

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	80
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LFBGA
Supplier Device Package	100-LFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103vch6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 44.	Electrical sensitivities
Table 45.	I/O current injection susceptibility
Table 46.	I/O static characteristics
Table 47.	Output voltage characteristics
Table 48.	I/O AC characteristics
Table 49.	NRST pin characteristics
Table 50.	TIMx characteristics
Table 51.	I ² C characteristics
Table 52.	SCL frequency (f _{PCLK1} = 36 MHz., V _{DD 12C} = 3.3 V)
Table 53.	SPI characteristics
Table 54.	I ² S characteristics
Table 55.	SD / MMC characteristics
Table 56.	USB startup time
Table 57.	USB DC electrical characteristics
Table 58.	USB: full-speed electrical characteristics
Table 59.	ADC characteristics
Table 60.	R_{AIN} max for $f_{ADC} = 14$ MHz
Table 61.	ADC accuracy - limited test conditions
Table 62.	ADC accuracy
Table 63.	DAC characteristics
Table 64.	TS characteristics
Table 65.	LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
	0.8 mm pitch, package mechanical data 115
Table 66.	LFBGA144 recommended PCB design rules (0.8 mm pitch BGA)
Table 67.	LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
	mechanical data
Table 68.	LFBGA100 recommended PCB design rules (0.8 mm pitch BGA)
Table 69.	WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale
	package mechanical data
Table 70.	WLCSP64 recommended PCB design rules (0.5 mm pitch) 122
Table 71.	LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
	mechanical data
Table 72.	LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package
	mechanical data
Table 73.	LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data
Table 74.	Package thermal characteristics
Table 75.	Ordering information scheme

Advanced-control timers (TIM1 and TIM8)

The two advanced-control timers (TIM1 and TIM8) can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F103xC, STM32F103xD and STM32F103xE performance line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages.

The general-purpose timers can work together with the advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from

3 Pinouts and pin descriptions

12	11	10	9	8	7	6	5	4	3	2	1
PA13 JTMS	PA14 JTCK	PA15 JTDI	PD7	PD6	PB3 , JTDO	PB4`, JTRST	PE0	(PE1)	PE2	PE3	PC13- TAMPER-RTC
PA12	PC10	(PC11)	PD5	PG12	PG15	PB5	PB9	PE6	PE5	PE4	PC14- 06C32_1N
(PA11)	NC	PC12	PD4	(PG11)	PG14	PB6	(PB8)	(PF1)	(PF0)	V _{BAT}	,PC15-, 09C32_OUT
PA9	PA10	PD1	PD3	PG10	PG13	PB7	βΟΟΤΟ	PF2	VDD_5	Vss_5	OSC_IN
PA8	PC9	PD0	PD2	PG9	Ýss_10	Vss_11	Vss_3	PF5	PF4	PF3	OSC_OUT
PC7	PC8	V _{DD_9}	VDD_2	V _{DD_8} '	YDD_10	VDD_11	V _{DD_3}	V _{DD_4} ,	PF6	(PF7)	NRST
PC6	PG8	V _{SS_9}	V _{SS_2}	Vss_8	VDD_1	VDD_7	VDD_6	V _{SS_4}	PF8	(PF9	PF10
PG5	PG6	PG7	(PD11)	(PE11)	VSS_1	Vss_7	Vss_6	PC3	PC2	(PC1)	PC0
PG2	PG3	PG4	(PD10)	PE12	(PE10)	PG1	PB2/ BOOT1	PC4	PA4	PÁO-WKŲP	V _{SSA} ;
(PD15)	(PD14)	(PD13)	(PD9)	(PE13)	(PE9)	PG0	(PF13)	(PC5)	PA5	PA1	V _{REF-}
(PB15)	(PB14)	(PD12)	PD8	PE14	PE8	(PF15)	(PF12)	PB0	PA6	PA2	V _{REF+}
(PB13)	PB12	(PB11)	(PB10)	(PE15)	PE7	PF14	(PF11)	(PB1	PA7	PA3	V _{DDA} ,

