

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103rct6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8	Revi	sion his	tory
7	Part	number	ing
		6.7.2	Selecting the product temperature range
		6.7.1	Reference document
	6.7	Therma	al characteristics
	6.6	LQFP6	4 package information 130
	6.5	LQFP1	00 package information
	6.4	LQFP1	44 package information
	6.3	WLCS	P64 package information 121
	6.2	LFBGA	100 package information 118
	6.1	LFBGA	144 package information 115
6	Pack	age info	ormation
		5.3.21	Temperature sensor characteristics
		5.3.20	DAC electrical specifications

2.3 Overview

2.3.1 ARM[®] Cortex[®]-M3 core with embedded Flash and SRAM

The ARM Cortex[®]-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM Cortex[®]-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

With its embedded ARM core, STM32F103xC, STM32F103xD and STM32F103xE performance line family is compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the device family.

2.3.2 Embedded Flash memory

Up to 512 Kbytes of embedded Flash is available for storing programs and data.

2.3.3 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.3.4 Embedded SRAM

Up to 64 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.5 FSMC (flexible static memory controller)

The FSMC is embedded in the STM32F103xC, STM32F103xD and STM32F103xE performance line family. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR and NAND.

Functionality overview:

- The three FSMC interrupt lines are ORed in order to be connected to the NVIC
- Write FIFO
- Code execution from external memory except for NAND Flash and PC Card
- The targeted frequency, f_{CLK}, is HCLK/2, so external access is at 36 MHz when HCLK is at 72 MHz and external access is at 24 MHz when HCLK is at 48 MHz

2.3.10 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from user Flash: you have an option to boot from any of two memory banks. By default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash memory bank 2 by setting a bit in the option bytes.
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1.

2.3.11 **Power supply schemes**

- V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA} , $V_{DDA} = 2.0$ to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.
- V_{BAT} = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 12: Power supply scheme*.

2.3.12 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to *Table 12: Embedded reset and power control block characteristics* for the values of $V_{POR/PDR}$ and V_{PVD} .

2.3.13 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in the nominal regulation mode (Run)
- LPR is used in the Stop modes.
- Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode.

		Pir	IS							Alternate funct	tions ⁽⁴⁾
LFBGA144	LFBGA100	WLCSP64	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
A3	A3	-	-	1	1	PE2	I/O	FT	PE2	TRACECK/ FSMC_A23	-
A2	B3	-	-	2	2	PE3	I/O	FT	PE3	TRACED0/FSMC_A19	-
B2	C3	-	-	3	3	PE4	I/O	FT	PE4	TRACED1/FSMC_A20	-
B3	D3	-	-	4	4	PE5	I/O	FT	PE5	TRACED2/FSMC_A21	-
B4	E3	-	-	5	5	PE6	I/O	FT	PE6	TRACED3/FSMC_A22	-
C2	B2	C6	1	6	6	V _{BAT}	S	-	V _{BAT}	-	-
A1	A2	C8	2	7	7	PC13-TAMPER- RTC ⁽⁵⁾	I/O	-	PC13 ⁽⁶⁾	TAMPER-RTC	-
B1	A1	B8	3	8	8	PC14- OSC32_IN ⁽⁵⁾	I/O	-	PC14 ⁽⁶⁾	OSC32_IN	-
C1	B1	B7	4	9	9	PC15- OSC32_OUT ⁽⁵⁾	I/O	-	PC15 ⁽⁶⁾	OSC32_OUT	-
C3	-	-	-	-	10	PF0	I/O	FT	PF0	FSMC_A0	-
C4	-	-	-	-	11	PF1	I/O	FT	PF1	FSMC_A1	-
D4	-	-	-	-	12	PF2	I/O	FT	PF2	FSMC_A2	-
E2	-	-	-	-	13	PF3	I/O	FT	PF3	FSMC_A3	-
E3	-	-	-	-	14	PF4	I/O	FT	PF4	FSMC_A4	-
E4	-	-	-	-	15	PF5	I/O	FT	PF5	FSMC_A5	-
D2	C2	-	-	10	16	V _{SS_5}	S	-	V _{SS_5}	-	-
D3	D2	-	-	11	17	V_{DD_5}	S	-	V _{DD_5}	-	-
F3	-	-	-	-	18	PF6	I/O	-	PF6	ADC3_IN4/FSMC_NIORD	-
F2	-	-	-	-	19	PF7	I/O	-	PF7	ADC3_IN5/FSMC_NREG	-
G3	-	-	-	-	20	PF8	I/O	-	PF8	ADC3_IN6/FSMC_NIOWR	-
G2	-	-	-	-	21	PF9	I/O	-	PF9	ADC3_IN7/FSMC_CD	-
G1	-	-	-	-	22	PF10	I/O	-	PF10	ADC3_IN8/FSMC_INTR	-
D1	C1	D8	5	12	23	OSC_IN	Ι	-	OSC_IN	-	-
E1	D1	D7	6	13	24	OSC_OUT	0	-	OSC_OUT	-	-
F1	E1	C7	7	14	25	NRST	I/O	-	NRST	-	-
H1	F1	E8	8	15	26	PC0	I/O	-	PC0	ADC123_IN10	_
H2	F2	F8	9	16	27	PC1	I/O	-	PC1	ADC123_IN11	-

