n (n = 0-7)

For port C pins that are inputs, reads return the logic level on the pin. For port C pins that are configured as outputs, reads return the last value written to this register.

Writes are latched into all bits of this register. For port C pins that are configured as outputs, the logic level is driven out the corresponding MCU pin.

Reset forces PTCD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pullups disabled.

PTCPEn — Pullup Enable for Port C Bit n (n = 0-7)

For port C pins that are inputs, these read/write control bits determine whether internal pullup devices are enabled. For port C pins that are configured as outputs, these bits are ignored and the internal pullup devices are disabled.

1 = Internal pullup device enabled.

0 = Internal pullup device disabled.

PTCSEn — Slew Rate Control Enable for Port C Bit n (n = 0-7)

For port C pins that are outputs, these read/write control bits determine whether the slew rate controlled outputs are enabled. For port B pins that are configured as inputs, these bits are ignored.

1 = Slew rate control enabled.

0 = Slew rate control disabled.

Chapter 6 Parallel Input/Output

PTEDDn — Data Direction for Port E Bit n (n = 0-7)

These read/write bits control the direction of port E pins and what is read for PTED reads.

- 1 = Output driver enabled for port E bit n and PTED reads return the contents of PTEDn.
- 0 = Input (output driver disabled) and reads return the pin value.

6.6.6 Port F Registers (PTFD, PTFPE, PTFSE, and PTFDD)

Port F includes eight general-purpose I/O pins that are not shared with any peripheral module. Port F pins used as general-purpose I/O pins are controlled by the port F data (PTFD), data direction (PTFDD), pullup enable (PTFPE), and slew rate control (PTFSE) registers.

PTFD		Bit 7	6	5	4	3	2	1	Bit 0
	Read: Write:	PTFD7	PTFD6	PTFD5	PTFD4	PTFD3	PTFD2	PTFD1	PTFD0
	Reset:	0	0	0	0	0	0	0	0
PTFPE									
	Read: Write:	PTFPE7	PTFPE6	PTFPE5	PTFPE4	PTFPE3	PTFPE2	PTFPE1	PTFPE0
	Reset:	0	0	0	0	0	0	0	0
PTFSE									
	Read: Write:	PTFSE7	PTFSE6	PTFSE5	PTFSE4	PTFSE3	PTFSE2	PTFSE1	PTFSE0
	Reset:	0	0	0	0	0	0	0	0
PTFDD									
	Read: Write:	PTFDD7	PTFDD6	PTFDD5	PTFDD4	PTFDD3	PTFDD2	PTFDD1	PTFDD0
	Reset:	0	0	0	0	0	0	0	0
			Figure	e 6-14. Po	rt F Regis	sters			

PTFDn — Port PTF Data Register Bit n (n = 0-7)

For port F pins that are inputs, reads return the logic level on the pin. For port F pins that are configured as outputs, reads return the last value written to this register.

Writes are latched into all bits of this register. For port F pins that are configured as outputs, the logic level is driven out the corresponding MCU pin.

Reset forces PTFD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pullups disabled.

Internal Clock Generator (ICG) Module

ICGC2 = \$30 (%00110000)

Bit 7	LOLRE	0	Generates an interrupt request on loss of lock
Bit 6:4	MFD	011	Sets the MFD multiplication factor to 10
Bit 3	LOCRE	0	Generates an interrupt request on loss of clock
Bit 2:0	RFD	000	Sets the RFD division factor to ÷1

ICGS1 = \$xx

This is read only except for clearing interrupt flag

ICGS2 = \$xx

This is read only. Should read DCOS before performing any time critical tasks

ICGFLTLU/L =\$xx

Not used in this example

ICGTRM

Not used in this example

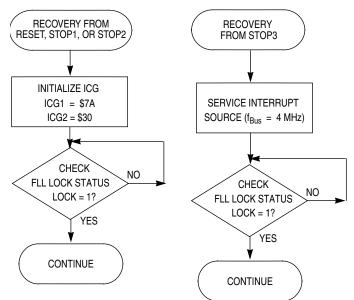


Figure 7-9. ICG Initialization and Stop Recovery for Example #2

7.4.4 Example #3: No External Crystal Connection, 5.4 MHz Bus Frequency

In this example, the FLL will be used (in FEI mode) to multiply the internal 243 kHz (approximate) reference clock up to 10.8 MHz to achieve 5.4 MHz bus frequency. This system will also use the trim function to fine tune the frequency based on an external reference signal.