Figure 3. STM32F103xC/D/E BGA144 ballout

1. The above figure shows the package top view.

Pinouts and pin descriptions

Figure 8. STM32F103xC/D/E performance line WLCSP64 ballout, ball side

		Pir	าร							Alternate functions ⁽⁴⁾		
LFBGA144	LFBGA100	WLCSP64	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap	
G12	F10	E1	37	63	96	PC6	I/O	FT	PC6	I2S2_MCK/ TIM8_CH1/SDIO_D6	TIM3_CH1	
F12	E10	E2	38	64	97	PC7	I/O	FT	PC7	I2S3_MCK/ TIM8_CH2/SDIO_D7	TIM3_CH2	
F11	F9	E3	39	65	98	PC8	I/O	FT	PC8	TIM8_CH3/SDIO_D0	TIM3_CH3	
E11	E9	D1	40	66	99	PC9	I/O	FT	PC9	TIM8_CH4/SDIO_D1	TIM3_CH4	
E12	D9	E4	41	67	100	PA8	I/O	FT	PA8	USART1_CK/ TIM1_CH1 ⁽⁹⁾ /MCO	-	
D12	C9	D2	42	68	101	PA9	I/O	FT	PA9	USART1_TX ⁽⁹⁾ / TIM1_CH2 ⁽⁹⁾	-	
D11	D10	D3	43	69	102	PA10	I/O	FT	PA10	USART1_RX ⁽⁹⁾ / TIM1_CH3 ⁽⁹⁾	-	
C12	C10	C1	44	70	103	PA11	I/O	FT	PA11	USART1_CTS/USBDM CAN_RX ⁽⁹⁾ /TIM1_CH4 ⁽⁹⁾	-	
B12	B10	C2	45	71	104	PA12	I/O	FT	PA12	USART1_RTS/USBDP/ CAN_TX ⁽⁹⁾ /TIM1_ETR ⁽⁹⁾	-	
A12	A10	D4	46	72	105	PA13	I/O	FT	JTMS- SWDIO	-	PA13	
C11	F8	-	-	73	106				Not connected	d	-	
G9	E6	B1	47	74	107	V _{SS_2}	S	-	V _{SS_2}	-	-	
F9	F6	A1	48	75	108	V _{DD_2}	S	-	V _{DD_2}	-	-	
A11	A9	B2	49	76	109	PA14	I/O	FT	JTCK- SWCLK	-	PA14	
A10	A8	C3	50	77	110	PA15	I/O	FT	JTDI	SPI3_NSS/ I2S3_WS	TIM2_CH1_ETR PA15 / SPI1_NSS	
B11	B9	A2	51	78	111	PC10	I/O	FT	PC10	UART4_TX/SDIO_D2	USART3_TX	
B10	B8	В3	52	79	112	PC11	I/O	FT	PC11	UART4_RX/SDIO_D3	USART3_RX	
C10	C8	C4	53	80	113	PC12	I/O	FT	PC12	UART5_TX/SDIO_CK	USART3_CK	
E10	D8	D8	5	81	114	PD0	I/O	FT	OSC_IN ⁽¹⁰⁾	FSMC_D2 ⁽¹¹⁾	CAN_RX	
D10	E8	D7	6	82	115	PD1	I/O	FT	OSC_OUT ⁽¹⁰⁾	FSMC_D3 ⁽¹¹⁾	CAN_TX	
E9	B7	A3	54	83	116	PD2	I/O	FT	PD2	TIM3_ETR/UART5_RX SDIO_CMD	-	
D9	C7	-	-	84	117	PD3	I/O	FT	PD3	FSMC_CLK	USART2_CTS	

Table 5. High-density STM32F103xC/D/E pin definitions (continued)

Peripheral		Current consumption	Unit
	APB2-Bridge	4,17	
	GPIOA	8,47	
	GPIOB	8,47	
	GPIOC	6,53	
	GPIOD	8,47	
	GPIOE	6,53	
	GPIOF	6,53	
APB2 (up to 72 MHz)	GPIOG	6,11	µA/MHz
	SPI1	4,72	
	USART1	12,50	
	TIM1	22,92	
	TIM8	22,92	
	ADC1 ⁽⁴⁾	17,32	
	ADC2 ⁽⁴⁾	15,18	
	ADC3 ⁽⁴⁾	14,82	

