

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103ret6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3.10 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from user Flash: you have an option to boot from any of two memory banks. By default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash memory bank 2 by setting a bit in the option bytes.
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1.

2.3.11 **Power supply schemes**

- V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA} , $V_{DDA} = 2.0$ to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.
- V_{BAT} = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 12: Power supply scheme*.

2.3.12 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to *Table 12: Embedded reset and power control block characteristics* for the values of $V_{POR/PDR}$ and V_{PVD} .

2.3.13 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in the nominal regulation mode (Run)
- LPR is used in the Stop modes.
- Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode.

Advanced-control timers (TIM1 and TIM8)

The two advanced-control timers (TIM1 and TIM8) can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F103xC, STM32F103xD and STM32F103xE performance line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages.

The general-purpose timers can work together with the advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from

the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

2.3.18 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.3.19 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F103xC, STM32F103xD and STM32F103xE performance line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).

These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability.

The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s.

USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5.

2.3.20 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

All SPIs can be served by the DMA controller.

2.3.21 Inter-integrated sound (I²S)

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) are available, that can be operated in master or slave mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 48 kHz are supported. When either or both of the I²S interfaces is/are configured in master

DocID14611 Rev 12

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) and the advanced-control timers (TIM1 and TIM8) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.3.27 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the STM32F103xC, STM32F103xD and STM32F103xE performance line family. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

г	1	2	3	4	5	6	7	8	9	10
A	PC14- OSC32_IN	PC13- TAMPER- RTC	PE2	PB9	РВ7	PB4	РВЗ	PA15	PA14	PA13
в	PC15- osc32_out	V _{BAT}	PE3	РВ8	PB6	PD5	PD2	PC11	PC10	PA12
с	OSC_IN	V _{SS_5}	PE4	PE1	PB5	PD6	PD3	PC12	PA9	PA11
D	OSC_OUT	V _{DD_5}	PE5	PEO	BOOTO	PD7	PD4	PD0	PA8	PA10
E	NRST	PC2	PE6	V _{SS_4}	V _{SS_3}	V _{SS_2}	V _{SS_1}	PD1	PC9	PC7
F	PC0	PC1	PC3	V _{DD_4}	V _{DD_3}	V _{DD_2}	V _{DD_1}	NC	PC8	PC6
G	V _{SSA}	PA0-WKUP	PA4	PC4	PB2	PE10	PE14	PB15	PD11	PD15
н	V _{REF-}	PA1	PA5	PC5	PE7	PE11	PE15	PB14	PD10	PD14
J	V _{REF+}	PA2	PA6	PB0	PE8	PE12	PB10	PB13	PD9	PD13
к	V _{DDA}	PA3	PA7	PB1	PE9	PE13	PB11	PB12	PD8	PD12

Figure 4. STM32F103xC/D/E performance line BGA100 ballout

1. The above figure shows the package top view.

Table 6. FSMC pin definition FSMC						
Pins						LQFP100 BGA100 ⁽¹⁾
	CF	CF/IDE	SRAM	NOR/PSRAM Mux	NAND 16 bit	20/1100
PE2	-	-	A23	A23	-	Yes
PE3	-	-	A19	A19	-	Yes
PE4	-	-	A20	A20	-	Yes
PE5	-	-	A21	A21	-	Yes
PE6	-	-	A22	A22	-	Yes
PF0	A0	A0	A0	-	-	-
PF1	A1	A1	A1	-	-	-
PF2	A2	A2	A2	-	-	-
PF3	A3	-	A3	-	-	-
PF4	A4	-	A4	-	-	-
PF5	A5	-	A5	-	-	-
PF6	NIORD	NIORD	-	-	-	-
PF7	NREG	NREG	-	-	-	-
PF8	NIOWR	NIOWR	-	-	-	-
PF9	CD	CD	-	-	-	-
PF10	INTR	INTR	-	-	-	-
PF11	NIOS16	NIOS16	-	-	-	-
PF12	A6	-	A6	-	-	-
PF13	A7	-	A7	-	-	-
PF14	A8	-	A8	-	-	-
PF15	A9	-	A9	-	-	-
PG0	A10	-	A10	-	-	-
PG1	-	-	A11	-	-	-
PE7	D4	D4	D4	DA4	D4	Yes
PE8	D5	D5	D5	DA5	D5	Yes
PE9	D6	D6	D6	DA6	D6	Yes
PE10	D7	D7	D7	DA7	D7	Yes
PE11	D8	D8	D8	DA8	D8	Yes
PE12	D9	D9	D9	DA9	D9	Yes
PE13	D10	D10	D10	DA10	D10	Yes
PE14	D11	D11	D11	DA11	D11	Yes
PE15	D12	D12	D12	DA12	D12	Yes
PD8	D13	D13	D13	DA13	D13	Yes

