



#### Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                  |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                         |
| Core Size                  | 32-Bit Single-Core                                                      |
| Speed                      | 72MHz                                                                   |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART, USB            |
| Peripherals                | DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT            |
| Number of I/O              | 51                                                                      |
| Program Memory Size        | 256KB (256K x 8)                                                        |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | -                                                                       |
| RAM Size                   | 48K x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                               |
| Data Converters            | A/D 16x12b; D/A 2x12b                                                   |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 64-UFBGA, WLCSP                                                         |
| Supplier Device Package    | 64-WLCSP (4.47×4.4)                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103rcy6tr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Figure 40             | NAND controller waveforms for common memory read access                                       | 85  |
|-----------------------|-----------------------------------------------------------------------------------------------|-----|
| Figure 40.            | NAND controller waveforms for common memory write access                                      | 86  |
| Figure 41.            | Standard I/O input characteristics - CMOS port                                                | Q1  |
| Figure 43             | Standard I/O input characteristics - TTL port                                                 | Q1  |
| Figure 11             | 5 V tolerant I/O input characteristics - CMOS port                                            | Q1  |
| Figure 44.            | 5 V tolerant I/O input characteristics - CMOS port                                            | 02  |
| Figure 45.            | 1/0 AC obstractoristics definition                                                            |     |
| Figure 40.            | Recommonded NPST pin protection                                                               | 95  |
| Figure 47.            | $I^2C$ bus AC waveforms and measurement sizewit                                               |     |
| Figure 40.            | SPI timing diagram slave mode and CPUA = 0                                                    | 100 |
| Figure 49.            | SPI timing diagram - slave mode and CPHA = $1^{(1)}$                                          | 100 |
| Figure 50.            | SPI timing diagram master mode <sup>(1)</sup>                                                 | 101 |
| Figure 51.            | $J^{2}$ alove timing diagram (Dhilips protocol) <sup>(1)</sup>                                | 102 |
| Figure 52.            | $13$ Slave uning diagram (Philips protocol) $(7, \dots, 12)$                                  | 103 |
| Figure 53.            |                                                                                               | 104 |
| Figure 54.            |                                                                                               | 104 |
| Figure 55.            | SD delault mode                                                                               | 100 |
| Figure 56.            | USB umings: definition of data signal rise and fail time                                      | 100 |
| Figure 57.            | ADC accuracy characteristics                                                                  |     |
| Figure 58.            | Typical connection diagram using the ADC                                                      |     |
| Figure 59.            | Power supply and reference decoupling ( $v_{\text{REF+}}$ not connected to $v_{\text{DDA}}$ ) |     |
| Figure 60.            | Power supply and reference decoupling (V <sub>REF+</sub> connected to V <sub>DDA</sub> )      |     |
| Figure 61.            | I2-DIT DUTTERED /non-DUTTERED DAC                                                             |     |
| Figure 62.            | LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,                       | 445 |
| <b>E</b> imune 00     | U.8 mm pltch, package outline                                                                 |     |
| Figure 63.            | LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,                       | 110 |
| <b>F</b> ' <b>A A</b> | U.8 mm pitch, package recommended tootprint                                                   |     |
| Figure 64.            |                                                                                               |     |
| Figure 65.            | LFBGA100 - 10 X 10 mm low profile fine pitch ball grid array package                          | 110 |
| <b>F</b> '            |                                                                                               |     |
| Figure 66.            | LFBGA100 – 100-ball low profile fine pitch ball grid array, 10 x 10 mm,                       | 110 |
| <b>F</b> '            | 0.8 mm pitch, package recommended footprintoutline                                            |     |
| Figure 67.            |                                                                                               | 120 |
| Figure 68.            | WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, water-level chip-scale                       | 101 |
| <b>-</b> : 00         |                                                                                               | 121 |
| Figure 69.            | WLCSP64 - 64-ball, 4.4/5/ x 4.4049 mm, 0.5 mm pitch water level chip scale                    | 100 |
| <b>-</b> : <b>-</b> 0 |                                                                                               |     |
| Figure 70.            | LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline                           | 123 |
| Figure 71.            | LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package                                    | 105 |
|                       |                                                                                               |     |
| Figure 72.            | LQFP144 marking example (package top view)                                                    |     |
| Figure 73.            | LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline                            |     |
| Figure 74.            | LQFP100 recommended footprint                                                                 | 128 |
| Figure 75.            | LQFP100 marking example (package top view)                                                    | 129 |
| Figure 76.            | LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline                              | 130 |
| Figure 77.            | LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint                       | 131 |
| Figure 78.            | LQFP64 marking example (package top view)                                                     | 132 |
| Figure 79.            | LQFP100 P <sub>D</sub> max vs. T <sub>A</sub>                                                 | 135 |



# 2.3.6 LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high-performance solutions using external controllers with dedicated acceleration.