Table 20. Peripheral current consumption (continueu	Table 20. Per	ipheral current	consumption	(continued)
---	---------------	-----------------	-------------	-------------

1. The BusMatrix is automatically active when at least one master is ON. (CPU, DMA1 or DMA2).

2. When the I2S is enabled, a current consumption equal to 0.02 mA must be added.

3. When DAC_OU1 or DAC_OUT2 is enabled, a current consumption equal to 0.36 mA must be added.

Specific conditions for measuring ADC current consumption: f_{HCLK} = 56 MHz, f_{APB1} = f_{HCLK}/2, f_{APB2} = f_{HCLK}, f_{ADCCLK} = f_{APB2}/4. When ADON bit in the ADCx_CR2 register is set to 1, a current consumption of analog part equal to 0.54 mA must be added for each ADC.

5.3.10 FSMC characteristics

Asynchronous waveforms and timings

Figure 24 through *Figure 27* represent asynchronous waveforms and *Table 31* through *Table 34* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- AddressSetupTime = 0
- AddressHoldTime = 1
- DataSetupTime = 1

Figure 24. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	5t _{HCLK} – 1.5	5t _{HCLK} + 2	ns
$t_{v(NOE_NE)}$	FSMC_NEx low to FSMC_NOE low	0.5	1.5	ns
t _{w(NOE)}	FSMC_NOE low time	5t _{HCLK} – 1.5	5t _{HCLK} + 1.5	ns
$t_{h(NE_NOE)}$	FSMC_NOE high to FSMC_NE high hold time	-1.5	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	0.1	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0	ns
$t_{h(BL_NOE)}$	FSMC_BL hold time after FSMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	2t _{HCLK} + 25	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOEx high setup time	2t _{HCLK} + 25	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	5	ns
t _{w(NADV)}	FSMC_NADV low time	-	t _{HCLK} + 1.5	ns

Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾

1. C_L = 15 pF.

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Figure 30. Synchronous non-multiplexed NOR/PSRAM read timings

Table 37. Synchronous	non-multiplexed NOR/PSRAM	l read timings ⁽¹⁾⁽²⁾
,		

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.7	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)	-	1.5	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	2	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	4	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	5	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 025)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 025)	4	-	ns
t _{d(CLKL-NOEL)}	FSMC_CLK low to FSMC_NOE low	-	1.5	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1.5	-	ns
t _{su(DV-CLKH)}	FSMC_D[15:0] valid data before FSMC_CLK high	6.5	-	ns
t _{h(CLKH-DV)}	FSMC_D[15:0] valid data after FSMC_CLK high	7	-	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_SMCLK high	7	-	ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2	-	ns

1. C_L = 15 pF.

2. Guaranteed by characterization results.

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

Table 44. Electrical sensitivities

5.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in Table 45

		Functional s			
Symbol	Description	Negative injection	Positive injection	Unit	
I _{INJ}	Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13	-0	+0		
	Injected current on all FT pins	-5	+0	mA	
	Injected current on any other pin	-5	+5		

Table 45. I/O current injection susceptibility

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽²⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	v
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA	-	0.4	V
V _{OH} ⁽²⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	V

Table 47. Output voltage characteristics (continued)

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 8* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 8 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