After the MCU is released from reset, the ICG is in self-clocked mode (SCM) and supplies approximately 8 MHz on ICGOUT which corresponds to a 4 MHz bus frequency (f_{Bus}).

Central Processor Unit (CPU)

Source						eci CC			ess de ode		and	cles
Form	Operation	Description	v	н	I	N	z	с	Address Mode	Opcode	Operand	Bus Cycles ¹
LDA #opr8i LDA opr8a LDA opr16a LDA oprx16,X LDA oprx8,X LDA ,X LDA ,X LDA oprx8,SP	Load Accumulator from Memory	A ← (M)	0	_	_			_	IMM DIR EXT IX2 IX1 IX SP2 SP1		dd hh II ee ff ff ee ff	2 3 4 3 3 5 4
LDHX #opr16i LDHX opr8a LDHX opr16a LDHX ,X LDHX oprx16,X LDHX oprx8,X LDHX oprx8,SP	Load Index Register (H:X) from Memory	H:X ← (M:M + \$0001)	0	_	_			_	IMM DIR EXT IX IX2 IX1 SP1	9EAE 9EBE 9ECE 9EFE	dd hh II ee ff ff	3455655
LDX #opr8i LDX opr8a LDX opr16a LDX oprx16,X LDX oprx8,X LDX x LDX oprx16,SP LDX oprx8,SP	Load X (Index Register Low) from Memory	$X \gets (M)$	0	_	_			_	IMM DIR EXT IX2 IX1 IX SP2 SP1		dd hh II ee ff ff ee ff	2 3 4 3 3 5 4
LSL opr8a LSLA LSLX LSL oprx8,X LSL ,X LSL oprx8,SP	Logical Shift Left (Same as ASL)	C - 0 b7 b0		_	_				DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	ff	5 1 1 5 4 6
LSR opr8a LSRA LSRX LSR oprx8,X LSR ,X LSR oprx8,SP	Logical Shift Right	$0 \rightarrow \boxed[b7]{b0} \hline C$		_	_	0			DIR INH INH IX1 IX SP1	34 44 54 64 74 9E64	ff	5 1 5 4 6
MOV opr8a,opr8a MOV opr8a,X+ MOV #opr8i,opr8a MOV ,X+,opr8a	Move	$(M)_{destination} \leftarrow (M)_{source}$ H:X \leftarrow (H:X) + \$0001 in IX+/DIR and DIR/IX+ Modes	0	_	_			_	DIR/DIR DIR/IX+ IMM/DIR IX+/DIR	5E 6E	dd dd dd ii dd dd	5 5 4 5
MUL	Unsigned multiply	$X:A \leftarrow (X) \times (A)$	-	0	-	-	-	0	INH	42		5
NEG opr8a NEGA NEG oprx8,X NEG oprx8,X NEG oprx8,SP	Negate (Two's Complement)	$\begin{array}{l} M \leftarrow - (M) = \$00 - (M) \\ A \leftarrow - (A) = \$00 - (A) \\ X \leftarrow - (X) = \$00 - (X) \\ M \leftarrow - (M) = \$00 - (M) \\ M \leftarrow - (M) = \$00 - (M) \\ M \leftarrow - (M) = \$00 - (M) \end{array}$		_	_				DIR INH INH IX1 IX SP1	30 40 50 60 70 9E60		5 1 5 4 6
NOP	No Operation	Uses 1 Bus Cycle	-	-	-	-	-	-	INH	9D		1
NSA	Nibble Swap Accumulator	$A \leftarrow (A[3:0]:A[7:4])$	-	-	-	-	-	-	INH	62		1
ORA #opr8i ORA opr8a ORA opr16a ORA oprx16,X ORA oprx8,X ORA ,X ORA oprx16,SP ORA oprx8,SP	Inclusive OR Accumulator and Memory	$A \gets (A) \mid (M)$	0	_	_			_	IMM DIR EXT IX2 IX1 IX SP2 SP1	AA BA CA DA EA FA 9EDA 9EEA	dd hh II ee ff ff ee ff	2 3 4 3 3 5 4
PSHA	Push Accumulator onto Stack	Push (A); SP ← (SP) – \$0001	-	-	_	-	_	_	INH	87		2
PSHH	Push H (Index Register High) onto Stack	Push (H); SP ← (SP) – \$0001	-	-	-	-	-	-	INH	8B		2
PSHX	Push X (Index Register Low) onto Stack	$Push\ (X); SP \leftarrow (SP) - \0001	-	-	-	-	-	-	INH	89		2

Central Processor Unit (CPU)