# 2.3.7 Nested vectored interrupt controller (NVIC)

The STM32F103xC, STM32F103xD and STM32F103xE performance line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex<sup>®</sup>-M3) and 16 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving* higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

## 2.3.8 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines.

### 2.3.9 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow the configuration of the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed APB domain is 36 MHz. See *Figure 2* for details on the clock tree.



mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

### 2.3.22 SDIO

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with SD Memory Card Specifications Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is also fully compliant with the CE-ATA digital protocol Rev1.1.

### 2.3.23 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

### 2.3.24 Universal serial bus (USB)

The STM32F103xC, STM32F103xD and STM32F103xE performance line embed a USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

### 2.3.25 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-capable.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

### 2.3.26 ADC (analog to digital converter)

Three 12-bit analog-to-digital converters are embedded into STM32F103xC, STM32F103xD and STM32F103xE performance line devices and each ADC shares up to 21 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold
- Single shunt

DocID14611 Rev 12





Figure 5. STM32F103xC/D/E performance line LQFP144 pinout

1. The above figure shows the package top view.



|          |          | Pir     | าร     |         |         |                    |                     |                            |                                                  | Alternate functions <sup>(4)</sup>                                  |                                        |
|----------|----------|---------|--------|---------|---------|--------------------|---------------------|----------------------------|--------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|
| LFBGA144 | LFBGA100 | WLCSP64 | LQFP64 | LQFP100 | LQFP144 | Pin name           | Type <sup>(1)</sup> | I / O Level <sup>(2)</sup> | Main<br>function <sup>(3)</sup><br>(after reset) | Default                                                             | Remap                                  |
| C9       | D7       | -       | -      | 85      | 118     | PD4                | I/O                 | FT                         | PD4                                              | FSMC_NOE                                                            | USART2_RTS                             |
| B9       | B6       | -       | -      | 86      | 119     | PD5                | I/O                 | FT                         | PD5                                              | FSMC_NWE                                                            | USART2_TX                              |
| E7       | -        | -       | -      | -       | 120     | V <sub>SS_10</sub> | S                   | -                          | V <sub>SS_10</sub>                               | -                                                                   | -                                      |
| F7       | -        | -       | -      | -       | 121     | V <sub>DD_10</sub> | S                   | -                          | V <sub>DD_10</sub>                               | -                                                                   | -                                      |
| A8       | C6       | -       | -      | 87      | 122     | PD6                | I/O                 | FT                         | PD6                                              | FSMC_NWAIT                                                          | USART2_RX                              |
| A9       | D6       | -       | -      | 88      | 123     | PD7                | I/O                 | FT                         | PD7                                              | FSMC_NE1/FSMC_NCE2                                                  | USART2_CK                              |
| E8       | -        | -       | -      | -       | 124     | PG9                | I/O                 | FT                         | PG9                                              | FSMC_NE2/FSMC_NCE3                                                  | -                                      |
| D8       | -        | -       | -      | -       | 125     | PG10               | I/O                 | FT                         | PG10                                             | FSMC_NCE4_1/<br>FSMC_NE3                                            | -                                      |
| C8       | -        | -       | -      | -       | 126     | PG11               | I/O                 | FT                         | PG11                                             | FSMC_NCE4_2                                                         | -                                      |
| B8       | -        | -       | -      | -       | 127     | PG12               | I/O                 | FT                         | PG12                                             | FSMC_NE4                                                            | -                                      |
| D7       | -        | -       | -      | -       | 128     | PG13               | I/O                 | FT                         | PG13                                             | FSMC_A24                                                            | -                                      |
| C7       | -        | -       | -      | -       | 129     | PG14               | I/O                 | FT                         | PG14                                             | FSMC_A25                                                            | -                                      |
| E6       | -        | -       | -      | -       | 130     | V <sub>SS_11</sub> | S                   | -                          | V <sub>SS_11</sub>                               | -                                                                   | -                                      |
| F6       | -        | -       | -      | -       | 131     | V <sub>DD_11</sub> | S                   | -                          | V <sub>DD_11</sub>                               | -                                                                   | -                                      |
| B7       | -        | -       | -      | -       | 132     | PG15               | I/O                 | FT                         | PG15                                             | -                                                                   | -                                      |
| A7       | A7       | A4      | 55     | 89      | 133     | PB3                | I/O                 | FT                         | JTDO                                             | SPI3_SCK / I2S3_CK/                                                 | PB3/TRACESWO<br>TIM2_CH2 /<br>SPI1_SCK |
| A6       | A6       | B4      | 56     | 90      | 134     | PB4                | I/O                 | FT                         | NJTRST                                           | SPI3_MISO                                                           | PB4 / TIM3_CH1<br>SPI1_MISO            |
| B6       | C5       | A5      | 57     | 91      | 135     | PB5                | I/O                 | -                          | PB5                                              | I2C1_SMBA/ SPI3_MOSI<br>I2S3_SD                                     | TIM3_CH2 /<br>SPI1_MOSI                |
| C6       | B5       | B5      | 58     | 92      | 136     | PB6                | I/O                 | FT                         | PB6                                              | I2C1_SCL <sup>(9)</sup> / TIM4_CH1 <sup>(9)</sup>                   | USART1_TX                              |
| D6       | A5       | C5      | 59     | 93      | 137     | PB7                | I/O                 | FT                         | PB7                                              | I2C1_SDA <sup>(9)</sup> /<br>FSMC_NADV /<br>TIM4_CH2 <sup>(9)</sup> | USART1_RX                              |
| D5       | D5       | A6      | 60     | 94      | 138     | BOOT0              | I                   | -                          | BOOT0                                            | -                                                                   | -                                      |
| C5       | B4       | D5      | 61     | 95      | 139     | PB8                | I/O                 | FT                         | PB8                                              | TIM4_CH3 <sup>(9)</sup> /SDIO_D4                                    | I2C1_SCL/<br>CAN_RX                    |
| B5       | A4       | B6      | 62     | 96      | 140     | PB9                | I/O                 | FT                         | PB9                                              | TIM4_CH4 <sup>(9)</sup> /SDIO_D5                                    | I2C1_SDA /<br>CAN_TX                   |

