
NXP USA Inc. - MC9S08GT60CFDER Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor S08

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 39

Program Memory Size 60KB (60K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 48-VFQFN Exposed Pad

Supplier Device Package 48-QFN-EP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08gt60cfder

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc9s08gt60cfder-4448827
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Section Number Title Page
Chapter 8
Central Processor Unit (CPU)

8.1 Introduction ...125
8.2 Features ...126
8.3 Programmer’s Model and CPU Registers ...126

8.3.1 Accumulator (A) ..127
8.3.2 Index Register (H:X) ...127
8.3.3 Stack Pointer (SP) ..128
8.3.4 Program Counter (PC) ...128
8.3.5 Condition Code Register (CCR) ..128

8.4 Addressing Modes ...130
8.4.1 Inherent Addressing Mode (INH) ..130
8.4.2 Relative Addressing Mode (REL) ...130
8.4.3 Immediate Addressing Mode (IMM) ...130
8.4.4 Direct Addressing Mode (DIR) ...130
8.4.5 Extended Addressing Mode (EXT) ...131
8.4.6 Indexed Addressing Mode ...131

8.4.6.1 Indexed, No Offset (IX) ..131
8.4.6.2 Indexed, No Offset with Post Increment (IX+) ...131
8.4.6.3 Indexed, 8-Bit Offset (IX1) ...131
8.4.6.4 Indexed, 8-Bit Offset with Post Increment (IX1+)131
8.4.6.5 Indexed, 16-Bit Offset (IX2) ...131
8.4.6.6 SP-Relative, 8-Bit Offset (SP1) ..131
8.4.6.7 SP-Relative, 16-Bit Offset (SP2) ..132

8.5 Special Operations ...132
8.5.1 Reset Sequence ..132
8.5.2 Interrupt Sequence ...132
8.5.3 Wait Mode Operation ...133
8.5.4 Stop Mode Operation ...133
8.5.5 BGND Instruction ..134

8.6 HCS08 Instruction Set Summary ..134

Chapter 9
Keyboard Interrupt (KBI) Module

9.1 Introduction ...145
9.1.1 Port A and Keyboard Interrupt Pins ..145

9.2 Features ...145
9.3 KBI Block Diagram ..147
9.4 Keyboard Interrupt (KBI) Module ..147

9.4.1 Pin Enables ..147
9.4.2 Edge and Level Sensitivity ..147
9.4.3 KBI Interrupt Controls ...148

9.5 KBI Registers and Control Bits ...148
9.5.1 KBI Status and Control Register (KBI1SC) ..148
9.5.2 KBI Pin Enable Register (KBI1PE) ..150
MC9S08GB/GT Data Sheet, Rev. 2.3

Freescale Semiconductor 11

Register Addresses and Bit Assignments
High-page registers, shown in Table 4-3, are accessed much less often than other I/O and control registers
so they have been located outside the direct addressable memory space, starting at $1800.

Nonvolatile FLASH registers, shown in Table 4-4, are located in the FLASH memory. These registers
include an 8-byte backdoor key which optionally can be used to gain access to secure memory resources.
During reset events, the contents of NVPROT and NVOPT in the nonvolatile register area of the FLASH
memory are transferred into corresponding FPROT and FOPT working registers in the high-page registers
to control security and block protection options.

Table 4-3. High-Page Register Summary

Address Register Name Bit 7 6 5 4 3 2 1 Bit 0

$1800 SRS POR PIN COP ILOP 0 ICG LVD 0

$1801 SBDFR 0 0 0 0 0 0 0 BDFR

$1802 SOPT COPE COPT STOPE — 0 0 BKGDPE —

$1803 –
$1805

Reserved
—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$1806 SDIDH REV3 REV2 REV1 REV0 ID11 ID10 ID9 ID8

$1807 SDIDL ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

$1808 SRTISC RTIF RTIACK RTICLKS RTIE 0 RTIS2 RTIS1 RTIS0

$1809 SPMSC1 LVDF LVDACK LVDIE LVDRE LVDSE LVDE 0 0

$180A SPMSC2 LVWF LVWACK LVDV LVWV PPDF PPDACK PDC PPDC

$180B–
$180F

Reserved
—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$1810 DBGCAH Bit 15 14 13 12 11 10 9 Bit 8

$1811 DBGCAL Bit 7 6 5 4 3 2 1 Bit 0

$1812 DBGCBH Bit 15 14 13 12 11 10 9 Bit 8

$1813 DBGCBL Bit 7 6 5 4 3 2 1 Bit 0

$1814 DBGFH Bit 15 14 13 12 11 10 9 Bit 8

$1815 DBGFL Bit 7 6 5 4 3 2 1 Bit 0

$1816 DBGC DBGEN ARM TAG BRKEN RWA RWAEN RWB RWBEN

$1817 DBGT TRGSEL BEGIN 0 0 TRG3 TRG2 TRG1 TRG0

$1818 DBGS AF BF ARMF 0 CNT3 CNT2 CNT1 CNT0

$1819–
$181F

Reserved
—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$1820 FCDIV DIVLD PRDIV8 DIV5 DIV4 DIV3 DIV2 DIV1 DIV0

