STMicroelectronics - STM32F103VDT6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	80
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103vdt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary
Table 2.	STM32F103xC, STM32F103xD and STM32F103xE features
	and peripheral counts
Table 3.	STM32F103xx family
Table 4.	High-density timer feature comparison
Table 5.	High-density STM32F103xC/D/E pin definitions
Table 6.	FSMC pin definition
Table 7.	Voltage characteristics
Table 8.	Current characteristics
Table 9.	Thermal characteristics
Table 10.	General operating conditions
Table 11.	Operating conditions at power-up / power-down
Table 12.	Embedded reset and power control block characteristics
Table 13.	Embedded internal reference voltage
Table 14.	Maximum current consumption in Run mode, code with data processing
	running from Flash
Table 15.	Maximum current consumption in Run mode, code with data processing
	running from RAM
Table 16.	Maximum current consumption in Sleep mode, code running from Flash or RAM
Table 17.	Typical and maximum current consumptions in Stop and Standby modes
Table 18.	Typical current consumption in Run mode, code with data processing
	running from Flash
Table 19.	Typical current consumption in Sleep mode, code running from Flash or
	RAM
Table 20.	Peripheral current consumption
Table 21.	High-speed external user clock characteristics
Table 22.	Low-speed external user clock characteristics
Table 23.	HSE 4-16 MHz oscillator characteristics
Table 24.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)
Table 25.	HSI oscillator characteristics.
Table 26.	LSI oscillator characteristics
Table 27.	Low-power mode wakeup timings
Table 28.	PLL characteristics
Table 29.	Flash memory characteristics
Table 30.	Flash memory endurance and data retention
Table 31.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings
Table 32.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings
Table 33.	Asynchronous multiplexed PSRAM/NOR read timings
Table 34.	Asynchronous multiplexed PSRAM/NOR write timings
Table 35.	Synchronous multiplexed NOR/PSRAM read timings
Table 36.	Synchronous multiplexed PSRAM write timings
Table 37.	Synchronous non-multiplexed NOR/PSRAM read timings
Table 38.	Synchronous non-multiplexed PSRAM write timings
Table 39.	Switching characteristics for PC Card/CF read and write cycles
Table 40.	Switching characteristics for NAND Flash read and write cycles
Table 41.	EMS characteristics
Table 42.	EMI characteristics
Table 43.	ESD absolute maximum ratings

Figure 40	NAND controller waveforms for common memory read access	85
Figure 40.	NAND controller waveforms for common memory write access	86
Figure 41.	Standard I/O input characteristics - CMOS port	Q1
Figure 43	Standard I/O input characteristics - TTL port	Q1
Figure 11	5 V tolerant I/O input characteristics - CMOS port	Q1
Figure 44.	5 V tolerant I/O input characteristics - CMOS port	02
Figure 45.	1/0 AC obstractoristics definition	
Figure 40.	Recommonded NPST pin protection	95
Figure 47.	I^2C bus AC waysforms and measurement sireuit	
Figure 40.	SPI timing diagram slave mode and CPUA = 0	100
Figure 49.	SPI timing diagram - slave mode and CPHA = 0	100
Figure 50.	SPI timing diagram master mode ⁽¹⁾	101
Figure 51.	J^{2} alove timing diagram (Dhilips protocol) ⁽¹⁾	102
Figure 52.	13 Slave uning diagram (Philips protocol) $(7, \dots, 12)$	103
Figure 53.		104
Figure 54.		104
Figure 55.	SD delault mode	100
Figure 56.	USB umings: definition of data signal rise and fail time	100
Figure 57.	ADC accuracy characteristics	
Figure 58.	Typical connection diagram using the ADC	
Figure 59.	Power supply and reference decoupling ($v_{\text{REF+}}$ not connected to v_{DDA})	
Figure 60.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	
Figure 61.	I2-DIT DUTTERED /non-DUTTERED DAC	
Figure 62.	LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,	445
E imune 00	U.8 mm pltch, package outline	
Figure 63.	LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,	110
F ' A A	U.8 mm pitch, package recommended tootprint	
Figure 64.		
Figure 65.	LFBGA100 - 10 X 10 mm low profile fine pitch ball grid array package	110
F '		
Figure 66.	LFBGA100 – 100-ball low profile fine pitch ball grid array, 10 x 10 mm,	110
F '	0.8 mm pitch, package recommended footprintoutline	
Figure 67.		120
Figure 68.	WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, water-level chip-scale	101
- ;		121
Figure 69.	WLCSP64 - 64-ball, 4.4/5/ x 4.4049 mm, 0.5 mm pitch water level chip scale	100
- : - 0		
Figure 70.	LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline	123
Figure 71.	LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package	105
Figure 72.	LQFP144 marking example (package top view)	
Figure 73.	LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline	
Figure 74.	LQFP100 recommended footprint	128
Figure 75.	LQFP100 marking example (package top view)	129
Figure 76.	LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline	130
Figure 77.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint	131
Figure 78.	LQFP64 marking example (package top view)	132
Figure 79.	LQFP100 P _D max vs. T _A	135