# Table 5. High-density STM32F103xC/D/E pin definitions (continued)



| Symphol | Deremeter                    | Conditions                                              | 4      | Ма                     | ıx <sup>(1)</sup>       | Unit |
|---------|------------------------------|---------------------------------------------------------|--------|------------------------|-------------------------|------|
| Symbol  | Parameter                    | Conditions                                              | HCLK   | T <sub>A</sub> = 85 °C | T <sub>A</sub> = 105 °C | Unit |
|         |                              |                                                         | 72 MHz | 45                     | 46                      |      |
|         |                              | External clock <sup>(2)</sup> , all peripherals enabled | 48 MHz | 31                     | 32                      |      |
|         |                              |                                                         | 36 MHz | 24                     | 25                      |      |
|         | Supply current in Sleep mode |                                                         | 24 MHz | 17                     | 17.5                    | mA   |
|         |                              |                                                         | 16 MHz | 12.5                   | 13                      |      |
|         |                              |                                                         | 8 MHz  | 8                      | 8                       |      |
| DD      |                              |                                                         | 72 MHz | 8.5                    | 9                       |      |
|         |                              |                                                         | 48 MHz | 7                      | 7.5                     |      |
|         |                              | External clock <sup>(2)</sup> , all                     | 36 MHz | 6                      | 6.5                     |      |
|         |                              | peripherals disabled                                    | 24 MHz | 5                      | 5.5                     |      |
|         |                              |                                                         | 16 MHz | 4.5                    | 5                       |      |
|         |                              |                                                         | 8 MHz  | 4                      | 4                       |      |

# Table 16. Maximum current consumption in Sleep mode, code running from Flash or RAM

1. Guaranteed by characterization results at  $V_{\text{DD}}$  max,  $f_{\text{HCLK}}$  max with peripherals enabled.

2. External clock is 8 MHz and PLL is on when  $f_{HCLK}$  > 8 MHz.





Figure 17. Typical current consumption in Stop mode with regulator in run mode versus temperature at different V<sub>DD</sub> values

Figure 18. Typical current consumption in Stop mode with regulator in low-power mode versus temperature at different V<sub>DD</sub> values





DocID14611 Rev 12

| Per                 | ipheral             | Current consumption | Unit   |
|---------------------|---------------------|---------------------|--------|
|                     | APB2-Bridge         | 4,17                |        |
|                     | GPIOA               | 8,47                |        |
|                     | GPIOB               | 8,47                |        |
|                     | GPIOC               | 6,53                |        |
|                     | GPIOD               | 8,47                |        |
|                     | GPIOE               | 6,53                |        |
|                     | GPIOF               | 6,53                |        |
| APB2 (up to 72 MHz) | GPIOG               | 6,11                | µA/MHz |
|                     | SPI1                | 4,72                |        |
|                     | USART1              | 12,50               |        |
|                     | TIM1                | 22,92               |        |
|                     | TIM8                | 22,92               |        |
|                     | ADC1 <sup>(4)</sup> | 17,32               |        |
|                     | ADC2 <sup>(4)</sup> | 15,18               |        |
|                     | ADC3 <sup>(4)</sup> | 14,82               |        |

| Table 20. Peripheral current consumption (continueu | Table 20. Per | ipheral current | consumption | (continued) |
|-----------------------------------------------------|---------------|-----------------|-------------|-------------|
|-----------------------------------------------------|---------------|-----------------|-------------|-------------|

1. The BusMatrix is automatically active when at least one master is ON. (CPU, DMA1 or DMA2).

2. When the I2S is enabled, a current consumption equal to 0.02 mA must be added.

3. When DAC\_OU1 or DAC\_OUT2 is enabled, a current consumption equal to 0.36 mA must be added.

Specific conditions for measuring ADC current consumption: f<sub>HCLK</sub> = 56 MHz, f<sub>APB1</sub> = f<sub>HCLK</sub>/2, f<sub>APB2</sub> = f<sub>HCLK</sub>, f<sub>ADCCLK</sub> = f<sub>APB2</sub>/4. When ADON bit in the ADCx\_CR2 register is set to 1, a current consumption of analog part equal to 0.54 mA must be added for each ADC.