$1821 FOPT KEYEN FNORED 0 0 0 0 SEC01 SEC00

$1822 Reserved — — — — — — — —

$1823 FCNFG 0 0 KEYACC 0 0 0 0 0

$1824 FPROT FPOPEN FPDIS FPS2 FPS1 FPS0 0 0 0

$1825 FSTAT FCBEF FCCF FPVIOL FACCERR 0 FBLANK 0 0

$1826 FCMD FCMD7 FCMD6 FCMD5 FCMD4 FCMD3 FCMD2 FCMD1 FCMD0

$1827–
$182B

Reserved
—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

MC9S08GB/GT Data Sheet, Rev. 2.3

Freescale Semiconductor 45

Chapter 4 Memory
4.6.5 FLASH Status Register (FSTAT)

Bits 3, 1, and 0 always read 0 and writes have no meaning or effect. The remaining five bits are status bits
that can be read at any time. Writes to these bits have special meanings that are discussed in the bit
descriptions.

Figure 4-8. FLASH Status Register (FSTAT)

FCBEF — FLASH Command Buffer Empty Flag

The FCBEF bit is used to launch commands. It also indicates that the command buffer is empty so that
a new command sequence can be executed when performing burst programming. The FCBEF bit is
cleared by writing a 1 to it or when a burst program command is transferred to the array for
programming. Only burst program commands can be buffered.

1 = A new burst program command may be written to the command buffer.
0 = Command buffer is full (not ready for additional commands).

FCCF — FLASH Command Complete Flag

FCCF is set automatically when the command buffer is empty and no command is being processed.
FCCF is cleared automatically when a new command is started (by writing 1 to FCBEF to register a
command). Writing to FCCF has no meaning or effect.

1 = All commands complete
0 = Command in progress

FPVIOL — Protection Violation Flag

FPVIOL is set automatically when FCBEF is cleared to register a command that attempts to erase or
program a location in a protected block (the erroneous command is ignored). FPVIOL is cleared by
writing a 1 to FPVIOL.

1 = An attempt was made to erase or program a protected location.
0 = No protection violation.

FACCERR — Access Error Flag

FACCERR is set automatically when the proper command sequence is not followed exactly (the
erroneous command is ignored), if a program or erase operation is attempted before the FCDIV register
has been initialized, or if the MCU enters stop while a command was in progress. For a more detailed
discussion of the exact actions that are considered access errors, see Section 4.4.5, “Access Errors.”
FACCERR is cleared by writing a 1 to FACCERR. Writing a 0 to FACCERR has no meaning or effect.

1 = An access error has occurred.
0 = No access error has occurred.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
FCBEF

FCCF
FPVIOL FACCERR

0 FBLANK 0 0

Write:

Reset: 1 1 0 0 0 0 0 0

= Unimplemented or Reserved
MC9S08GB/GT Data Sheet, Rev. 2.3

58 Freescale Semiconductor

Chapter 5 Resets, Interrupts, and System Configuration

5.1 Introduction
This section discusses basic reset and interrupt mechanisms and the various sources of reset and interrupts
in the MC9S08GB/GT. Some interrupt sources from peripheral modules are discussed in greater detail
within other sections of this data manual. This section gathers basic information about all reset and
interrupt sources in one place for easy reference. A few reset and interrupt sources, including the computer
operating properly (COP) watchdog and real-time interrupt (RTI), are not part of on-chip peripheral
systems with their own sections but are part of the system control logic.

5.2 Features
Reset and interrupt features include:

• Multiple sources of reset for flexible system configuration and reliable operation:

— Power-on detection (POR)

— Low voltage detection (LVD) with enable

— External RESET pin with enable

— COP watchdog with enable and two timeout choices

— Illegal opcode

— Serial command from a background debug host

• Reset status register (SRS) to indicate source of most recent reset

• Separate interrupt vectors for each module (reduces polling overhead) (see Table 5-1)

5.3 MCU Reset
Resetting the MCU provides a way to start processing from a known set of initial conditions. During reset,
most control and status registers are forced to initial values and the program counter is loaded from the
reset vector ($FFFE:$FFFF). On-chip peripheral modules are disabled and I/O pins are initially configured
as general-purpose high-impedance inputs with pullup devices disabled. The I bit in the condition code
register (CCR) is set to block maskable interrupts so the user program has a chance to initialize the stack
pointer (SP) and system control settings. SP is forced to $00FF at reset.

The MC9S08GB/GT has seven sources for reset:

• Power-on reset (POR)

• Low-voltage detect (LVD)

• Computer operating properly (COP) timer

• Illegal opcode detect

• Background debug forced reset

• The reset pin (RESET)

• Clock generator loss of lock and loss of clock reset
MC9S08GB/GT Data Sheet, Rev. 2.3

Freescale Semiconductor 61

Interrupts
When the CPU receives a qualified interrupt request, it completes the current instruction before responding
to the interrupt. The interrupt sequence follows the same cycle-by-cycle sequence as the SWI instruction
and consists of:

• Saving the CPU registers on the stack

• Setting the I bit in the CCR to mask further interrupts

• Fetching the interrupt vector for the highest-priority interrupt that is currently pending

• Filling the instruction queue with the first three bytes of program information starting from the
address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of another
interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is restored to 0
when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit may be cleared
inside an ISR (after clearing the status flag that generated the interrupt) so that other interrupts can be
serviced without waiting for the first service routine to finish. This practice is not recommended for anyone
other than the most experienced programmers because it can lead to subtle program errors that are difficult
to debug.