2.3.6 LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high-performance solutions using external controllers with dedicated acceleration.

2.3.7 Nested vectored interrupt controller (NVIC)

The STM32F103xC, STM32F103xD and STM32F103xE performance line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M3) and 16 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving* higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.8 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines.

2.3.9 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow the configuration of the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed APB domain is 36 MHz. See *Figure 2* for details on the clock tree.

Advanced-control timers (TIM1 and TIM8)

The two advanced-control timers (TIM1 and TIM8) can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F103xC, STM32F103xD and STM32F103xE performance line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages.

The general-purpose timers can work together with the advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from

		Pir	าร			<u> </u>				Alternate functions ⁽⁴⁾		
LFBGA144	LFBGA100	WLCSP64	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap	
M11	K8	G2	33	51	73	PB12	I/O	FT	PB12	SPI2_NSS/I2S2_WS/ I2C2_SMBA/ USART3_CK ⁽⁹⁾ / TIM1_BKIN ⁽⁹⁾	-	
M12	J8	G1	34	52	74	PB13	I/O	FT	PB13	SPI2_SCK/I2S2_CK USART3_CTS ⁽⁹⁾ / TIM1_CH1N	-	
L11	H8	F2	35	53	75	PB14	I/O	FT	PB14	SPI2_MISO/TIM1_CH2N USART3_RTS ⁽⁹⁾ /	-	
L12	G8	F1	36	54	76	PB15	I/O	FT	PB15	SPI2_MOSI/I2S2_SD TIM1_CH3N ⁽⁹⁾ /	-	
L9	K9	-	-	55	77	PD8	I/O	FT	PD8	FSMC_D13	USART3_TX	
K9	J9	-	-	56	78	PD9	I/O	FT	PD9	FSMC_D14	USART3_RX	
J9	H9	-	-	57	79	PD10	I/O	FT	PD10	FSMC_D15	USART3_CK	
H9	G9	-	-	58	80	PD11	I/O	FT	PD11	FSMC_A16	USART3_CTS	
L10	K10	-	-	59	81	PD12	I/O	FT	PD12	FSMC_A17	TIM4_CH1 / USART3_RTS	
K10	J10	-	-	60	82	PD13	I/O	FT	PD13	FSMC_A18	TIM4_CH2	
G8	-	-	-	-	83	V _{SS_8}	S	-	V _{SS_8}	-	-	
F8	-	I	-	I	84	V_{DD_8}	S	-	V_{DD_8}	-	-	
K11	H10	I	-	61	85	PD14	I/O	FT	PD14	FSMC_D0	TIM4_CH3	
K12	G10	-	-	62	86	PD15	I/O	FT	PD15	FSMC_D1	TIM4_CH4	
J12	-	-	-	-	87	PG2	I/O	FT	PG2	FSMC_A12	-	
J11	-	-	-	-	88	PG3	I/O	FT	PG3	FSMC_A13	-	
J10	-	-	-	-	89	PG4	I/O	FT	PG4	FSMC_A14	-	
H12	-	-	-	-	90	PG5	I/O	FT	PG5	FSMC_A15	-	
H11	-	-	-	-	91	PG6	I/O	FT	PG6	FSMC_INT2	-	
H10	-	-	-	-	92	PG7	I/O	FT	PG7	FSMC_INT3	-	
G11	-	-	-	-	93	PG8	I/O	FT	PG8	-	-	
G10	-	-	-	-	94	V _{SS_9}	S	-	V _{SS_9}	-	-	
F10	-	-	-	-	95	V _{DD_9}	S	-	V _{DD_9}	-	-	