### 5.3.6 External clock source characteristics

### High-speed external user clock generated from an external source

The characteristics given in *Table 21* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 10*.

| Symbol                                     | Parameter                                           | Conditions                       | Min                 | Тур | Max                | Unit |
|--------------------------------------------|-----------------------------------------------------|----------------------------------|---------------------|-----|--------------------|------|
| f <sub>HSE_ext</sub>                       | User external clock source frequency <sup>(1)</sup> |                                  | 1                   | 8   | 25                 | MHz  |
| V <sub>HSEH</sub>                          | OSC_IN input pin high level voltage                 |                                  | $0.7 V_{\text{DD}}$ | -   | $V_{DD}$           | V    |
| V <sub>HSEL</sub>                          | OSC_IN input pin low level voltage                  | -                                | $V_{SS}$            | -   | $0.3V_{\text{DD}}$ | v    |
| t <sub>w(HSE)</sub><br>t <sub>w(HSE)</sub> | OSC_IN high or low time <sup>(1)</sup>              |                                  | 5                   | -   | -                  | ne   |
| t <sub>r(HSE)</sub><br>t <sub>f(HSE)</sub> | OSC_IN rise or fall time <sup>(1)</sup>             |                                  | -                   | -   | 20                 | 115  |
| C <sub>in(HSE)</sub>                       | OSC_IN input capacitance <sup>(1)</sup>             | -                                | -                   | 5   | -                  | pF   |
| DuCy <sub>(HSE)</sub>                      | Duty cycle                                          | -                                | 45                  | -   | 55                 | %    |
| ١Ľ                                         | OSC_IN Input leakage current                        | $V_{SS} \leq V_{IN} \leq V_{DD}$ | -                   | -   | ±1                 | μA   |

Table 21. High-speed external user clock characteristics

1. Guaranteed by design.

### Low-speed external user clock generated from an external source

The characteristics given in *Table 22* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 10*.

| Symbol                                     | Parameter                                              | Conditions                       | Min                | Тур    | Max                | Unit |
|--------------------------------------------|--------------------------------------------------------|----------------------------------|--------------------|--------|--------------------|------|
| f <sub>LSE_ext</sub>                       | User External clock source<br>frequency <sup>(1)</sup> |                                  | -                  | 32.768 | 1000               | kHz  |
| V <sub>LSEH</sub>                          | OSC32_IN input pin high level voltage                  |                                  | 0.7V <sub>DD</sub> | -      | V <sub>DD</sub>    | V    |
| V <sub>LSEL</sub>                          | OSC32_IN input pin low level voltage                   | 32_IN input pin low level        | V <sub>SS</sub>    | -      | 0.3V <sub>DD</sub> | v    |
| t <sub>w(LSE)</sub><br>t <sub>w(LSE)</sub> | OSC32_IN high or low time <sup>(1)</sup>               |                                  | 450                | -      | -                  | ne   |
| t <sub>r(LSE)</sub><br>t <sub>f(LSE)</sub> | OSC32_IN rise or fall time <sup>(1)</sup>              |                                  | -                  | -      | 50                 | 115  |
| C <sub>in(LSE)</sub>                       | OSC32_IN input capacitance <sup>(1)</sup>              | -                                | -                  | 5      | -                  | pF   |
| DuCy <sub>(LSE)</sub>                      | Duty cycle                                             | -                                | 30                 | -      | 70                 | %    |
| ١ <sub>L</sub>                             | OSC32_IN Input leakage current                         | $V_{SS} \leq V_{IN} \leq V_{DD}$ | -                  | -      | ±1                 | μA   |

Table 22. Low-speed external user clock characteristics

1. Guaranteed by design.

58/144



### High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 23*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

| Symbol                              | Parameter                                                                                     | Conditions                                                                    | Min | Тур | Max | Unit |
|-------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----|-----|-----|------|
| f <sub>OSC_IN</sub>                 | Oscillator frequency                                                                          | -                                                                             | 4   | 8   | 16  | MHz  |
| R <sub>F</sub>                      | Feedback resistor                                                                             | -                                                                             | -   | 200 | -   | kΩ   |
| С                                   | Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$ | R <sub>S</sub> = 30 Ω                                                         | -   | 30  | -   | pF   |
| i <sub>2</sub>                      | HSE driving current                                                                           | V <sub>DD</sub> = 3.3 V, V <sub>IN</sub> = V <sub>SS</sub><br>with 30 pF load | -   | -   | 1   | mA   |
| 9 <sub>m</sub>                      | Oscillator transconductance                                                                   | Startup                                                                       | 25  | -   | -   | mA/V |
| t <sub>SU(HSE)</sub> <sup>(4)</sup> | Startup time                                                                                  | V <sub>DD</sub> is stabilized                                                 | -   | 2   | -   | ms   |

| Fable 23. HSE 4-16 MHz oscillator characteristics <sup>(1)(2</sup> | 2) |
|--------------------------------------------------------------------|----|
|--------------------------------------------------------------------|----|

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

4. t<sub>SU(HSE)</sub> is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For  $C_{L1}$  and  $C_{L2}$ , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 22*).  $C_{L1}$  and  $C_{L2}$  are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of  $C_{L1}$  and  $C_{L2}$ . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing  $C_{L1}$  and  $C_{L2}$ . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.