The interrupt service routine ends with a return-from-interrupt (RTI) instruction which restores the CCR,
A, X, and PC registers to their pre-interrupt values by reading the previously saved information off the
stack.

NOTE
For compatibility with the M68HC08, the H register is not automatically
saved and restored. It is good programming practice to push H onto the stack
at the start of the interrupt service routine (ISR) and restore it just before the
RTI that is used to return from the ISR.

When two or more interrupts are pending when the I bit is cleared, the highest priority source is serviced
first (see Table 5-1).

5.5.1 Interrupt Stack Frame

Figure 5-1 shows the contents and organization of a stack frame. Before the interrupt, the stack pointer
(SP) points at the next available byte location on the stack. The current values of CPU registers are stored
on the stack starting with the low-order byte of the program counter (PCL) and ending with the CCR. After
stacking, the SP points at the next available location on the stack which is the address that is one less than
the address where the CCR was saved. The PC value that is stacked is the address of the instruction in the
main program that would have executed next if the interrupt had not occurred.
MC9S08GB/GT Data Sheet, Rev. 2.3

Freescale Semiconductor 63

Parallel I/O Registers and Control Bits
PTBDn — Port B Data Register Bit n (n = 0–7)

For port B pins that are inputs, reads return the logic level on the pin. For port B pins that are configured
as outputs, reads return the last value written to this register.

Writes are latched into all bits of this register. For port B pins that are configured as outputs, the logic
level is driven out the corresponding MCU pin.

Reset forces PTBD to all 0s, but these 0s are not driven out on the corresponding pins because reset
also configures all port pins as high-impedance inputs with pullups disabled.

PTBPEn — Pullup Enable for Port B Bit n (n = 0–7)

For port B pins that are inputs, these read/write control bits determine whether internal pullup devices
are enabled. For port B pins that are configured as outputs, these bits are ignored and the internal pullup
devices are disabled.

1 = Internal pullup device enabled.
0 = Internal pullup device disabled.

PTBSEn — Slew Rate Control Enable for Port B Bit n (n = 0–7)

For port B pins that are outputs, these read/write control bits determine whether the slew rate controlled
outputs are enabled. For port B pins that are configured as inputs, these bits are ignored.

1 = Slew rate control enabled.
0 = Slew rate control disabled.

PTBDDn — Data Direction for Port B Bit n (n = 0–7)

These read/write bits control the direction of port B pins and what is read for PTBD reads.
1 = Output driver enabled for port B bit n and PTBD reads return the contents of PTBDn.
0 = Input (output driver disabled) and reads return the pin value.

6.6.3 Port C Registers (PTCD, PTCPE, PTCSE, and PTCDD)

Port C includes eight general-purpose I/O pins that share with the SCI2 and IIC modules. Port C pins used
as general-purpose I/O pins are controlled by the port C data (PTCD), data direction (PTCDD), pullup
enable (PTCPE), and slew rate control (PTCSE) registers.

If the SCI2 takes control of a port C pin, the corresponding PTCDD bit is ignored. PTCSE can be used to
provide slew rate on the SCI2 transmit pin, TxD2. PTCPE can be used, provided the corresponding
PTCDD bit is 0, to provide a pullup device on the SCI2 receive pin, RxD2.

If the IIC takes control of a port C pin, the corresponding PTCDD bit is ignored. PTCSE can be used to
provide slew rate on the IIC serial data pin (SDA1), when in output mode and the IIC clock pin (SCL1).
PTCPE can be used, provided the corresponding PTCDD bit is 0, to provide a pullup device on the IIC
serial data pin, when in receive mode.

Reads of PTCD will return the logic value of the corresponding pin, provided PTCDD is 0.
MC9S08GB/GT Data Sheet, Rev. 2.3

Freescale Semiconductor 87

Functional Description
Figure 7-6. Detailed Frequency-Locked Loop Block Diagram

7.3.3 FLL Engaged, Internal Clock (FEI) Mode

FLL engaged internal (FEI) is entered when any of the following conditions occur:

• CLKS bits are written to 01

• The DCO clock stabilizes (DCOS = 1) while in SCM upon exiting the off state with CLKS = 01

In FLL engaged internal mode, the reference clock is derived from the internal reference clock
ICGIRCLK, and the FLL loop will attempt to lock the ICGDCLK frequency to the desired value, as
selected by the MFD bits.

7.3.3.1 FLL Engaged Internal Unlocked

FEI unlocked is a temporary state that is entered when FEI is entered and the count error (∆n) output from
the subtractor is greater than the maximum nunlock or less than the minimum nunlock, as required by the
lock detector to detect the unlock condition.