		Pir	าร							Alternate functions ⁽⁴⁾		
LFBGA144	LFBGA100	WLCSP64	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap	
A5	D4	-	-	97	141	PE0	I/O	FT	PE0	TIM4_ETR / FSMC_NBL0	-	
A4	C4	-	-	98	142	PE1	I/O	FT	PE1	FSMC_NBL1	-	
E5	E5	A7	63	99	143	V _{SS_3}	S	-	V _{SS_3}	-	-	
F5	F5	A8	64	100	144	V _{DD_3}	S	-	V _{DD_3}	-	-	

Table 5. High-density STM32F103xC/D/E pin definitions (continued)

1. I = input, O = output, S = supply.

2. FT = 5 V tolerant.

3. Function availability depends on the chosen device.

- 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
- PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
- 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
- 7. In the WCLSP64 package, the PC3 I/O pin is not bonded and it must be configured by software to output mode (Push-pull) and writing 0 to the data register in order to avoid an extra consumption during low-power modes.
- 8. Unlike in the LQFP64 package, there is no PC3 in the WLCSP package. The V_{REF+} functionality is provided instead.
- This alternate function can be remapped by software to some other port pins (if available on the used package). For more
 details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual,
 available from the STMicroelectronics website: www.st.com.
- 10. For the WCLSP64/LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100/BGA100 and LQFP144/BGA144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.
- 11. For devices delivered in LQFP64 packages, the FSMC function is not available.

				Ту		
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit
			72 MHz	29.5	6.4	
			48 MHz	20	4.6	
			36 MHz	15.1	3.6	
			24 MHz	10.4	2.6	
			16 MHz	7.2	2	
		External clock ⁽³⁾	8 MHz	3.9	1.3	
			4 MHz	2.6	1.2	
			2 MHz	1.85	1.15	
			1 MHz	1.5	1.1	
			500 kHz	1.3	1.05	m۸
	Supply current in Sleep mode		125 kHz	1.2	1.05	
'DD			64 MHz	25.6	5.1	
			48 MHz	19.4	4	
			36 MHz	14.5	3	
			24 MHz	9.8	2	
		Running on high speed internal RC	16 MHz	6.6	1.4	
		(HSI), AHB prescaler	8 MHz	3.3	0.7	
		used to reduce the frequency	4 MHz	2	0.6	
			2 MHz	1.25	0.55	
			1 MHz	0.9	0.5	
			500 kHz	0.7	0.45	
			125 kHz	0.6	0.45	

Table 19. Typical current consumption in Sleep mode, code running from Flash or RAM

1. Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 23*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	16	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	30	-	pF
i ₂	HSE driving current	V _{DD} = 3.3 V, V _{IN} = V _{SS} with 30 pF load	-	-	1	mA
9 _m	Oscillator transconductance	Startup	25	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

Fable 23. HSE 4-16 MHz oscillator characteristics ⁽¹⁾⁽²	2)
--	----

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 22*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

1. R_{EXT} value depends on the crystal characteristics.

DocID14611 Rev 12

5.3.10 FSMC characteristics

Asynchronous waveforms and timings

Figure 24 through *Figure 27* represent asynchronous waveforms and *Table 31* through *Table 34* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- AddressSetupTime = 0
- AddressHoldTime = 1
- DataSetupTime = 1

Figure 24. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Figure 37. PC Card/CompactFlash controller waveforms for I/O space write access