Bit-Manipulation Branch Read-Modify-Write						Control Register/Memory								
Dit-Manipulation	9E60 6				001				negister	9ED0 5				
					NEG 3 SP1							4 SUB	SUB 3 SP1	
					9E61 6 CBEQ 4 SP1							9ED1 5 CMP 4 SP2	CMP 3 SP1	
													9EE2 4 SBC 3 SP1	
					9E63 6 COM 3 SP1							4 SP2 9ED3 5 CPX 4 SP2	13 SP1	9EF3 6 CPHX 3 SP1
					9E64 6 LSR 3 SP1							AND	9EE4 4 AND 3 SP1	
												9ED5 5 BIT 4 SP2	BIT 3 SP1	
					9E66 6 ROR 3 SP1							9ED6 5 LDA 4 SP2	9EE6 4 LDA 3 SP1	
					9E67 6 ASR 3 SP1							9ED7 5 STA 4 SP2	STA 3 SP1	
					9E68 6 LSL 3 SP1							9ED8 5 EOR 4 SP2 9ED9 5	9EE8 4 EOR 3 SP1	
					9E69 6 ROL 3 SP1							ADC	3 SP1	
					9E6A 6 DEC 3 SP1							9EDA 5 ORA 4 SP2	3 SP1	
					9E6B 8 DBNZ 4 SP1							9EDB 5 ADD 4 SP2	ADD	
					9E6C 6 INC 3 SP1									
					9E6D 5 TST 3 SP1									
									9EAE 5 LDHX 2 IX	LDHX	9ECE 5 LDHX 3 IX1	9EDE 5 LDX 4 SP2 9EDF 5	9EEE 4 LDX 3 SP1	9EFE 5 LDHX 3 SP1
					9E6F 6 CLR 3 SP1							9EDF 5 STX 4 SP2	9EEF 4 STX 3 SP1	9EFF 5 STHX 3 SP1

Table 8-2. Opcode Map (Sheet 2 of 2)

Inherent Immediate Direct Extended DIR to DIR IX+ to DIR REL IX IX1 IX2 IMD DIX+ INH IMM DIR EXT DD IX+D

Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+

Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

SP1 SP2 IX+

IX1+

Note: All Sheet 2 Opcodes are Preceded by the Page 2 Prebyte (9E)

Prebyte (9E) and Opcode in Hexadecimal 9E60 6 NEG Number of Bytes 3 SP1 Addressing Mode

Transmitter Functional Description

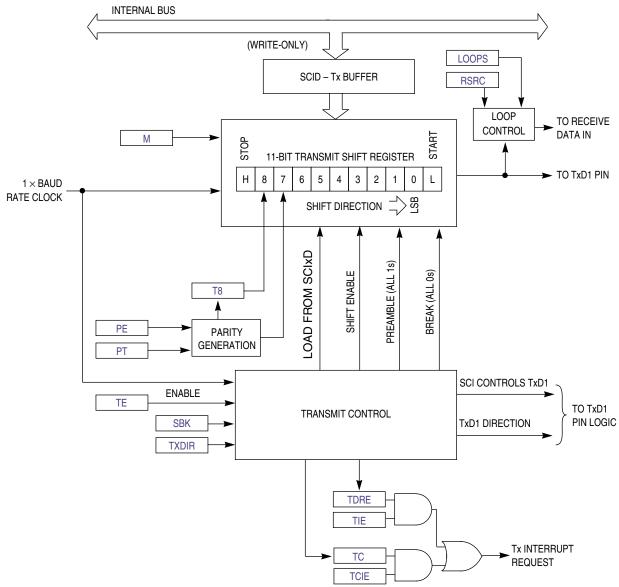


Figure 11-3. SCI Transmitter Block Diagram

The transmitter is enabled by setting the TE bit in SCIxC2. This queues a preamble character that is one full character frame of logic high. The transmitter then remains idle (TxD1 pin remains high) until data is available in the transmit data buffer. Programs store data into the transmit data buffer by writing to the SCI data register (SCIxD).

The central element of the SCI transmitter is the transmit shift register that is either 10 or 11 bits long depending on the setting in the M control bit. For the remainder of this section, we will assume M = 0, selecting the normal 8-bit data mode. In 8-bit data mode, the shift register holds a start bit, eight data bits, and a stop bit. When the transmit shift register is available for a new SCI character, the value waiting in the transmit data register is transferred to the shift register (synchronized with the baud rate clock) and the transmit data register empty (TDRE) status flag is set to indicate another character may be written to the transmit data buffer at SCIxD.