REFERENCE
DIVIDER (/7)

RFD
CLKST

SUBTRACTOR LOOP
FILTER

DIGITALLY
CONTROLLED
OSCILLATOR

CLOCK ICGOUT

ICG2DCLK

RESET AND
INTERRUPT

IRQ

FLL ANALOG

SELECT
CIRCUIT

LOLS

PULSE
COUNTER

MFD

FREQUENCY-

IC
G

ER
C

LK

LOCS

LOCK AND

DETECTOR

LOCK

CONTROL

LOLRE LOCRE

RESET

REDUCED
FREQUENCY
DIVIDER (R)

LOSS OF CLOCK

ICGIFERCS

ICGDCLK

LOOP (FLL)

DIGITAL

FLT

COUNTER ENABLE

LOCKED

OVERFLOW

1x

2x

ICGIRCLK

CLKST

DCOS

RANGE

RANGE

CLKS
MC9S08GB/GT Data Sheet, Rev. 2.3

Freescale Semiconductor 105

Initialization/Application Information
Figure 7-7. ICG Register Set

Table 7-5. ICGOUT Frequency Calculation Options

Clock Scheme fICGOUT
(1)

1. Ensure that fICGDCLK, which is equal to fICGOUT * R, does not exceed fICGDCLKmax.

P Note

SCM — self-clocked mode (FLL bypassed
internal)

fICGDCLK / R NA Typical fICGOUT = 8 MHz
out of reset

FBE — FLL bypassed external fext / R NA

FEI — FLL engaged internal (fIRG / 7)* 64*N / R 64 Typical fIRG = 243 kHz

FEE — FLL engaged external fext * P * N / R Range = 0 ; P = 64
Range = 1; P = 1

Table 7-6. MFD and RFD Decode Table

MFD Value Multiplication Factor (N) RFD Division Factor (R)

000 4 000 ÷1
001 6 001 ÷2
010 8 010 ÷4
011 10 011 ÷8
100 12 100 ÷16
101 14 101 ÷32
110 16 110 ÷64
111 18 111 ÷128

Register Bit 7 6 5 4 3 2 1 Bit 0

ICGC1 0 RANGE REFS CLKS OSCSTEN 0(1)

1. This bit is reserved for Freescale Semiconductor internal use only. Any write operations to this register should
write a 0 to this bit.

0

ICGC2 LOLRE MFD LOCRE RFD

ICGS1 CLKST REFST LOLS LOCK LOCS ERCS ICGIF

ICGS2 0 0 0 0 0 0 0 DCOS

ICGFLTU 0 0 0 0 FLT

ICGFLTL FLT

ICGTRM TRIM

= Unimplemented or Reserved
MC9S08GB/GT Data Sheet, Rev. 2.3

Freescale Semiconductor 111

Internal Clock Generator (ICG) Module
LOCRE — Loss of Clock Reset Enable

The LOCRE bit determines how the system handles a loss of clock condition.
1 = Generate a reset request on loss of clock.
0 = Generate an interrupt request on loss of clock.

RFD — Reduced Frequency Divider

The RFD bits control the value of the divider following the clock select circuitry. The value specified
by the RFD bits establishes the division factor (R) applied to the selected output clock source. Writes
to the RFD bits will not take effect if a previous write is not complete.

7.5.3 ICG Status Register 1 (ICGS1)

Figure 7-15. ICG Status Register 1 (ICGS1)

CLKST — Clock Mode Status

The CLKST bits indicate the current clock mode. The CLKST bits don’t update immediately after a
write to the CLKS bits due to internal synchronization between clock domains.

Table 7-8. RFD Reduced Frequency Divider Select

RFD Division Factor (R)

000 ÷1

001 ÷2

010 ÷4

011 ÷8

100 ÷16

101 ÷32

110 ÷64

111 ÷128

 Bit 7 6 5 4 3 2 1 Bit 0

Read: CLKST REFST LOLS LOCK LOCS ERCS ICGIF

Write: 1

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
MC9S08GB/GT Data Sheet, Rev. 2.3

120 Freescale Semiconductor

Central Processor Unit (CPU)
BMI rel Branch if Minus Branch if (N) = 1 – – – – – – REL 2B rr 3

BMS rel Branch if Interrupt Mask
Set Branch if (I) = 1 – – – – – – REL 2D rr 3

BNE rel Branch if Not Equal Branch if (Z) = 0 – – – – – – REL 26 rr 3

BPL rel Branch if Plus Branch if (N) = 0 – – – – – – REL 2A rr 3

BRA rel Branch Always No Test – – – – – – REL 20 rr 3

BRCLR n,opr8a,rel Branch if Bit n in Memory
Clear Branch if (Mn) = 0 – – – – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BRN rel Branch Never Uses 3 Bus Cycles – – – – – – REL 21 rr 3

BRSET n,opr8a,rel Branch if Bit n in Memory
Set Branch if (Mn) = 1 – – – – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BSET n,opr8a Set Bit n in Memory Mn ← 1 – – – – – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

BSR rel Branch to Subroutine

PC ← (PC) + $0002
push (PCL); SP ← (SP) – $0001
push (PCH); SP ← (SP) – $0001

PC ← (PC) + rel

– – – – – – REL AD rr 5

CBEQ opr8a,rel
CBEQA #opr8i,rel
CBEQX #opr8i,rel
CBEQ oprx8,X+,rel
CBEQ ,X+,rel
CBEQ oprx8,SP,rel