Table 6. FSMC pin definition

Symbol Ratings Value		Value	Unit	
T _{STG}	Storage temperature range	-65 to +150	°C	
TJ	Maximum junction temperature	150	°C	

Table 9. Thermal characteristics

5.3 Operating conditions

5.3.1 General operating conditions

Table 10. General operating conditions						
Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	72		
f _{PCLK1} Internal APB1 clock freque		-	0	36	MHz	
f _{PCLK2}			0	72		
V _{DD}	Standard operating voltage	-	2	3.6	V	
V (1)	Analog operating voltage (ADC not used)	Must be the same potential	2	3.6	V	
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC used)	as V _{DD} ⁽²⁾	2.4	3.6	v	
V_{BAT}	Backup operating voltage	-	1.8	3.6	V	
		LQFP144	-	666		
		LQFP100	-	434		
Pp	Power dissipation at $T_A =$ 85 °C for suffix 6 or $T_A =$ 105 °C for suffix 7 ⁽³⁾	LQFP64	-	444	mW	
ГD		LFBGA100	-	500		
		LFBGA144	-	500		
		WLCSP64	-	400		
	Ambient temperature for 6	Maximum power dissipation	-40	85	°C	
Та	suffix version	Low-power dissipation ⁽⁴⁾	-40	105	C	
	Ambient temperature for 7	Maximum power dissipation	-40	105	°C	
	suffix version	Low-power dissipation ⁽⁴⁾	-40	125	C	
TJ	lunction tomporature range	6 suffix version	-40	105	°C	
IJ	Junction temperature range	7 suffix version	-40	125	C	

Table 10. General operating conditions

1. When the ADC is used, refer to Table 59: ADC characteristics.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_Jmax (see Table 6.7: Thermal characteristics on page 133).

 In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_Jmax (see Table 6.7: Thermal characteristics on page 133).

Typical current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHZ and 2 wait states above).
- Ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.
- Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)

When the peripherals are enabled $f_{PCLK1} = f_{HCLK}/4$, $f_{PCLK2} = f_{HCLK}/2$, $f_{ADCCLK} = f_{PCLK2}/4$

				Туј	p ⁽¹⁾	
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit
			72 MHz	51	30.5	
			48 MHz	34.6	20.7	
			36 MHz	26.6	16.2	
			24 MHz	18.5	11.4	
			16 MHz	12.8	8.2	
		External clock ⁽³⁾	8 MHz	7.2	5	mA
			4 MHz	4.2	3.1	
	Supply current in Run mode	nt in node Running on high speed internal RC	2 MHz	2.7	2.1	
			1 MHz	2	1.7	
			500 kHz	1.6	1.4	
I _{DD}			125 kHz	1.3	1.2	
DD			64 MHz	45	27	
			48 MHz	34	20.1	
			36 MHz	26	15.6	
			24 MHz	17.9	10.8	
			16 MHz	12.2	7.6	
		(HSI), AHB prescaler used to	8 MHz	6.6	4.4	mA
		reduce the	4 MHz	3.6	2.5	
		frequency	2 MHz	2.1	1.5	
			1 MHz	1.4	1.1	
			500 kHz	1	0.8	
			125 kHz	0.7	0.6	