1. R<sub>EXT</sub> value depends on the crystal characteristics.

DocID14611 Rev 12



| Symbol                                                     | Parameter                                                                      | Min                    | Мах                      | Unit |
|------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------|--------------------------|------|
| t <sub>w(NIOWR)</sub>                                      | FSMC_NIOWR low width                                                           | 8t <sub>HCLK</sub> + 3 | -                        | ns   |
| t <sub>v(NIOWR-D)</sub>                                    | FSMC_NIOWR low to FSMC_D[15:0] valid                                           | -                      | 5t <sub>HCLK</sub> +1    | ns   |
| t <sub>h(NIOWR-D)</sub>                                    | FSMC_NIOWR high to FSMC_D[15:0] invalid                                        | 11t <sub>HCLK</sub>    | -                        | ns   |
| t <sub>d(NCE4_1-NIOWR)</sub>                               | FSMC_NCE4_1 low to FSMC_NIOWR valid                                            | -                      | 5t <sub>HCLK</sub> +3ns  | ns   |
| t <sub>h(NCEx-NIOWR)</sub><br>t <sub>h(NCE4_1-NIOWR)</sub> | FSMC_NCEx high to FSMC_NIOWR invalid<br>FSMC_NCE4_1 high to FSMC_NIOWR invalid | 5t <sub>HCLK</sub> – 5 | -                        | ns   |
| t <sub>d(NIORD-NCEx)</sub><br>t <sub>d(NIORD-NCE4_1)</sub> | FSMC_NCEx low to FSMC_NIORD valid FSMC_NCE4_1<br>low to FSMC_NIORD valid       | -                      | 5t <sub>HCLK</sub> + 2.5 | ns   |
| t <sub>h(NCEx-NIORD)</sub><br>t <sub>h(NCE4_1-NIORD)</sub> | FSMC_NCEx high to FSMC_NIORD invalid<br>FSMC_NCE4_1 high to FSMC_NIORD invalid | 5t <sub>HCLK</sub> – 5 | -                        | ns   |
| t <sub>su(D-NIORD)</sub>                                   | FSMC_D[15:0] valid before FSMC_NIORD high                                      | 4.5                    | -                        | ns   |
| t <sub>d(NIORD-D)</sub>                                    | FSMC_D[15:0] valid after FSMC_NIORD high                                       | 9                      | -                        | ns   |
| t <sub>w(NIORD)</sub>                                      | FSMC_NIORD low width                                                           | 8t <sub>HCLK</sub> + 2 | -                        | ns   |

# Table 39. Switching characteristics for PC Card/CF read and write $cycles^{(1)(2)}$ (continued)

1. C<sub>L</sub> = 15 pF.

2. Guaranteed by characterization results.



| Symbol Parameter |                       | Conditions                                    | Class      |
|------------------|-----------------------|-----------------------------------------------|------------|
| LU               | Static latch-up class | $T_A = +105 \text{ °C conforming to JESD78A}$ | II level A |

### Table 44. Electrical sensitivities

## 5.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below  $V_{SS}$  or above  $V_{DD}$  (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

### Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in Table 45

|                  |                                                            | Functional s       |                    |      |  |
|------------------|------------------------------------------------------------|--------------------|--------------------|------|--|
| Symbol           | Description                                                | Negative injection | Positive injection | Unit |  |
| I <sub>INJ</sub> | Injected current on OSC_IN32,<br>OSC_OUT32, PA4, PA5, PC13 | -0                 | +0                 |      |  |
|                  | Injected current on all FT pins                            | -5                 | +0                 | mA   |  |
|                  | Injected current on any other pin                          | -5                 | +5                 |      |  |

### Table 45. I/O current injection susceptibility



### Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 46* and *Table 48*, respectively.

Unless otherwise specified, the parameters given in *Table 48* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 10*.