Compare and Branch if
Equal

Branch if (A) = (M)
Branch if (A) = (M)
Branch if (X) = (M)
Branch if (A) = (M)
Branch if (A) = (M)
Branch if (A) = (M)

– – – – – –

DIR
IMM
IMM
IX1+
IX+
SP1

31
41
51
61
71

9E61

dd rr
ii rr
ii rr
ff rr
rr
ff rr

5
4
4
5
5
6

CLC Clear Carry Bit C ← 0 – – – – – 0 INH 98 1

CLI Clear Interrupt Mask Bit I ← 0 – – 0 – – – INH 9A 1

CLR opr8a
CLRA
CLRX
CLRH
CLR oprx8,X
CLR ,X
CLR oprx8,SP

Clear

M ← $00
A ← $00
X ← $00
H ← $00
M ← $00
M ← $00
M ← $00

0 – – 0 1 –

DIR
INH
INH
INH
IX1
IX
SP1

3F
4F
5F
8C
6F
7F

9E6F

dd

ff

ff

5
1
1
1
5
4
6

CMP #opr8i
CMP opr8a
CMP opr16a
CMP oprx16,X
CMP oprx8,X
CMP ,X
CMP oprx16,SP
CMP oprx8,SP

Compare Accumulator
with Memory

(A) – (M)
(CCR Updated But Operands Not

Changed)
– –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A1
B1
C1
D1
E1
F1

9ED1
9EE1

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

Table 8-1. HCS08 Instruction Set Summary (Sheet 3 of 7)

Source
Form

Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

B
u

s
C

yc
le

s1

V H I N Z C
MC9S08GB/GT Data Sheet, Rev. 2.3

138 Freescale Semiconductor

TPM Block Diagram
10.3 TPM Block Diagram
The TPM uses one input/output (I/O) pin per channel, TPMxCHn where x is the TPM number (for
example, 1 or 2) and n is the channel number (for example, 0–4). The TPM shares its I/O pins with
general-purpose I/O port pins (refer to the Pins and Connections chapter for more information).
Figure 10-2 shows the structure of a TPM. Some MCUs include more than one TPM, with various
numbers of channels.

Figure 10-2. TPM Block Diagram

The central component of the TPM is the 16-bit counter that can operate as a free-running counter, a
modulo counter, or an up-/down-counter when the TPM is configured for center-aligned PWM. The TPM

PRESCALE AND SELECT

16-BIT COMPARATOR

MAIN 16-BIT COUNTER

16-BIT COMPARATOR

16-BIT LATCH

PORT

16-BIT COMPARATOR

16-BIT LATCH

CHANNEL 0

CHANNEL 1

IN
TE

R
N

AL
 B

U
S

LOGIC

INTERRUPT

PORT
LOGIC

16-BIT COMPARATOR

16-BIT LATCH

CHANNEL n
PORT
LOGIC

COUNTER RESET

DIVIDE BY

CLOCK SOURCE

OFF, BUS, XCLK, EXT

BUSCLK

XCLK
SELECT

SYNC

INTERRUPT

INTERRUPT

INTERRUPT

1, 2, 4, 8, 16, 32, 64, or 128

LOGIC

LOGIC

LOGIC

LOGIC

CLKSACLKSB PS2 PS1 PS0

CPWMS

TOIE

TOF

ELS0A

CH0F

ELS0B

ELS1B ELS1A

ELSnB ELSnA

CH1F

CHnF

CH0IE

CH1IE

CHnIE

MS1B

MS0B

MSnB

MS0A

MS1A

MSnA

. .
 .

. .
 .

. .
 .

TPMxMODH:TPMx

TPMx) EXT CLK

TPMxC0VH:TPMxC0VL

TPMxC1VH:TPMxC1VL

TPMxCnVH:TPMxCnVL

TPMxCHn

TPMxCH1

TPMxCH0
MC9S08GB/GT Data Sheet, Rev. 2.3

Freescale Semiconductor 153

Timer/PWM (TPM) Module
Because the HCS08 MCU is an 8-bit architecture, a coherency mechanism is built into the timer counter
for read operations. Whenever either byte of the counter is read (TPMxCNTH or TPMxCNTL), both bytes
are captured into a buffer so when the other byte is read, the value will represent the other byte of the count
at the time the first byte was read. The counter continues to count normally, but no new value can be read
from either byte until both bytes of the old count have been read.

The main timer counter can be reset manually at any time by writing any value to either byte of the timer
count TPMxCNTH or TPMxCNTL. Resetting the counter in this manner also resets the coherency
mechanism in case only one byte of the counter was read before resetting the count.

10.5.2 Channel Mode Selection

Provided CPWMS = 0 (center-aligned PWM operation is not specified), the MSnB and MSnA control bits
in the channel n status and control registers determine the basic mode of operation for the corresponding
channel. Choices include input capture, output compare, and buffered edge-aligned PWM.

10.5.2.1 Input Capture Mode

With the input capture function, the TPM can capture the time at which an external event occurs. When an
active edge occurs on the pin of an input capture channel, the TPM latches the contents of the TPM counter
into the channel value registers (TPMxCnVH:TPMxCnVL). Rising edges, falling edges, or any edge may
be chosen as the active edge that triggers an input capture.