Table 18. Typical current consumption in Run mode, code with data processing
running from Flash

1. Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 24*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

			131103 (ILSE - 32.700 I	,			
Symbol	Parameter	C	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor		-	-	5	-	MΩ
C ⁽²⁾	Recommended load capacitance versus equivalent serial resistance of the crystal (R _S)	R _S = 30 kΩ		-	-	15	pF
I ₂	LSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS}		-	-	1.4	μA
9 _m	Oscillator transconductance	-		5	-	-	μA/V
	Startup time		T _A = 50 °C	-	1.5	-	S
			T _A = 25 °C	-	2.5	-	
		V _{DD} is stabilized	T _A = 10 °C	-	4	-	
+ (3)			T _A = 0 °C	-	6	-	
t _{SU(LSE)} ⁽³⁾			T _A = -10 °C	-	10	-	
			T _A = -20 °C	-	17	-	
			T _A = -30 °C	-	32	-	
			T _A = -40 °C	-	60	-	

Table 24. LSE oscillator characteristics $(f_{LSE} = 32.768 \text{ kHz})^{(1)(2)}$)
--	---

1. Guaranteed by characterization results.

 Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) until a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer, PCB layout and humidity.

Caution: To avoid exceeding the maximum value of C_{L1} and C_{L2} (15 pF) it is strongly recommended to use a resonator with a load capacitance $C_L \le 7$ pF. Never use a resonator with a load capacitance of 12.5 pF. **Example:** if you choose a resonator with a load capacitance of $C_L = 6$ pF, and $C_{stray} = 2$ pF, then $C_{L1} = C_{L2} = 8$ pF.

Note: For C_{L1} and C_{L2} , it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 23). C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

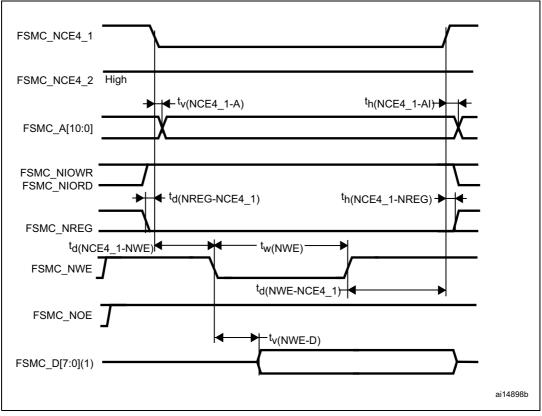


Figure 35. PC Card/CompactFlash controller waveforms for attribute memory write access

1. Only data bits 0...7 are driven (bits 8...15 remains HiZ).

Figure 36. PC Card/CompactFlash controller waveforms for I/O space read access

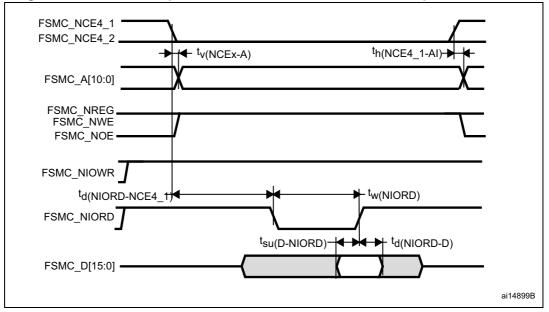


Figure 37. PC Card/CompactFlash controller waveforms for I/O space write access

	Table 39. Switchin	g characteristics for PC Card/CF read	and write cycles ⁽¹⁾⁽²⁾
--	--------------------	---------------------------------------	------------------------------------