| MODEx[1:0]<br>bit value <sup>(1)</sup> | Symbol                  | Parameter                                                             | Conditions                                                                                                                       |    | Max                | Unit |  |
|----------------------------------------|-------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----|--------------------|------|--|
|                                        | f <sub>max(IO)out</sub> | Maximum frequency <sup>(2)</sup>                                      | $C_{L}$ = 50 pF, $V_{DD}$ = 2 V to 3.6 V                                                                                         | -  | 2                  | MHz  |  |
| 10                                     | t <sub>f(IO)out</sub>   | Output high to low level fall time                                    | $C_{1} = 50 \text{ pE} V_{} = 2 \text{ V to 3.6 V}$                                                                              | -  | 125 <sup>(3)</sup> | ne   |  |
|                                        | t <sub>r(IO)out</sub>   | Output low to high<br>level rise time                                 | $C_{L} = 50 \text{ pr}, \text{ v}_{DD} = 2 \text{ v} 10 3.0 \text{ v} =$                                                         |    | 125 <sup>(3)</sup> | ns   |  |
|                                        | f <sub>max(IO)out</sub> | Maximum frequency <sup>(2)</sup>                                      | $C_{L}$ = 50 pF, $V_{DD}$ = 2 V to 3.6 V                                                                                         | -  | 10                 | MHz  |  |
| 01                                     | t <sub>f(IO)out</sub>   | Output high to low<br>level fall time                                 |                                                                                                                                  | -  | 25 <sup>(3)</sup>  |      |  |
|                                        | t <sub>r(IO)out</sub>   | Output low to high<br>level rise time                                 | $C_{L} = 50 \text{ pr}, V_{DD} = 2 \text{ V to 3.6 V}$                                                                           |    | 25 <sup>(3)</sup>  | 115  |  |
|                                        | F <sub>max(IO)out</sub> |                                                                       | $C_L$ = 30 pF, $V_{DD}$ = 2.7 V to 3.6 V                                                                                         |    | 50                 | MHz  |  |
|                                        |                         | Maximum frequency <sup>(2)</sup>                                      | aximum frequency <sup>(2)</sup> $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$                                  |    | 30                 | MHz  |  |
|                                        |                         |                                                                       | $C_{L}$ = 50 pF, $V_{DD}$ = 2 V to 2.7 V                                                                                         | -  | 20                 | MHz  |  |
|                                        | t <sub>f(IO)out</sub>   |                                                                       | $C_{L}$ = 30 pF, $V_{DD}$ = 2.7 V to 3.6 V                                                                                       | -  | 5 <sup>(3)</sup>   |      |  |
| 11                                     |                         | Output high to low                                                    | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$<br>$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$ |    | 8 <sup>(3)</sup>   |      |  |
|                                        |                         |                                                                       |                                                                                                                                  |    | 12 <sup>(3)</sup>  |      |  |
|                                        |                         |                                                                       | $C_L$ = 30 pF, $V_{DD}$ = 2.7 V to 3.6 V                                                                                         | -  | 5 <sup>(3)</sup>   | 115  |  |
|                                        | t <sub>r(IO)out</sub>   | Output low to high<br>level rise time                                 | $C_{L}$ = 50 pF, $V_{DD}$ = 2.7 V to 3.6 V                                                                                       | -  | 8 <sup>(3)</sup>   |      |  |
|                                        |                         |                                                                       | $C_{L}$ = 50 pF, $V_{DD}$ = 2 V to 2.7 V                                                                                         | -  | 12 <sup>(3)</sup>  |      |  |
| -                                      | t <sub>EXTIpw</sub>     | Pulse width of external<br>signals detected by<br>the EXTI controller | -                                                                                                                                | 10 | -                  | ns   |  |

Table 48. I/O AC characteristics<sup>(1)</sup>

1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in Figure 46.

3. Guaranteed by design.



### 5.3.17 Communications interfaces

### I<sup>2</sup>C interface characteristics

The STM32F103xC, STM32F103xD and STM32F103xESTM32F103xF and STM32F103xG performance line  $\rm I^2C$  interface meets the requirements of the standard  $\rm I^2C$  communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V<sub>DD</sub> is disabled, but is still present.

The I<sup>2</sup>C characteristics are described in *Table 51*. Refer also to *Section 5.3.14: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

| Symbol                                     | Parameter                                                                                              | Standar<br>I <sup>2</sup> C <sup>(</sup> | rd mode<br>1)(2)    | Fast mode | Unit               |     |  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------|-----------|--------------------|-----|--|
|                                            |                                                                                                        | Min                                      | Max                 | Min       | Max                |     |  |
| t <sub>w(SCLL)</sub>                       | SCL clock low time                                                                                     | 4.7                                      | -                   | 1.3       | -                  | 110 |  |
| t <sub>w(SCLH)</sub>                       | SCL clock high time                                                                                    | 4.0                                      | -                   | 0.6       | -                  | μο  |  |
| t <sub>su(SDA)</sub>                       | SDA setup time                                                                                         | 250                                      | -                   | 100       | -                  |     |  |
| t <sub>h(SDA)</sub>                        | SDA data hold time                                                                                     | -                                        | 3450 <sup>(3)</sup> | -         | 900 <sup>(3)</sup> |     |  |
| t <sub>r(SDA)</sub><br>t <sub>r(SCL)</sub> | SDA and SCL rise time                                                                                  | -                                        | 1000                | -         | 300                | ns  |  |
| t <sub>f(SDA)</sub><br>t <sub>f(SCL)</sub> | SDA and SCL fall time                                                                                  | -                                        | 300                 | -         | 300                |     |  |
| t <sub>h(STA)</sub>                        | Start condition hold time                                                                              | 4.0                                      | -                   | 0.6       | -                  |     |  |
| t <sub>su(STA)</sub>                       | Repeated Start condition setup time                                                                    | 4.7                                      | -                   | 0.6       | -                  | μs  |  |
| t <sub>su(STO)</sub>                       | Stop condition setup time                                                                              | 4.0                                      | -                   | 0.6       | -                  | μs  |  |
| t <sub>w(STO:STA)</sub>                    | Stop to Start condition time (bus free)                                                                | 4.7                                      | -                   | 1.3       | -                  | μs  |  |
| Cb                                         | Capacitive load for each bus line                                                                      | -                                        | 400                 | -         | 400                | pF  |  |
| t <sub>SP</sub>                            | Pulse width of the spikes<br>that are suppressed by the<br>analog filter for standard and<br>fast mode | 0                                        | 50 <sup>(4)</sup>   | 0         | 50 <sup>(4)</sup>  | μs  |  |