When either byte of the 16-bit capture register is read, both bytes are latched into a buffer to support
coherent 16-bit accesses regardless of order. The coherency sequence can be manually reset by writing to
the channel status/control register (TPMxCnSC).

An input capture event sets a flag bit (CHnF) that can optionally generate a CPU interrupt request.

10.5.2.2 Output Compare Mode

With the output compare function, the TPM can generate timed pulses with programmable position,
polarity, duration, and frequency. When the counter reaches the value in the channel value registers of an
output compare channel, the TPM can set, clear, or toggle the channel pin.

In output compare mode, values are transferred to the corresponding timer channel value registers only
after both 8-bit bytes of a 16-bit register have been written. This coherency sequence can be manually reset
by writing to the channel status/control register (TPMxCnSC).

An output compare event sets a flag bit (CHnF) that can optionally generate a CPU interrupt request.

10.5.2.3 Edge-Aligned PWM Mode

This type of PWM output uses the normal up-counting mode of the timer counter (CPWMS = 0) and can
be used when other channels in the same TPM are configured for input capture or output compare
functions. The period of this PWM signal is determined by the setting in the modulus register
(TPMxMODH:TPMxMODL). The duty cycle is determined by the setting in the timer channel value
MC9S08GB/GT Data Sheet, Rev. 2.3

156 Freescale Semiconductor

Timer/PWM (TPM) Module
PS2:PS1:PS0 — Prescale Divisor Select

This 3-bit field selects one of eight divisors for the TPM clock input as shown in Table 10-2. This
prescaler is located after any clock source synchronization or clock source selection, so it affects
whatever clock source is selected to drive the TPM system.

10.7.2 Timer x Counter Registers (TPMxCNTH:TPMxCNTL)

The two read-only TPM counter registers contain the high and low bytes of the value in the TPM counter.
Reading either byte (TPMxCNTH or TPMxCNTL) latches the contents of both bytes into a buffer where
they remain latched until the other byte is read. This allows coherent 16-bit reads in either order. The
coherency mechanism is automatically restarted by an MCU reset, a write of any value to TPMxCNTH or
TPMxCNTL, or any write to the timer status/control register (TPMxSC).

Reset clears the TPM counter registers.

Figure 10-6. Timer x Counter Register High (TPMxCNTH)

Figure 10-7. Timer x Counter Register Low (TPMxCNTL)

Table 10-2. Prescale Divisor Selection

PS2:PS1:PS0 TPM Clock Source Divided-By

0:0:0 1

0:0:1 2

0:1:0 4

0:1:1 8

1:0:0 16

1:0:1 32

1:1:0 64

1:1:1 128

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 15 14 13 12 11 10 9 Bit 8

Write: Any write to TPMxCNTH clears the 16-bit counter.

Reset: 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 7 6 5 4 3 2 1 Bit 0

Write: Any write to TPMxCNTL clears the 16-bit counter.

Reset: 0 0 0 0 0 0 0 0
MC9S08GB/GT Data Sheet, Rev. 2.3

162 Freescale Semiconductor

Timer/PWM (TPM) Module
CHnF — Channel n Flag

When channel n is configured for input capture, this flag bit is set when an active edge occurs on the
channel n pin. When channel n is an output compare or edge-aligned PWM channel, CHnF is set when
the value in the TPM counter registers matches the value in the TPM channel n value registers. This
flag is seldom used with center-aligned PWMs because it is set every time the counter matches the
channel value register, which correspond to both edges of the active duty cycle period.

A corresponding interrupt is requested when CHnF is set and interrupts are enabled (CHnIE = 1). Clear
CHnF by reading TPMxCnSC while CHnF is set and then writing a 0 to CHnF. If another interrupt
request occurs before the clearing sequence is complete, the sequence is reset so CHnF would remain
set after the clear sequence was completed for the earlier CHnF. This is done so a CHnF interrupt
request cannot be lost by clearing a previous CHnF.

Reset clears the CHnF bit. Writing a 1 to CHnF has no effect.
1 = Input capture or output compare event occurred on channel n.
0 = No input capture or output compare event occurred on channel n.

CHnIE — Channel n Interrupt Enable

This read/write bit enables interrupts from channel n. Reset clears the CHnIE bit.
1 = Channel n interrupt requests enabled.
0 = Channel n interrupt requests disabled (use software polling).

MSnB — Mode Select B for TPM Channel n

When CPWMS = 0, MSnB = 1 configures TPM channel n for edge-aligned PWM mode. For a
summary of channel mode and setup controls, refer to Table 10-3.

MSnA — Mode Select A for TPM Channel n

When CPWMS = 0 and MSnB = 0, MSnA configures TPM channel n for input capture mode or output
compare mode. Refer to Table 10-3 for a summary of channel mode and setup controls.
MC9S08GB/GT Data Sheet, Rev. 2.3

164 Freescale Semiconductor

Timer/PWM (TPM) Module
Figure 10-11. Timer x Channel Value Register High (TPMxCnVH)

Figure 10-12. Timer x Channel Value Register Low (TPMxCnVL)

In input capture mode, reading either byte (TPMxCnVH or TPMxCnVL) latches the contents of both bytes
into a buffer where they remain latched until the other byte is read. This latching mechanism also resets
(becomes unlatched) when the TPMxCnSC register is written.