4. Guaranteed by characterization results.

Symbol	Parameter Conditions			Min	Max	Unit
DuCy(SCK)	I2S slave input clock duty cycle	Slave mode	30	70	%	
f _{CK}	I ² S clock frequency	Master mode (data: 1) Audio frequency = 48	6 bits, kHz)	1.522	1.525	MHz
^{1/l} c(CK)		Slave mode		0	6.5	
t _{r(CK)} t _{f(CK)}	I ² S clock rise and fall time	Capacitive load C _L =	50 pF	-	8	
t _{v(WS)} ⁽¹⁾	WS valid time	Master mode		3	-	
+ (1)	WS hold time	Master mode	I2S2	2	-	
^t h(WS)`´		Master mode	I2S3	0	-	
t _{su(WS)} ⁽¹⁾	WS setup time	Slave mode		4	-	
t _{h(WS)} ⁽¹⁾	WS hold time	Slave mode	Slave mode		-	
t _{w(CKH)} ⁽¹⁾	CK high and low time	Master f _{PCLK} = 16 MHz, audio frequency = 48 kHz		312.5	-	
t _{w(CKL)} ⁽¹⁾	CK high and low line			345	-	
. (1)	Data input actus time	Master receiver	I2S2	2	-]
^I su(SD_MR) ` ′	Data input setup time		I2S3	6.5	-	ns
t _{su(SD_SR)} ⁽¹⁾	Data input setup time	Slave receiver		1.5	-	
t _{h(SD_MR)} ⁽¹⁾⁽²⁾	Data input hold time	Master receiver		0	-	
t _{h(SD_SR)} (1)(2)	Data input noid time	Slave receiver		0.5	-	
t _{v(SD_ST)} (1)(2)	Data output valid time	Slave transmitter (after enable edge)		-	18	
t _{h(SD_ST)} ⁽¹⁾	Data output hold time	Slave transmitter (after enable edge)		11	-	
t _{v(SD_MT)} (1)(2)	Data output valid time	Master transmitter (after enable edge)		-	3	
t _{h(SD_MT)} ⁽¹⁾	Data output hold time	Master transmitter (after enable edge)		0	-	

Table 54. I²S characteristics

1. Guaranteed by design and/or characterization results.

2. Depends on f_{PCLK} . For example, if f_{PCLK} =8 MHz, then T_{PCLK} = 1/ f_{PLCLK} =125 ns.

Figure 52. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: 0.3 × V_{DD} and 0.7 × $V_{DD.}$
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 53. I²S master timing diagram (Philips protocol)⁽¹⁾

1. Guaranteed by characterization results.

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Electrical characteristics

- Guaranteed by characterization results. 1.
- 2. Guaranteed by design.
- V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA} , depending on the package. Refer to *Section 3: Pinouts and pin descriptions* for further details. 3.
- 4. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 59.

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ)
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

Table 60.	RAIN	max	for	fADC	=	14	MHz ⁽¹	I)
-----------	------	-----	-----	------	---	----	-------------------	----

1. Guaranteed by design.

Table 61. ADC accuracy	- limited test conditions ⁽¹⁾⁽²⁾
------------------------	---

Symbol	Parameter	Test conditions	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error	$f_{PCLK2} = 56 \text{ MHz},$	±1.3	±2	
EO	Offset error	$f_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$	±1	±1.5	
EG	Gain error	$T_{A} = 25 \ ^{\circ}C$	±0.5	±1.5	LSB
ED	Differential linearity error	Measurements made after	±0.7	±1	
EL	Integral linearity error	$V_{\text{REF+}} = V_{\text{DDA}}$	±0.8	±1.5	

1. ADC DC accuracy values are measured after internal calibration.

affect the ADC accuracy.

3. Guaranteed by characterization results.

ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.14 does not affact the ADC accuracy 2.

Figure 58. Typical connection diagram using the ADC

1. Refer to Table 59 for the values of R_{AIN} , R_{ADC} and C_{ADC} .

C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 59* or *Figure 60*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 LFBGA144 package information

Figure 62. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline

1. Drawing is not to scale.

Table 65. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Тур	Min	Max
A ⁽²⁾	-	-	1.700	-	-	0.0669
A1	0.250	0.300	0.350	0.098	0.0118	0.0138
A2	0.810	0.910	1.010	0.0319	0.0358	0.0398
A3	0.225	0.26	0.295	0.0089	0.0102	0.0116
A4	0.585	0.650	0.715	0.0230	0.0256	0.0281

	millimatara			inches ⁽¹⁾			
Symbol	millimeters			Inches			
	Min	Тур	Мах	Тур	Min	Мах	
b	0.350	0.400	0.450	0.0138	0.0157	0.0177	
D	9.900	10.000	10.100	0.3898	0.3937	0.3976	
D1	-	8.800	-	-	0.3465	-	
E	9.900	10.000	10.100	0.3898	0.3937	0.3976	
E1	-	8.800	-	-	0.3465	-	
е	-	0.800	-	-	0.0315	-	
F	-	0.600	-	-	0.0236	-	
ddd	-	-	0.100	-	-	0.0039	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.080	-	-	0.0031	

Table 65. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,0.8 mm pitch, package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. STATSChipPAC package dimensions.