Table 39. Swi	itching characteristics	for PC Card/CF	read and write	cycles ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{v(NCEx-A)} t _{v(NCE4_1-A)}	FSMC_NCEx low (x = $4_1/4_2$) to FSMC_Ay valid (y = 010) FSMC_NCE4_1 low (x = $4_1/4_2$) to FSMC_Ay valid (y = 010)	-	0	ns
t _{h(NCEx-AI)} t _{h(NCE4_1-AI)}	FSMC_NCEx high (x = $4_1/4_2$) to FSMC_Ax invalid (x = 010) FSMC_NCE4_1 high (x = $4_1/4_2$) to FSMC_Ax invalid (x = 010)	2.5	-	ns
t _{d(NREG-NCEx)} t _{d(NREG-NCE4_1)}	FSMC_NCEx low to FSMC_NREG valid FSMC_NCE4_1 low to FSMC_NREG valid	-	5	ns
t _{h(NCEx-NREG)} t _{h(NCE4_} 1-NREG)	FSMC_NCEx high to FSMC_NREG invalid FSMC_NCE4_1 high to FSMC_NREG invalid	t _{HCLK} + 3	-	ns
t _{d(NCE4_1-NOE)}	FSMC_NCE4_1 low to FSMC_NOE low	-	5t _{HCLK} + 2	ns
t _{w(NOE)}	FSMC_NOE low width	8t _{HCLK} –1.5	8t _{HCLK} + 1	ns
t _{d(NOE-NCE4_1}	FSMC_NOE high to FSMC_NCE4_1 high	5t _{HCLK} + 2	-	ns
t _{su(D-NOE)}	FSMC_D[15:0] valid data before FSMC_NOE high	25	-	ns
t _{h(NOE-D)}	FSMC_D[15:0] valid data after FSMC_NOE high	15	-	ns
t _{w(NWE)}	FSMC_NWE low width	8t _{HCLK} – 1	8t _{HCLK} + 2	ns
t _{d(NWE-NCE4_1)}	FSMC_NWE high to FSMC_NCE4_1 high	5t _{HCLK} + 2	-	ns
t _{d(NCE4_1-NWE)}	FSMC_NCE4_1 low to FSMC_NWE low	-	5t _{HCLK} + 1.5	ns
t _{v(NWE-D)}	FSMC_NWE low to FSMC_D[15:0] valid	-	0	ns
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15:0] invalid	11t _{HCLK}	-	ns
t _{d(D-NWE)}	FSMC_D[15:0] valid before FSMC_NWE high	13t _{HCLK}	-	ns

NAND controller waveforms and timings

Figure 38 through *Figure 41* represent synchronous waveforms and *Table 39* provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC_SetupTime = 0x01;
- COM.FSMC_WaitSetupTime = 0x03;
- COM.FSMC_HoldSetupTime = 0x02;
- COM.FSMC_HiZSetupTime = 0x01;
- ATT.FSMC_SetupTime = 0x01;
- ATT.FSMC_WaitSetupTime = 0x03;
- ATT.FSMC_HoldSetupTime = 0x02;
- ATT.FSMC_HiZSetupTime = 0x01;
- Bank = FSMC_Bank_NAND;
- MemoryDataWidth = FSMC_MemoryDataWidth_16b;
- ECC = FSMC_ECC_Enable;
- ECCPageSize = FSMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0;

Figure 38. NAND controller waveforms for read access

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽²⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	V
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA	-	0.4	V
V _{OH} ⁽²⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	v

Table 47. Output voltage characteristics (continued)

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 8* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 8 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

4. Guaranteed by characterization results.

5.3.17 Communications interfaces

I²C interface characteristics

The STM32F103xC, STM32F103xD and STM32F103xESTM32F103xF and STM32F103xG performance line $\rm I^2C$ interface meets the requirements of the standard $\rm I^2C$ communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 51*. Refer also to *Section 5.3.14: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C ⁽¹⁾⁽²⁾		Fast mode I ² C ⁽¹⁾⁽²⁾		Unit	
		Min	Max	Min	Max		
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	110	
t _{w(SCLH)}	SCL clock high time 4.0 - 0.6		0.6	-	μο		
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs	
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs	
Cb	Capacitive load for each bus line	-	400	-	400	pF	
t _{SP}	Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode	0	50 ⁽⁴⁾	0	50 ⁽⁴⁾	μs	

Table 51. I²C characteristics

1. Guaranteed by design.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve the fast mode I²C frequencies and it must be a multiple of 10 MHz in order to reach the I2C fast mode maximum clock speed of 400 kHz.

3. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region on the falling edge of SCL.