In output compare or PWM modes, writing to either byte (TPMxCnVH or TPMxCnVL) latches the value
into a buffer. When both bytes have been written, they are transferred as a coherent 16-bit value into the
timer channel value registers. This latching mechanism may be manually reset by writing to the
TPMxCnSC register.

This latching mechanism allows coherent 16-bit writes in either order, which is friendly to various
compiler implementations.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 15 14 13 12 11 10 9 Bit 8

Write:

Reset: 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0
MC9S08GB/GT Data Sheet, Rev. 2.3

166 Freescale Semiconductor

SCI Registers and Control Bits
Note, because the clocks are halted, the SCI module will resume operation upon exit from stop (only in
stop3 mode). Software should ensure stop mode is not entered while there is a character being transmitted
out of or received into the SCI module.

11.9.1 Loop Mode

When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or
single-wire mode (RSRC = 1). Loop mode is sometimes used to check software, independent of
connections in the external system, to help isolate system problems. In this mode, the transmitter output is
internally connected to the receiver input and the RxD1 pin is not used by the SCI, so it reverts to a
general-purpose port I/O pin.

11.9.2 Single-Wire Operation

When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or
single-wire mode (RSRC = 1). Single-wire mode is used to implement a half-duplex serial connection.
The receiver is internally connected to the transmitter output and to the TxD1 pin. The RxD1 pin is not
used and reverts to a general-purpose port I/O pin.

In single-wire mode, the TXDIR bit in SCIxC3 controls the direction of serial data on the TxD1 pin. When
TXDIR = 0, the TxD1 pin is an input to the SCI receiver and the transmitter is temporarily disconnected
from the TxD1 pin so an external device can send serial data to the receiver. When TXDIR = 1, the TxD1
pin is an output driven by the transmitter. In single-wire mode, the internal loop back connection from the
transmitter to the receiver causes the receiver to receive characters that are sent out by the transmitter.

11.10 SCI Registers and Control Bits
The SCI has eight 8-bit registers to control baud rate, select SCI options, report SCI status, and for
transmit/receive data.

Refer to the direct-page register summary in the Memory section of this data sheet for the absolute address
assignments for all SCI registers. This section refers to registers and control bits only by their names. A
Freescale-provided equate or header file is used to translate these names into the appropriate absolute
addresses.

Some MCU systems have more than one SCI, so register names include placeholder characters to identify
which SCI is being referenced. For example, SCIxC1 refers to the SCIx control register 1 and SCI2C1 is
the control register 1 for SCI2.

11.10.1 SCI x Baud Rate Registers (SCIxBDH, SCIxBDL)

This pair of registers controls the prescale divisor for SCI baud rate generation. To update the 13-bit baud
rate setting [SBR12:SBR0], first write to SCIxBDH to buffer the high half of the new value and then write
to SCIxBDL. The working value in SCIxBDH does not change until SCIxBDL is written.

SCIxBDL is reset to a non-zero value, so after reset the baud rate generator remains disabled until the first
time the receiver or transmitter is enabled (RE or TE bits in SCIxC2 are written to 1).
MC9S08GB/GT Data Sheet, Rev. 2.3

Freescale Semiconductor 177

Serial Peripheral Interface (SPI) Module
12.4.5 SPI Data Register (SPI1D)

Figure 12-11. SPI Data Register (SPI1D)

Reads of this register return the data read from the receive data buffer. Writes to this register write data
to the transmit data buffer. When the SPI is configured as a master, writing data to the transmit data
buffer initiates an SPI transfer.

Data should not be written to the transmit data buffer unless the SPI transmit buffer empty flag
(SPTEF) is set, indicating there is room in the transmit buffer to queue a new transmit byte.

Data may be read from SPI1D any time after SPRF is set and before another transfer is finished. Failure
to read the data out of the receive data buffer before a new transfer ends causes a receive overrun
condition and the data from the new transfer is lost.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0
MC9S08GB/GT Data Sheet, Rev. 2.3

202 Freescale Semiconductor

Inter-Integrated Circuit (IIC) Module
13.2.1.1 START Signal

When the bus is free; i.e., no master device is engaging the bus (both SCL and SDA lines are at logical
high), a master may initiate communication by sending a START signal. As shown in Figure 13-3, a
START signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the
beginning of a new data transfer (each data transfer may contain several bytes of data) and brings all slaves
out of their idle states.

13.2.1.2 Slave Address Transmission

The first byte of data transferred immediately after the START signal is the slave address transmitted by
the master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired
direction of data transfer.

1 = Read transfer, the slave transmits data to the master.
0 = Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master will respond by
sending back an acknowledge bit. This is done by pulling the SDA low at the 9th clock (see Figure 13-3).

No two slaves in the system may have the same address. If the IIC module is the master, it must not transmit
an address that is equal to its own slave address. The IIC cannot be master and slave at the same time.
However, if arbitration is lost during an address cycle, the IIC will revert to slave mode and operate
correctly even if it is being addressed by another master.