Table 66. LFBGA144 recommended PCB design rules (0.8 mm pitch BGA)

Dimension	Recommended values
Pitch	0.8 mm
Dpad	0.400 mm
UBM	0.350 mm

DocID14611 Rev 12

6.4 LQFP144 package information

Figure 70. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline

1. Drawing is not to scale.

Date	Revision	Changes
19-Apr-2011	8	Updated package choice for 103Rx in Table 2 Updated footnotes below Table 7: Voltage characteristics on page 43 and Table 8: Current characteristics on page 43 Updated tw min in Table 21: High-speed external user clock characteristics on page 58 Updated startup time in Table 24: LSE oscillator characteristics (fLSE = 32.768 kHz) on page 61 Updated note 2 in Table 51: I2C characteristics on page 97 Updated Figure 48: I2C bus AC waveforms and measurement circuit Updated Figure 47: Recommended NRST pin protection Updated Section 5.3.14: I/O port characteristics Updated Table 35: Synchronous multiplexed NOR/PSRAM read timings on page 73 Updated FSMC Figure 26 thru Figure 31 Updated FSMC Figure 48:: I2C bus AC waveforms for common memory write access and Figure 48:: I2C bus AC waveforms and measurement circuit Added Section 5.3.13: I/O current injection characteristics Updated Figure 67 and added Table 69: WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale package mechanical data on page 121 LQFP64 package mechanical data updated: see Figure 73.: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline and Table 73: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical
30-Sept-2014	9	data on page 130.Added Note 7 in Table 5: High-density STM32F103xC/D/E pin definitions on page 31.Updated Note 10 in Table 5: High-density STM32F103xC/D/E pin definitions on page 31.Modified Note 2 in Table 62: ADC accuracy on page 109 Modified Note 3 in Table 62: ADC accuracy on page 109 Modified notes in Table 51: I2C characteristics on page 97 Updated Figure 51: SPI timing diagram - master mode(1) on page 101
23-Feb-2015	10	Updated Figure 66.: BGA pad footprint, Figure 70: LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline, Figure 73.: LQFP100 - 14 x 14 mm 100 pin low-profile quad flat package outline, Figure 74.: LQFP100 recommended footprint, Figure 76.: LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package outline, Figure 77.: LQFP64 - 64- pin, 10 x 10 mm low-profile quad flat recommended footprint Added Figure 72.: LQFP144 marking example (package top view), Figure 75.: LQFP100 marking example (package top view), Figure 75.: LQFP100 marking example (package top view), Updated Table 72: LQPF100 - 14 x 14 mm 100-pin low-profile quad flat package mechanical data, Table 73: LQFP64 - 10 x 10 mm 64 pin low- profile quad flat package mechanical data

Table 76.Document revision history

Date	Revision	Changes
31-08-2015	11	 Replaced USBDP and USBDM by USB_DP and USB_DM in the whole document. Updated: Introduction Reference standard in <i>Table 43: ESD absolute maximum ratings.</i> Updated I_{DDA} description in <i>Table 63: DAC characteristics.</i> Section : I2C interface characteristics Figure 62: LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline Updated sentence before Figure 78: LQFP64 marking example (package top view). Figure 65: LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package outline and sentence before Figure 75: LQFP100 marking example (package top view) Figure 66: WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale package outline Figure 48: I2C bus AC waveforms and measurement circuit on page 98 Section 6.1: LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package recommended footprint Figure 63: LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package recommended footprint Figure 64: LFBGA144 marking example (package top view) Figure 64: LFBGA100 - 100-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package recommended footprint Figure 66: LFBGA100 - 100-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package recommended footprint Figure 66: LFBGA100 - 100-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package recommended footprint Figure 66: LFBGA144 recommended PCB design rules (0.8 mm pitch BGA) Table 68: LFBGA100 recommended PCB design rules (0.5 mm pitch BGA) Table 68: LFBGA100 recommended PCB design rules (0.5 mm pitch BGA)
26-Nov-2015	12	 Updated: Table 59: ADC characteristics Table 65: LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package mechanical data Table 66: LFBGA144 recommended PCB design rules (0.8 mm pitch BGA) Added: Note 3 on Table 7: Voltage characteristics

Table 76.Document revision history