Symbol	Parameter	Min	Max	Unit
t _{v(NCEx-A)} t _{v(NCE4_1-A)}	FSMC_NCEx low (x = 4_1/4_2) to FSMC_Ay valid (y = 010) FSMC_NCE4_1 low (x = 4_1/4_2) to FSMC_Ay valid (y = 010)	-	0	ns
t _{h(NCEx-AI)} t _{h(NCE4_1-AI)}	FSMC_NCEx high (x = $4_1/4_2$) to FSMC_Ax invalid (x = 010) FSMC_NCE4_1 high (x = $4_1/4_2$) to FSMC_Ax invalid (x = 010)	2.5	-	ns
t _{d(NREG-NCEx)} t _{d(NREG-NCE4_1)}	FSMC_NCEx low to FSMC_NREG valid FSMC_NCE4_1 low to FSMC_NREG valid	-	5	ns
t _{h(NCEx-NREG)} t _{h(NCE4_} 1-NREG)	FSMC_NCEx high to FSMC_NREG invalid FSMC_NCE4_1 high to FSMC_NREG invalid	t _{HCLK} + 3	-	ns
t _{d(NCE4_1-NOE)}	FSMC_NCE4_1 low to FSMC_NOE low	-	5t _{HCLK} + 2	ns
t _{w(NOE)}	FSMC_NOE low width	8t _{HCLK} –1.5	8t _{HCLK} + 1	ns
t _{d(NOE-NCE4_1}	FSMC_NOE high to FSMC_NCE4_1 high	5t _{HCLK} + 2	-	ns
t _{su(D-NOE)}	FSMC_D[15:0] valid data before FSMC_NOE high	25	-	ns
t _{h(NOE-D)}	FSMC_D[15:0] valid data after FSMC_NOE high	15	-	ns
t _{w(NWE)}	FSMC_NWE low width	8t _{HCLK} – 1	8t _{HCLK} + 2	ns
t _{d(NWE-NCE4_1)}	FSMC_NWE high to FSMC_NCE4_1 high	5t _{HCLK} + 2	-	ns
t _{d(NCE4_1-NWE)}	FSMC_NCE4_1 low to FSMC_NWE low	-	5t _{HCLK} + 1.5	ns
t _{v(NWE-D)}	FSMC_NWE low to FSMC_D[15:0] valid	-	0	ns
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15:0] invalid	11t _{HCLK}	-	ns
t _{d(D-NWE)}	FSMC_D[15:0] valid before FSMC_NWE high	13t _{HCLK}	-	ns

Symbol	Parameter	Conditions	Class		
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A		

Table 44. Electrical sensitivities

5.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in Table 45

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13	-0	+0	
I _{INJ}	Injected current on all FT pins	-5	+0	mA
	Injected current on any other pin	-5	+5	

Table 45. I/O current injection susceptibility

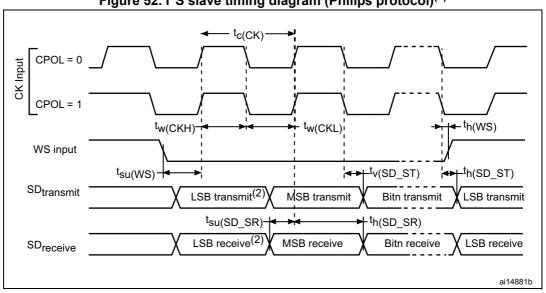
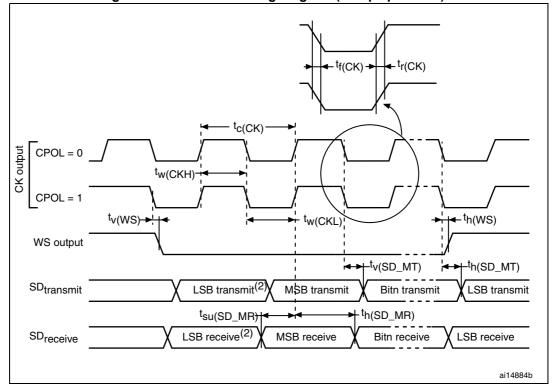