13.2.1.3 Data Transfer

Before successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction
specified by the R/W bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address
information for the slave device

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while
SCL is high as shown in Figure 13-3. There is one clock pulse on SCL for each data bit, the MSB being
transferred first. Each data byte is followed by a 9th (acknowledge) bit, which is signalled from the
receiving device. An acknowledge is signalled by pulling the SDA low at the ninth clock. In summary, one
complete data transfer needs nine clock pulses.

If the slave receiver does not acknowledge the master in the 9th bit time, the SDA line must be left high
by the slave. The master interprets the failed acknowledge as an unsuccessful data transfer.

If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave
interprets this as an end of data transfer and releases the SDA line.

In either case, the data transfer is aborted and the master does one of two things:

• Relinquishes the bus by generating a STOP signal.

• Commences a new calling by generating a repeated START signal.
MC9S08GB/GT Data Sheet, Rev. 2.3

208 Freescale Semiconductor

Background Debug Controller (BDC)
Figure 15-2 shows an external host transmitting a logic 1 or 0 to the BKGD pin of a target HCS08 MCU.
The host is asynchronous to the target so there is a 0-to-1 cycle delay from the host-generated falling edge
to where the target perceives the beginning of the bit time. Ten target BDC clock cycles later, the target
senses the bit level on the BKGD pin. Typically, the host actively drives the pseudo-open-drain BKGD pin
during host-to-target transmissions to speed up rising edges. Because the target does not drive the BKGD
pin during the host-to-target transmission period, there is no need to treat the line as an open-drain signal
during this period.

Figure 15-2. BDC Host-to-Target Serial Bit Timing

EARLIEST START

TARGET SENSES BIT LEVEL

10 CYCLES

SYNCHRONIZATION
UNCERTAINTY

BDC CLOCK
(TARGET MCU)

HOST
TRANSMIT 1

HOST
TRANSMIT 0

PERCEIVED START
OF BIT TIME

OF NEXT BIT
MC9S08GB/GT Data Sheet, Rev. 2.3

Freescale Semiconductor 239

Development Support
the host must perform ((8 – CNT) – 1) dummy reads of the FIFO to advance it to the first significant entry
in the FIFO.

In most trigger modes, the information stored in the FIFO consists of 16-bit change-of-flow addresses. In
these cases, read DBGFH then DBGFL to get one coherent word of information out of the FIFO. Reading
DBGFL (the low-order byte of the FIFO data port) causes the FIFO to shift so the next word of information
is available at the FIFO data port. In the event-only trigger modes (see Section 15.4.5, “Trigger Modes”),
8-bit data information is stored into the FIFO. In these cases, the high-order half of the FIFO (DBGFH) is
not used and data is read out of the FIFO by simply reading DBGFL. Each time DBGFL is read, the FIFO
is shifted so the next data value is available through the FIFO data port at DBGFL.

In trigger modes where the FIFO is storing change-of-flow addresses, there is a delay between CPU
addresses and the input side of the FIFO. Because of this delay, if the trigger event itself is a change-of-flow
address or a change-of-flow address appears during the next two bus cycles after a trigger event starts the
FIFO, it will not be saved into the FIFO. In the case of an end-trace, if the trigger event is a change-of-flow,
it will be saved as the last change-of-flow entry for that debug run.

The FIFO can also be used to generate a profile of executed instruction addresses when the debugger is not
armed. When ARM = 0, reading DBGFL causes the address of the most-recently fetched opcode to be
saved in the FIFO. To use the profiling feature, a host debugger would read addresses out of the FIFO by
reading DBGFH then DBGFL at regular periodic intervals. The first eight values would be discarded
because they correspond to the eight DBGFL reads needed to initially fill the FIFO. Additional periodic
reads of DBGFH and DBGFL return delayed information about executed instructions so the host debugger
can develop a profile of executed instruction addresses.

15.4.3 Change-of-Flow Information

To minimize the amount of information stored in the FIFO, only information related to instructions that
cause a change to the normal sequential execution of instructions is stored. With knowledge of the source
and object code program stored in the target system, an external debugger system can reconstruct the path
of execution through many instructions from the change-of-flow information stored in the FIFO.

For conditional branch instructions where the branch is taken (branch condition was true), the source
address is stored (the address of the conditional branch opcode). Because BRA and BRN instructions are
not conditional, these events do not cause change-of-flow information to be stored in the FIFO.

Indirect JMP and JSR instructions use the current contents of the H:X index register pair to determine the
destination address, so the debug system stores the run-time destination address for any indirect JMP or
JSR. For interrupts, RTI, or RTS, the destination address is stored in the FIFO as change-of-flow
information.

15.4.4 Tag vs. Force Breakpoints and Triggers

Tagging is a term that refers to identifying an instruction opcode as it is fetched into the instruction queue,
but not taking any other action until and unless that instruction is actually executed by the CPU. This
distinction is important because any change-of-flow from a jump, branch, subroutine call, or interrupt
causes some instructions that have been fetched into the instruction queue to be thrown away without being
executed.
MC9S08GB/GT Data Sheet, Rev. 2.3

246 Freescale Semiconductor