4. The minimum width of the spikes filtered by the analog filter is above $t_{SP}(max)$.

Figure 52. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: 0.3 × V_{DD} and 0.7 × $V_{DD.}$
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 53. I²S master timing diagram (Philips protocol)⁽¹⁾

1. Guaranteed by characterization results.

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

5.3.21 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
TL	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅	Voltage at 25 °C	1.34	1.43	1.52	V
t _{START} ⁽¹⁾	Startup time	4	-	10	μs
T _{S_temp} ⁽²⁾⁽¹⁾	ADC sampling time when reading the temperature	-	-	17.1	μs

Table 64. TS characteristics

1. Guaranteed by design.

2. Shortest sampling time can be determined in the application by multiple iterations.

Device marking for LFBGA100 package

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.6 LQFP64 package information

Figure 76. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline

Table 73. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

^{1.} Drawing is not in scale.

Date	Revision	Changes
12-Dec-2008	4	Timers specified on page 1 (motor control capability mentioned). Section 2.2: Full compatibility throughout the family updated. Table 6: High-density timer feature comparison added. General-purpose timers (TIMx) and Advanced-control timers (TIM1 and TIM8) on page 27 updated. Figure 1: STM32F103xF, STM32F103xD and STM32F103xGSTM32F103xF and STM32F103xG performance line block diagram modified. Note 10 added, main function after reset and Note 5 on page 44 updated in Table 8: High-density STM32F103xx pin definitions. Note 2 modified below Table 11: Voltage characteristics on page 58, $ DV_{DDx} $ min and $ DV_{DDx} $ min removed. Note 2 and P _D values for LQFP144 and LFBGA144 packages added to Table 14: General operating conditions on page 59. Measurement conditions specified in Section 5.3.5: Supply current characteristics on page 62. Max values at T _A = 85 °C and T _A = 105 °C updated in Table 21: Typical and maximum current consumptions in Stop and Standby modes on page 68. Section 5.3.10: FSMC characteristics on page 111. I_{VREF} added to Table 67: ADC characteristics on page 130. Table 81: Package thermal characteristics on page 146 updated. Small text changes.

Table 76.Document revision history

Date	Revision	Changes
19-Apr-2011	8	Updated package choice for 103Rx in Table 2 Updated footnotes below Table 7: Voltage characteristics on page 43 and Table 8: Current characteristics on page 43 Updated tw min in Table 21: High-speed external user clock characteristics on page 58 Updated startup time in Table 24: LSE oscillator characteristics (fLSE = 32.768 kHz) on page 61 Updated note 2 in Table 51: I2C characteristics on page 97 Updated Figure 48: I2C bus AC waveforms and measurement circuit Updated Figure 47: Recommended NRST pin protection Updated Section 5.3.14: I/O port characteristics Updated Table 35: Synchronous multiplexed NOR/PSRAM read timings on page 73 Updated FSMC Figure 26 thru Figure 31 Updated FSMC Figure 48:: I2C bus AC waveforms for common memory write access and Figure 48:: I2C bus AC waveforms and measurement circuit Added Section 5.3.13: I/O current injection characteristics Updated Figure 67 and added Table 69: WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale package mechanical data on page 121 LQFP64 package mechanical data updated: see Figure 73.: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline and Table 73: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical
30-Sept-2014	9	data on page 130.Added Note 7 in Table 5: High-density STM32F103xC/D/E pin definitions on page 31.Updated Note 10 in Table 5: High-density STM32F103xC/D/E pin definitions on page 31.Modified Note 2 in Table 62: ADC accuracy on page 109 Modified Note 3 in Table 62: ADC accuracy on page 109 Modified notes in Table 51: I2C characteristics on page 97 Updated Figure 51: SPI timing diagram - master mode(1) on page 101
23-Feb-2015	10	Updated Figure 66.: BGA pad footprint, Figure 70: LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline, Figure 73.: LQFP100 - 14 x 14 mm 100 pin low-profile quad flat package outline, Figure 74.: LQFP100 recommended footprint, Figure 76.: LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package outline, Figure 77.: LQFP64 - 64- pin, 10 x 10 mm low-profile quad flat recommended footprint Added Figure 72.: LQFP144 marking example (package top view), Figure 75.: LQFP100 marking example (package top view), Figure 75.: LQFP100 marking example (package top view), Updated Table 72: LQPF100 - 14 x 14 mm 100-pin low-profile quad flat package mechanical data, Table 73: LQFP64 - 10 x 10 mm 64 pin low- profile quad flat package mechanical data

Table 76.Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID14611 Rev 12