Figure 52. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: 0.3 × V_{DD} and 0.7 × $V_{DD.}$
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 53. I²S master timing diagram (Philips protocol)⁽¹⁾

1. Guaranteed by characterization results.

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

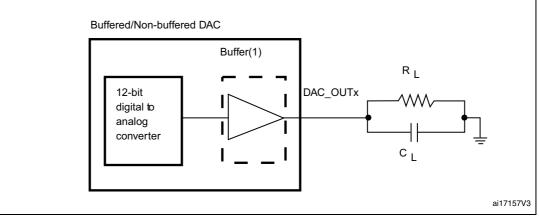
5.3.20 DAC electrical specifications

Symbol	Parameter	Min	Тур	Мах	Unit	Comments	
V _{DDA}	Analog supply voltage	2.4	-	3.6	V	-	
V _{REF+}	Reference supply voltage	2.4	-	3.6	V	V _{REF+} must always be below V _{DDA}	
V _{SSA}	Ground	0	-	0	V	-	
R _{LOAD} ⁽¹⁾	Resistive load with buffer ON	5	-	-	kΩ	-	
R ₀ ⁽²⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimi resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω	
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).	
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code	
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	(0x0E0) to (0xF1C) at V_{REF+} = 3.6 V and (0x155) and (0xEAB) at V_{REF+} 2.4 V	
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output	
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{REF+} – 1LSB	V	excursion of the DAC.	
I _{DDVREF+}	DAC DC current consumption in quiescent mode (Standby mode)	-	-	220	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs	
	DAC DC current	-	-	380	μA	With no load, middle code (0x800) on the inputs	
I _{DDA}	consumption in quiescent mode ⁽³⁾	-	-	480	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs	
DNL ⁽⁴⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration	
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration	
	Integral non linearity (difference between	-	-	±1	LSB	Given for the DAC in 10-bit configuration	
INL ⁽³⁾	measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration	

TADIE 03. DAG CHARACTERISTICS	Table	63.	DAC	characteristics
-------------------------------	-------	-----	-----	-----------------

Symbol	Parameter	Min	Тур	Мах	Unit	Comments
	Offset error	-	-	±10	mV	-
Offset ⁽³⁾	(difference between measured value at Code (0x800) and the ideal value = $V_{REF+}/2$)	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
		-	-	±12	IL SB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V
Gain error ⁽³⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12bit configuration
t _{SETTLING} ⁽³⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	-	3	4	μs	$C_{LOAD} \le 50 \text{ pF, } R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	$C_{LOAD} \le 50 \text{ pF, } R_{LOAD} \ge 5 \text{ k}\Omega$
t _{wakeup} (3)	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$ input code between lowest and highest possible ones.
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

Table 63. DAC characteristics (continued)


1. Guaranteed by design.

2. Guaranteed by characterization.

3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed by characterization results.

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.2 LFBGA100 package information

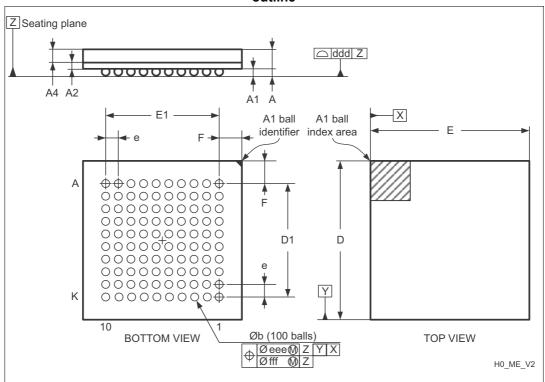
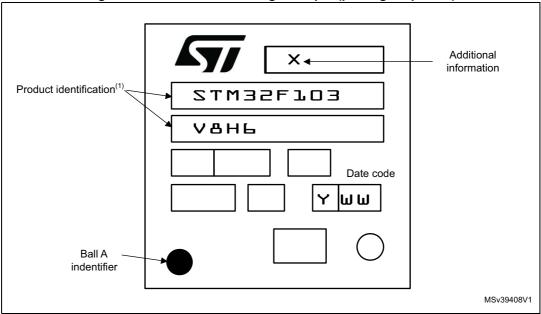
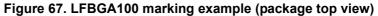