Table 5. High-density STM32F103xC/D/E pin definitions

		Pir							· · ·	Alternate functions ⁽⁴⁾	
LFBGA144	LFBGA100	WLCSP64	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
L4	J4	H4	26	35	46	PB0	I/O	-	PB0	ADC12_IN8/TIM3_CH3 TIM8_CH2N	TIM1_CH2N
M4	K4	F4	27	36	47	PB1	I/O	-	PB1	ADC12_IN9/TIM3_CH4 ⁽⁹⁾ TIM8_CH3N	TIM1_CH3N
J5	G5	H3	28	37	48	PB2	I/O	FT	PB2/BOOT1	-	-
M5	-	-	-	-	49	PF11	I/O	FT	PF11	FSMC_NIOS16	-
L5	-	-	I	-	50	PF12	I/O	FT	PF12	FSMC_A6	-
H5	-	-	I	-	51	V_{SS_6}	S	-	V_{SS_6}	-	-
G5	-	-	-	-	52	V_{DD_6}	S	-	V_{DD_6}	V _{DD_6} -	
K5	-	-	I	-	53	PF13	I/O	FT	PF13 FSMC_A7		-
M6	-	-	I	-	54	PF14	I/O	FT	PF14	FSMC_A8	-
L6	-	-	-	-	55	PF15	I/O	FT	PF15	FSMC_A9	-
K6	-	-	-	-	56	PG0	I/O	FT	PG0	FSMC_A10	-
J6	-	-	-	-	57	PG1	I/O	FT	PG1	FSMC_A11	-
M7	H5	-	-	38	58	PE7	I/O	FT	PE7	FSMC_D4	TIM1_ETR
L7	J5	-	-	39	59	PE8	I/O	FT	PE8	FSMC_D5	TIM1_CH1N
K7	K5	-	-	40	60	PE9	I/O	FT	PE9	FSMC_D6	TIM1_CH1
H6	-	-	-	-	61	V _{SS_7}	S	-	V _{SS_7}	-	-
G6	-	-	-	-	62	V _{DD_7}	S	-	V _{DD_7}	-	-
J7	G6	-	-	41	63	PE10	I/O	FT	PE10	FSMC_D7	TIM1_CH2N
H8	H6	-	-	42	64	PE11	I/O	FT	PE11	FSMC_D8	TIM1_CH2
J8	J6	-	-	43	65	PE12	I/O	FT	PE12	FSMC_D9	TIM1_CH3N
K8	K6	-	-	44	66	PE13	I/O	FT	PE13	FSMC_D10	TIM1_CH3
L8	G7	-	-	45	67	PE14	I/O	FT	PE14	FSMC_D11	TIM1_CH4
M8	H7	-	-	46	68	PE15	I/O	FT	PE15	FSMC_D12	TIM1_BKIN
M9	J7	G3	29	47	69	PB10	I/O	FT	PB10	I2C2_SCL/USART3_TX ⁽⁹⁾	TIM2_CH3
M10	K7	F3	30	48	70	PB11	I/O	FT	PB11	I2C2_SDA/USART3_RX ⁽⁹⁾	TIM2_CH4
H7	E7	H2	31	49	71	V _{SS_1}	S	-	V _{SS_1}	-	-
G7	F7	H1	32	50	72	V_{DD_1}	S	-	V _{DD_1}	-	-