Table 51. I<sup>2</sup>C characteristics

1. Guaranteed by design.

 f<sub>PCLK1</sub> must be at least 2 MHz to achieve standard mode I<sup>2</sup>C frequencies. It must be at least 4 MHz to achieve the fast mode I<sup>2</sup>C frequencies and it must be a multiple of 10 MHz in order to reach the I2C fast mode maximum clock speed of 400 kHz.

3. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region on the falling edge of SCL.

4. The minimum width of the spikes filtered by the analog filter is above  $t_{SP}(max)$ .



## I<sup>2</sup>S - SPI characteristics

Unless otherwise specified, the parameters given in *Table 53* for SPI or in *Table 54* for I<sup>2</sup>S are derived from tests performed under ambient temperature,  $f_{PCLKx}$  frequency and  $V_{DD}$  supply voltage conditions summarized in *Table 10*.

Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I<sup>2</sup>S).

| Symbol                                               | Parameter Conditions                           |                                                       | Min                | Max                | Unit |
|------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|--------------------|--------------------|------|
| f <sub>scк</sub>                                     | SDI alaak fraguanay                            | Master mode                                           | -                  | 18                 |      |
| 1/t <sub>c(SCK)</sub>                                | SPT Clock frequency                            | Slave mode                                            | -                  | 18                 | MHz  |
| t <sub>r(SCK)</sub><br>t <sub>f(SCK)</sub>           | SPI clock rise and fall time                   | Capacitive load: C = 30 pF                            | -                  | 8                  | ns   |
| DuCy(SCK)                                            | SPI slave input clock<br>duty cycle Slave mode |                                                       | 30                 | 70                 | %    |
| t <sub>su(NSS)</sub> <sup>(1)</sup>                  | NSS setup time                                 | Slave mode                                            | 4t <sub>PCLK</sub> | -                  |      |
| t <sub>h(NSS)</sub> <sup>(1)</sup>                   | NSS hold time                                  | Slave mode                                            | 2t <sub>PCLK</sub> | -                  |      |
| t <sub>w(SCKH)</sub> (1)<br>t <sub>w(SCKL)</sub> (1) | SCK high and low time                          | Master mode, f <sub>PCLK</sub> = 36 MHz,<br>presc = 4 | 50                 | 60                 | •    |
| t <sub>su(MI)</sub> <sup>(1)</sup>                   | Data input actus timo                          | Master mode                                           | 5                  | -                  |      |
| t <sub>su(SI)</sub> <sup>(1)</sup>                   | Data input setup time                          | Slave mode                                            | 5                  | -                  |      |
| t <sub>h(MI)</sub> <sup>(1)</sup>                    | Data input hold time                           | Master mode                                           | 5                  | -                  |      |
| t <sub>h(SI)</sub> <sup>(1)</sup>                    | Data input noid time                           | Slave mode                                            | 4                  | -                  | ns   |
| t <sub>a(SO)</sub> <sup>(1)(2)</sup>                 | Data output access time                        | Slave mode, f <sub>PCLK</sub> = 20 MHz                | 0                  | 3t <sub>PCLK</sub> |      |
| t <sub>dis(SO)</sub> <sup>(1)(3)</sup>               | Data output disable time                       | Slave mode                                            | 2                  | 10                 |      |
| t <sub>v(SO)</sub> <sup>(1)</sup>                    | Data output valid time                         | Slave mode (after enable edge)                        | -                  | 25                 |      |
| t <sub>v(MO)</sub> <sup>(1)</sup>                    | Data output valid time                         | Master mode (after enable edge)                       | -                  | 5                  |      |
| t <sub>h(SO)</sub> <sup>(1)</sup>                    | Data output hold time                          | Slave mode (after enable edge)                        | 15                 | -                  |      |
| t <sub>h(MO)</sub> <sup>(1)</sup>                    |                                                | Master mode (after enable edge)                       | 2                  | -                  |      |

| Table 53 | 3. SPI | characteristics |
|----------|--------|-----------------|
|----------|--------|-----------------|

1. Guaranteed by characterization results.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z



### **Electrical characteristics**

- Guaranteed by characterization results. 1.
- 2. Guaranteed by design.
- $V_{REF+}$  can be internally connected to  $V_{DDA}$  and  $V_{REF-}$  can be internally connected to  $V_{SSA}$ , depending on the package. Refer to *Section 3: Pinouts and pin descriptions* for further details. 3.
- 4. For external triggers, a delay of 1/f<sub>PCLK2</sub> must be added to the latency specified in Table 59.