Figure 65. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package outline

1. Drawing is not to scale.


Table 67. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
mechanical data


Cumb al		millimeters		inches ⁽¹⁾			
Symbol	Min Typ		Мах	Min	Тур	Max	
A	-	-	1.700	-	-	0.0669	
A1	0.270	-	-	0.0106	-	-	
A2	-	0.300	-	-	0.0118	-	
A4	-	-	0.800	-	-	0.0315	
b	0.450	0.500	0.550	0.0177	0.0197	0.0217	
D	9.850	10.000	10.150	0.3878	0.3937	0.3996	
D1	-	7.200	-	-	0.2835	-	
E	9.850	10.000	10.150	0.3878	0.3937	0.3996	
E1	-	7.200	-	-	0.2835	-	
е	-	0.800	-	-	0.0315	-	
F	-	1.400	-	-	0.0551	-	
ddd	-	-	0.120	-	-	0.0047	

Device marking for LFBGA100 package

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.3 WLCSP64 package information

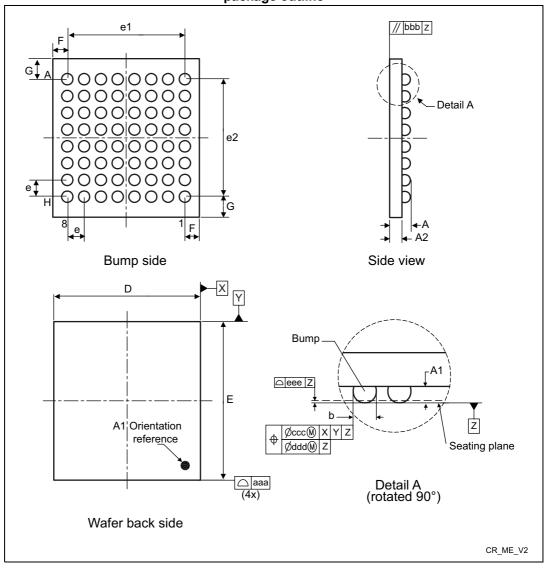
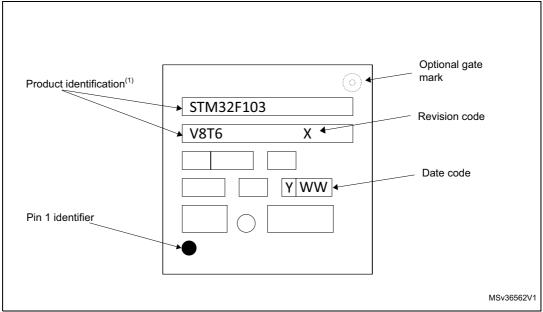
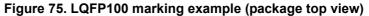


Figure 68. WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale package outline

1. Drawing is not to scale.

2. Primary datum Z and seating plane are defined by the spherical crowns of the ball.


Table 69. WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale					
package mechanical data					


Symbol		millimeters	5	inches ⁽¹⁾		
Symbol	Min Typ Max		Min Typ Ma		Max	
А	0.535	0.585	0.635	0.0211	0.0230	0.0250
A1	0.205	0.230	0.255	0.0081	0.0091	0.0100
A2	0.330	0.355	0.380	0.0130	0.0140	0.0150
b ⁽²⁾	0.290	0.320	0.350	0.0114	0.0126	0.0138

Device marking for LQFP100 package

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

8 Revision history

Date	Revision	Changes
07-Apr-2008	1	Initial release.
		-
		Tolerance values corrected in <i>Table 74: LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package data on page 139.</i>

Table 76.Document revision history