Table 5. High-density STM32F103xC/D/E pin definitions (continued)

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

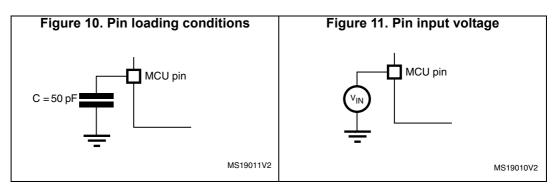
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 2 V $\leq V_{DD} \leq 3.6$ V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

5.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

5.1.6 Power supply scheme

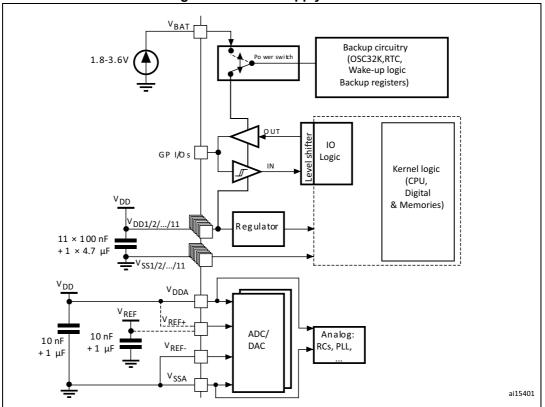
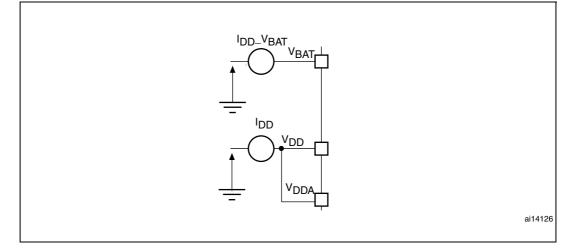



Figure 12. Power supply scheme

Caution: In Figure 12, the 4.7 µF capacitor must be connected to V_{DD3}.

5.1.7 Current consumption measurement

Figure 13. Current consumption measurement scheme

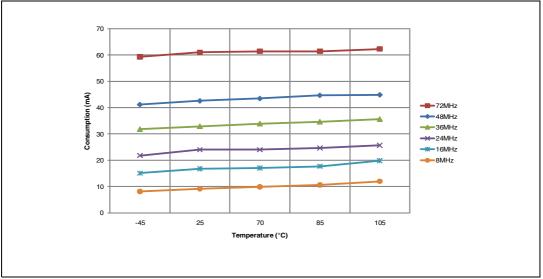
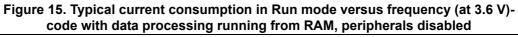
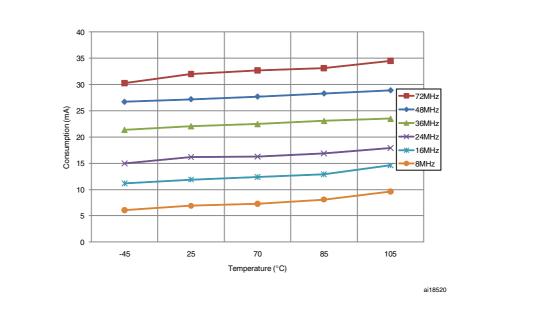




Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled

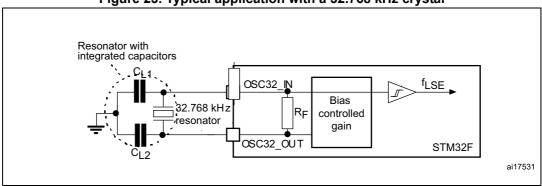


Figure 23. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in *Table 25* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Co	Min	Тур	Max	Unit	
f _{HSI}	Frequency	-		-	8	-	MHz
DuCy _(HSI)	Duty cycle	-		45	-	55	%
		User-trimmed register ⁽²⁾	with the RCC_CR	-	-	1 ⁽³⁾	%
	Accuracy of the HSI		T _A = -40 to 105 °C	-2	-	2.5	%
ACC _{HSI}	oscillator	Factory-	T _A = −10 to 85 °C	-1.5	-	2.2	%
		calibrated ⁽⁴⁾	T _A = 0 to 70 °C	-1.3	-	2	%
			T _A = 25 °C	-1.1	-	1.8	%
t _{su(HSI)} ⁽⁴⁾	HSI oscillator startup time	-		1	-	2	μs
I _{DD(HSI)} ⁽⁴⁾	HSI oscillator power consumption	-	-	80	100	μA	