Serial Peripheral Interface (SPI) Module

The most common uses of the SPI system include connecting simple shift registers for adding input or output ports or connecting small peripheral devices such as serial A/D or D/A converters. Although Figure 12-2 shows a system where data is exchanged between two MCUs, many practical systems involve simpler connections where data is unidirectionally transferred from the master MCU to a slave or from a slave to the master MCU.

12.2.2 SPI Module Block Diagram

Figure 12-3 is a block diagram of the SPI module. The central element of the SPI is the SPI shift register. Data is written to the double-buffered transmitter (write to SPI1D) and gets transferred to the SPI shift register at the start of a data transfer. After shifting in a byte of data, the data is transferred into the double-buffered receiver where it can be read (read from SPI1D). Pin multiplexing logic controls connections between MCU pins and the SPI module.

When the SPI is configured as a master, the clock output is routed to the SPSCK1 pin, the shifter output is routed to MOSI1, and the shifter input is routed from the MISO1 pin.

When the SPI is configured as a slave, the SPSCK1 pin is routed to the clock input of the SPI, the shifter output is routed to MISO1, and the shifter input is routed from the MOSI1 pin.

In the external SPI system, simply connect all SPSCK pins to each other, all MISO pins together, and all MOSI pins together. Peripheral devices often use slightly different names for these pins.

Serial Peripheral Interface (SPI) Module

SPPR2:SPPR1:SPPR0	Prescaler Divisor
0:0:0	1
0:0:1	2
0:1:0	3
0:1:1	4
1:0:0	5
1:0:1	6
1:1:0	7
1:1:1	8

Table 12-2. SPI Baud Rate Prescaler Divisor

SPR2:SPR1:SPR0 - SPI Baud Rate Divisor

This 3-bit field selects one of eight divisors for the SPI baud rate divider as shown in Figure 12-3. The input to this divider comes from the SPI baud rate prescaler (see Figure 12-4). The output of this divider is the SPI bit rate clock for master mode.

SPR2:SPR1:SPR0	Rate Divisor
0:0:0	2
0:0:1	4
0:1:0	8
0:1:1	16
1:0:0	32
1:0:1	64
1:1:0	128
1:1:1	256

Table 12-3. SPI Baud Rate Divisor

Inter-Integrated Circuit (IIC) Module

13.2.1.1 START Signal

When the bus is free; i.e., no master device is engaging the bus (both SCL and SDA lines are at logical high), a master may initiate communication by sending a START signal. As shown in Figure 13-3, a START signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the beginning of a new data transfer (each data transfer may contain several bytes of data) and brings all slaves out of their idle states.

13.2.1.2 Slave Address Transmission

The first byte of data transferred immediately after the START signal is the slave address transmitted by the master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired direction of data transfer.

- 1 =Read transfer, the slave transmits data to the master.
- 0 = Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master will respond by sending back an acknowledge bit. This is done by pulling the SDA low at the 9th clock (see Figure 13-3).

No two slaves in the system may have the same address. If the IIC module is the master, it must not transmit an address that is equal to its own slave address. The IIC cannot be master and slave at the same time. However, if arbitration is lost during an address cycle, the IIC will revert to slave mode and operate correctly even if it is being addressed by another master.

13.2.1.3 Data Transfer

Before successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction specified by the R/W bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address information for the slave device

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while SCL is high as shown in Figure 13-3. There is one clock pulse on SCL for each data bit, the MSB being transferred first. Each data byte is followed by a 9th (acknowledge) bit, which is signalled from the receiving device. An acknowledge is signalled by pulling the SDA low at the ninth clock. In summary, one complete data transfer needs nine clock pulses.

If the slave receiver does not acknowledge the master in the 9th bit time, the SDA line must be left high by the slave. The master interprets the failed acknowledge as an unsuccessful data transfer.

If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave interprets this as an end of data transfer and releases the SDA line.

In either case, the data transfer is aborted and the master does one of two things:

- Relinquishes the bus by generating a STOP signal.
- Commences a new calling by generating a repeated START signal.

Inter-Integrated Circuit (IIC) Module

Note that the TX bit in IIC1C must correctly reflect the desired direction of transfer in master and slave modes for the transmission to begin. For instance, if the IIC is configured for master transmit but a master receive is desired, then reading the IIC1D will not initiate the receive.

Reading the IIC1D will return the last byte received while the IIC is configured in either master receive or slave receive modes. The IIC1D does not reflect every byte that is transmitted on the IIC bus, nor can software verify that a byte has been written to the IIC1D correctly by reading it back.

In master transmit mode, the first byte of data written to IIC1D following assertion of MST is used for the address transfer and should comprise of the calling address (in bit 7–bit 1) concatenated with the required R/W bit (in position bit 0).