### Equation 1: R<sub>AIN</sub> max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

| T <sub>s</sub> (cycles) | t <sub>S</sub> (μs) | R <sub>AIN</sub> max (kΩ) |
|-------------------------|---------------------|---------------------------|
| 1.5                     | 0.11                | 0.4                       |
| 7.5                     | 0.54                | 5.9                       |
| 13.5                    | 0.96                | 11.4                      |
| 28.5                    | 2.04                | 25.2                      |
| 41.5                    | 2.96                | 37.2                      |
| 55.5                    | 3.96                | 50                        |
| 71.5                    | 5.11                | NA                        |
| 239.5                   | 17.1                | NA                        |

| Table 60. | RAIN | max | for | fADC | = | 14 | MHz <sup>(1</sup> | I) |
|-----------|------|-----|-----|------|---|----|-------------------|----|
|-----------|------|-----|-----|------|---|----|-------------------|----|

1. Guaranteed by design.

| Table 61. ADC accuracy | - limited test conditions <sup>(1)(2)</sup> |
|------------------------|---------------------------------------------|
|------------------------|---------------------------------------------|

| Symbol | Parameter                    | Test conditions                                          | Тур  | Max <sup>(3)</sup> | Unit |
|--------|------------------------------|----------------------------------------------------------|------|--------------------|------|
| ET     | Total unadjusted error       | $f_{PCLK2} = 56 \text{ MHz},$                            | ±1.3 | ±2                 |      |
| EO     | Offset error                 | $f_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$ | ±1   | ±1.5               |      |
| EG     | Gain error                   | $T_{A} = 25 \ ^{\circ}C$                                 | ±0.5 | ±1.5               | LSB  |
| ED     | Differential linearity error | Measurements made after                                  | ±0.7 | ±1                 |      |
| EL     | Integral linearity error     | $V_{\text{REF+}} = V_{\text{DDA}}$                       | ±0.8 | ±1.5               |      |

1. ADC DC accuracy values are measured after internal calibration.

affect the ADC accuracy.

3. Guaranteed by characterization results.



ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for  $I_{INJ(PIN)}$  and  $\Sigma I_{INJ(PIN)}$  in Section 5.3.14 does not affact the ADC accuracy 2.



Figure 60. Power supply and reference decoupling (V<sub>REF+</sub> connected to V<sub>DDA</sub>)

1.  $V_{REF+}$  and  $V_{REF-}$  inputs are available only on 100-pin packages.



| meenamear data (continued) |       |             |       |                       |        |        |  |
|----------------------------|-------|-------------|-------|-----------------------|--------|--------|--|
| Symbol                     |       | millimeters |       | inches <sup>(1)</sup> |        |        |  |
| Symbol                     | Min   | Тур         | Мах   | Min                   | Тур    | Мах    |  |
| е                          | -     | 0.500       | -     | -                     | 0.0197 | -      |  |
| L                          | 0.450 | 0.600       | 0.750 | 0.0177                | 0.0236 | 0.0295 |  |
| L1                         | -     | 1.000       | -     | -                     | 0.0394 | -      |  |
| k                          | 0°    | 3.5°        | 7°    | 0°                    | 3.5°   | 7°     |  |
| ccc                        | -     | -           | 0.08  | -                     | -      | 0.0031 |  |

# Table 72. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.



## Figure 74. LQFP100 recommended footprint

1. Dimensions are in millimeters.



### Device marking for LQFP100 package

The following figure gives an example of topside marking orientation versus pin 1 identifier location.





 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.



# 6.6 LQFP64 package information



Figure 76. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline

### Table 73. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

| Symbol | millimeters |        |       | inches <sup>(1)</sup> |        |        |  |
|--------|-------------|--------|-------|-----------------------|--------|--------|--|
| Symbol | Min         | Тур    | Мах   | Min                   | Тур    | Мах    |  |
| А      | -           | -      | 1.600 | -                     | -      | 0.0630 |  |
| A1     | 0.050       | -      | 0.150 | 0.0020                | -      | 0.0059 |  |
| A2     | 1.350       | 1.400  | 1.450 | 0.0531                | 0.0551 | 0.0571 |  |
| b      | 0.170       | 0.220  | 0.270 | 0.0067                | 0.0087 | 0.0106 |  |
| С      | 0.090       | -      | 0.200 | 0.0035                | -      | 0.0079 |  |
| D      | -           | 12.000 | -     | -                     | 0.4724 | -      |  |
| D1     | -           | 10.000 | -     | -                     | 0.3937 | -      |  |
| D3     | -           | 7.500  | -     | -                     | 0.2953 | -      |  |
| E      | -           | 12.000 | -     | -                     | 0.4724 | -      |  |
| E1     | -           | 10.000 | -     | -                     | 0.3937 | -      |  |



<sup>1.</sup> Drawing is not in scale.