Table 25. HSI oscillator characteristics⁽¹⁾

1. V_{DD} = 3.3 V, T_A = –40 to 105 $^\circ C$ unless otherwise specified.

 Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website <u>www.st.com</u>.

3. Guaranteed by design.

4. Guaranteed by characterization results.

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	3t _{HCLK} – 1	3t _{HCLK} + 2	ns
t _{v(NWE_NE)}	FSMC_NEx low to FSMC_NWE low	t _{HCLK} – 0.5	t _{HCLK} + 1.5	ns
t _{w(NWE)}	FSMC_NWE low time	t _{HCLK} – 0.5	t _{HCLK} + 1.5	ns
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	t _{HCLK}	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	7.5	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	t _{HCLK}	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	t _{HCLK} – 0.5	-	ns
t _{v(Data_NE)}	FSMC_NEx low to Data valid	-	t _{HCLK} + 7	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	t _{HCLK}	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	5.5	ns
t _{w(NADV)}	FSMC_NADV low time	-	t _{HCLK} + 1.5	ns

Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings⁽¹⁾⁽²⁾

1. C_L = 15 pF.

2. Guaranteed by characterization results.

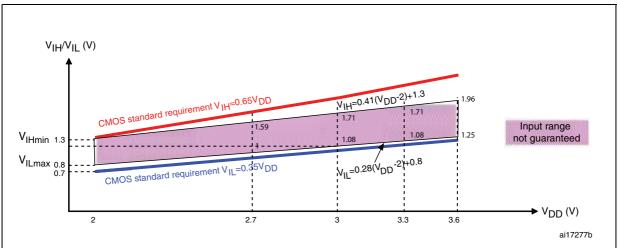


Figure 42. Standard I/O input characteristics - CMOS port

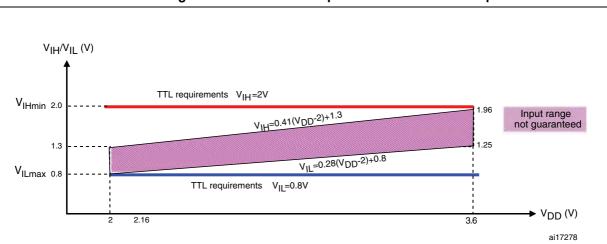
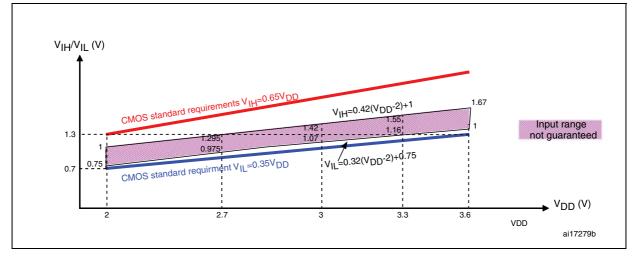



Figure 43. Standard I/O input characteristics - TTL port

Figure 44. 5 V tolerant I/O input characteristics - CMOS port

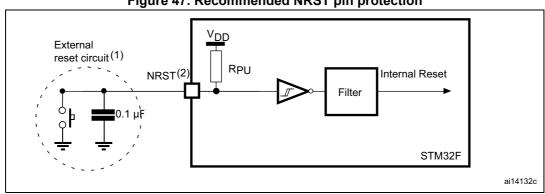
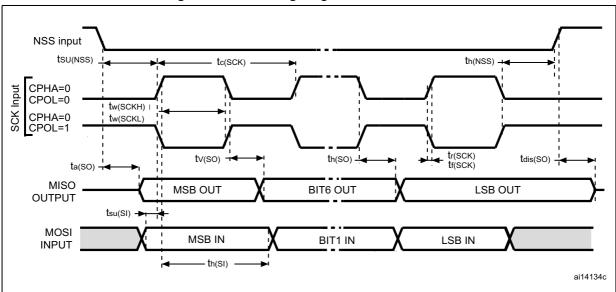


Figure 47. Recommended NRST pin protection

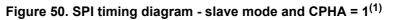
- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 49. Otherwise the reset will not be taken into account by the device.