Chapter 14 Analog-to-Digital Converter (ATD) Module

The MC9S08GB/GT provides one 8-channel analog-to-digital (ATD) module. The eight ATD channels share port B. Each channel individually can be configured for general-purpose I/O or for ATD functionality. All features of the ATD module as described in this section are available on the MC9S08GB/GT. Electrical parametric information for the ATD may be found in Appendix A, "Electrical Characteristics."

15.4 On-Chip Debug System (DBG)

Because HCS08 devices do not have external address and data buses, the most important functions of an in-circuit emulator have been built onto the chip with the MCU. The debug system consists of an 8-stage FIFO that can store address or data bus information, and a flexible trigger system to decide when to capture bus information and what information to capture. The system relies on the single-wire background debug system to access debug control registers and to read results out of the eight stage FIFO.

The debug module includes control and status registers that are accessible in the user's memory map. These registers are located in the high register space to avoid using valuable direct page memory space.

Most of the debug module's functions are used during development, and user programs rarely access any of the control and status registers for the debug module. The one exception is that the debug system can provide the means to implement a form of ROM patching. This topic is discussed in greater detail in Section 15.4.6, "Hardware Breakpoints."

15.4.1 Comparators A and B

Two 16-bit comparators (A and B) can optionally be qualified with the R/W signal and an opcode tracking circuit. Separate control bits allow you to ignore R/W for each comparator. The opcode tracking circuitry optionally allows you to specify that a trigger will occur only if the opcode at the specified address is actually executed as opposed to only being read from memory into the instruction queue. The comparators are also capable of magnitude comparisons to support the inside range and outside range trigger modes. Comparators are disabled temporarily during all BDC accesses.

The A comparator is always associated with the 16-bit CPU address. The B comparator compares to the CPU address or the 8-bit CPU data bus, depending on the trigger mode selected. Because the CPU data bus is separated into a read data bus and a write data bus, the RWAEN and RWA control bits have an additional purpose, in full address plus data comparisons they are used to decide which of these buses to use in the comparator B data bus comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU's write data bus is used. Otherwise, the CPU's read data bus is used.

The currently selected trigger mode determines what the debugger logic does when a comparator detects a qualified match condition. A match can cause:

- Generation of a breakpoint to the CPU
- Storage of data bus values into the FIFO
- Starting to store change-of-flow addresses into the FIFO (begin type trace)
- Stopping the storage of change-of-flow addresses into the FIFO (end type trace)

15.4.2 Bus Capture Information and FIFO Operation

The usual way to use the FIFO is to setup the trigger mode and other control options, then arm the debugger. When the FIFO has filled or the debugger has stopped storing data into the FIFO, you would read the information out of it in the order it was stored into the FIFO. Status bits indicate the number of words of valid information that are in the FIFO as data is stored into it. If a trace run is manually halted by writing 0 to ARM before the FIFO is full (CNT = 1:0:0:0), the information is shifted by one position and

Appendix A Electrical Characteristics

A.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Table A-2. Thermal Characteristics

Rating	Symbol	Value	Unit	Temp. Code
Operating temperature range (packaged)	T _A	-40 to 85	°C	С
Thermal resistance 64-pin LQFP (GB60) 48-pin QFN (GT60) 42-pin SDIP (GT60) 44-pin QFP (GT60)	θ _{JA} ^{1, 2}	65 82 57 118	°C/W	_

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.

² Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. Single layer board is designed per JEDEC JESD51-3.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$
 Eqn. A-2

where:

 T_A = Ambient temperature, °C

 θ_{IA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C) \qquad \qquad Eqn. A-2$$

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. A-3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

Appendix A Electrical Characteristics

- ¹ This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.
- ² When any reset is initiated, internal circuitry drives the reset pin low for about 34 cycles of f_{Self_reset} and then samples the level on the reset pin about 38 cycles later to distinguish external reset requests from internal requests.
- ³ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 85°C.

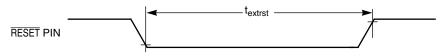


Figure A-11. Reset Timing

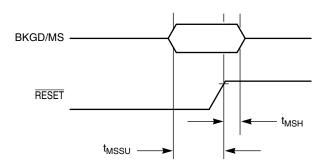
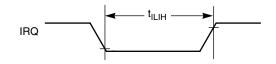
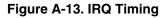




Figure A-12. Active Background Debug Mode Latch Timing

A.9.2 Timer/PWM (TPM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

B.4 48-Pin QFN Package Drawing