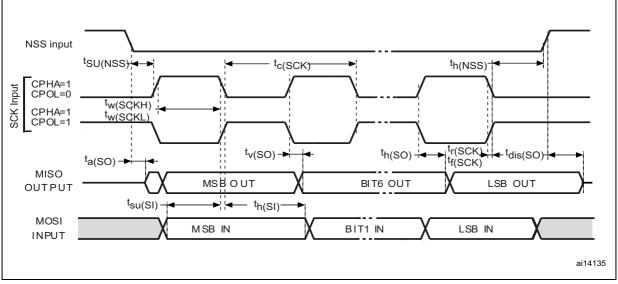
5.3.16 TIM timer characteristics

The parameters given in Table 50 are guaranteed by design.


Refer to *Section 5.3.14: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Parameter Conditions Min		Max	Unit
+	Timer resolution time	-	1	-	t _{TIMxCLK}
t _{res(TIM)}		f _{TIMxCLK} = 72 MHz	13.9	-	ns
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	36	MHz
Res _{TIM}	Timer resolution	-	-	16	bit
	16-bit counter clock period	-	1	65536	t _{TIMxCLK}
^t COUNTER	when internal clock is selected	f _{TIMxCLK} = 72 MHz	0.0139	910	μs
t _{MAX_COUNT}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
		f _{TIMxCLK} = 72 MHz	-	59.6	s

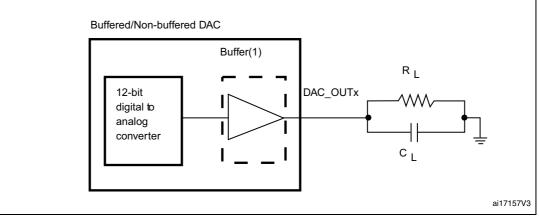

Table 50. TIMx⁽¹⁾ characteristics


1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}.}$

Symbol	Parameter	Min	Тур	Мах	Unit	Comments		
	Offset error	-	-	±10	mV	-		
Offset ⁽³⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V		
	(0x800) and the ideal value = V _{REF+} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V		
Gain error ⁽³⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12bit configuration		
t _{SETTLING} ⁽³⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	-	3	4	μs	$C_{LOAD} \le 50 \text{ pF, } R_{LOAD} \ge 5 \text{ k}\Omega$		
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	$C_{LOAD} \le 50 \text{ pF, } R_{LOAD} \ge 5 \text{ k}\Omega$		
t _{wakeup} (3)	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$ input code between lowest and highest possible ones.		
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF		

Table 63. DAC characteristics (continued)


1. Guaranteed by design.

2. Guaranteed by characterization.

3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed by characterization results.

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 LFBGA144 package information

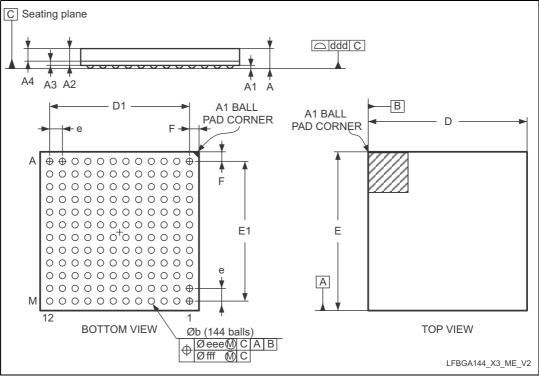
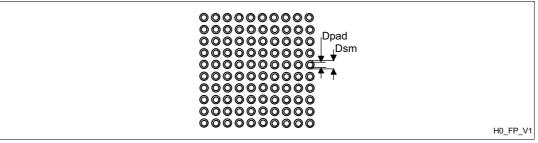


Figure 62. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline

1. Drawing is not to scale.

Table 65. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package mechanical data

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Тур	Min	Max	
A ⁽²⁾	-	-	1.700	-	-	0.0669	
A1	0.250	0.300	0.350	0.098	0.0118	0.0138	
A2	0.810	0.910	1.010	0.0319	0.0358	0.0398	
A3	0.225	0.26	0.295	0.0089	0.0102	0.0116	
A4	0.585	0.650	0.715	0.0230	0.0256	0.0281	



mechanical data										
Symbol		millimeters		inches ⁽¹⁾						
Symbol	Min	Тур	Мах	Min	Тур	Мах				
eee	-	-	0.150	-	-	0.0059				
fff	-	-	0.080	-	-	0.0031				

Table 67. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 66. LFBGA100 – 100-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package recommended footprintoutline

Table 68. LFBGA100 recommended PCB design rules (0.8 mm pitch BGA)

Dimension	Recommended values
Pitch	0.8
Dpad	0.500 mm
Dsm	0.570 mm typ. (depends on the soldermask reg- istration tolerance)
Stencil opening	0.500 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.120 mm

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.8740
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	-	17.500	-	-	0.6890	-
E	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	-	17.500	-	-	0.6890	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 71. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

6.6 LQFP64 package information

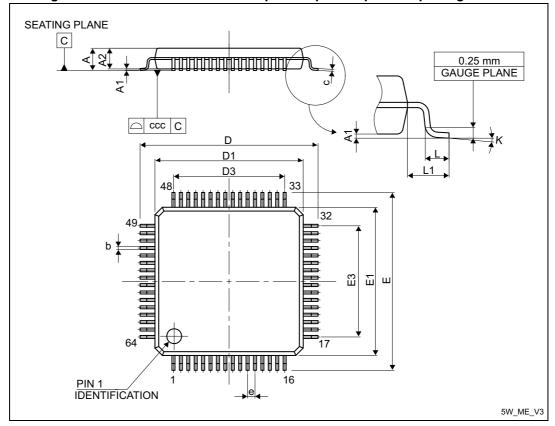
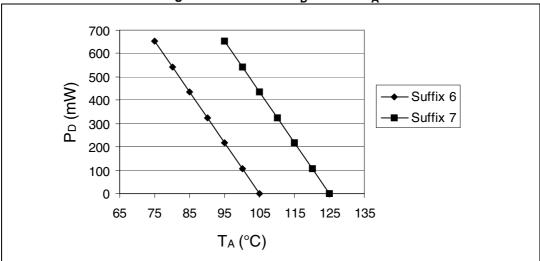


Figure 76. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline

Table 73. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-


^{1.} Drawing is not in scale.

Using the values obtained in *Table 74* T_{Jmax} is calculated as follows:

- For LQFP100, 46 °C/W
- T_{Jmax} = 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C

This is within the range of the suffix 7 version parts (–40 < T_J < 125 °C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Table 75: Ordering information scheme*).

Date	Revision	Changes		
12-Dec-2008	4	Timers specified on page 1 (motor control capability mentioned). Section 2.2: Full compatibility throughout the family updated. Table 6: High-density timer feature comparison added. General-purpose timers (TIMx) and Advanced-control timers (TIM1 and TIM8) on page 27 updated. Figure 1: STM32F103xF, STM32F103xD and STM32F103xGSTM32F103xF and STM32F103xG performance line block diagram modified. Note 10 added, main function after reset and Note 5 on page 44 updated in Table 8: High-density STM32F103xx pin definitions. Note 2 modified below Table 11: Voltage characteristics on page 58, $ DV_{DDx} $ min and $ DV_{DDx} $ min removed. Note 2 and P _D values for LQFP144 and LFBGA144 packages added to Table 14: General operating conditions on page 59. Measurement conditions specified in Section 5.3.5: Supply current characteristics on page 62. Max values at T _A = 85 °C and T _A = 105 °C updated in Table 21: Typical and maximum current consumptions in Stop and Standby modes on page 68. Section 5.3.10: FSMC characteristics on page 110. I _{VREF} added to Table 67: ADC characteristics on page 130. Table 81: Package thermal characteristics on page 146 updated. Small text changes.		

Table 76.Document revision history

