

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	80
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LFBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103veh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Device overview

The STM32F103xC/D/E high-density performance line family offers devices in six different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

Figure 1 shows the general block diagram of the device family.

I	Peripherals	STM	32F103F	₹x	ST	M32F10	3Vx	STM32F103Zx			
Flash m	emory in Kbytes	256	384	512	256	384	512	256	384	512	
SRAM i	n Kbytes	48	64	(1)	48	6	4	48 64			
FSMC		No				Yes ⁽²⁾			Yes		
	General-purpose	4									
Timers	Advanced-control					2					
	Basic					2					
	SPI(I ² S) ⁽³⁾		3(2)								
	I ² C		2								
Comm	USART	5									
	USB	1									
	CAN	1									
	SDIO	1									
GPIOs		51			80			112			
12-bit A Number	DC of channels	3 16			3 16			3 21			
12-bit D Number	AC of channels	2 2									
CPU fre	quency	72 MHz									
Operati	ng voltage	2.0 to 3.6 V									
Operatii	ng temperatures	Ambient temperatures: -40 to +85 °C /-40 to +105 °C (see <i>Table 10</i>) Junction temperature: -40 to + 125 °C (see <i>Table 10</i>)									
Package	e	LQFP6	4, WLCS	64 F	LQFP	100, BC	GA100	LQFP	144, BC	3A144	

Table 2. STM32F103xC, STM32F103xD and STM32F103xE features
and peripheral counts

1. 64 KB RAM for 256 KB Flash are available on devices delivered in CSP packages only.

 For the LQFP100 and BGA100 packages, only FSMC Bank1 and Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

3. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I^2S audio mode.

the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

2.3.18 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.3.19 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F103xC, STM32F103xD and STM32F103xE performance line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).

These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability.

The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s.

USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5.

2.3.20 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

All SPIs can be served by the DMA controller.

2.3.21 Inter-integrated sound (I²S)

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) are available, that can be operated in master or slave mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 48 kHz are supported. When either or both of the I²S interfaces is/are configured in master

DocID14611 Rev 12

Pinouts and pin descriptions

Figure 8. STM32F103xC/D/E performance line WLCSP64 ballout, ball side

		Pir	าร							Alternate functions ⁽⁴⁾		
LFBGA144	LFBGA100	WLCSP64	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap	
A3	A3	-	-	1	1	PE2	I/O	FT	PE2	TRACECK/ FSMC_A23	-	
A2	B3	-	-	2	2	PE3	I/O	FT	PE3	TRACED0/FSMC_A19	-	
B2	C3	-	-	3	3	PE4	I/O	FT	PE4	TRACED1/FSMC_A20	-	
B3	D3	-	-	4	4	PE5	I/O	FT	PE5	TRACED2/FSMC_A21	-	
B4	E3	-	-	5	5	PE6	I/O	FT	PE6	TRACED3/FSMC_A22	-	
C2	B2	C6	1	6	6	V _{BAT}	S	-	V _{BAT}	-	-	
A1	A2	C8	2	7	7	PC13-TAMPER- RTC ⁽⁵⁾	I/O	-	PC13 ⁽⁶⁾	TAMPER-RTC	-	
B1	A1	B8	3	8	8	PC14- OSC32_IN ⁽⁵⁾	I/O	-	PC14 ⁽⁶⁾	OSC32_IN	-	
C1	B1	В7	4	9	9	PC15- OSC32_OUT ⁽⁵⁾	I/O	-	PC15 ⁽⁶⁾	OSC32_OUT	-	
C3	-	-	-	-	10	PF0	I/O	FT	PF0	FSMC_A0	-	
C4	-	-	-	-	11	PF1	I/O	FT	PF1	FSMC_A1	-	
D4	-	-	-	-	12	PF2	I/O	FT	PF2	FSMC_A2	-	
E2	-	-	-	-	13	PF3	I/O	FT	PF3	FSMC_A3	-	
E3	-	-	-	-	14	PF4	I/O	FT	PF4	FSMC_A4	-	
E4	-	-	-	-	15	PF5	I/O	FT	PF5	FSMC_A5	-	
D2	C2	-	I	10	16	V _{SS_5}	S	-	V_{SS_5}	-	-	
D3	D2	-	-	11	17	V _{DD_5}	S	-	V_{DD_5}	-	-	
F3	-	-	-	-	18	PF6	I/O	-	PF6	ADC3_IN4/FSMC_NIORD	-	
F2	-	-	-	-	19	PF7	I/O	-	PF7	ADC3_IN5/FSMC_NREG	-	
G3	-	-	-	-	20	PF8	I/O	-	PF8	ADC3_IN6/FSMC_NIOWR	-	
G2	-	-	-	-	21	PF9	I/O	-	PF9	ADC3_IN7/FSMC_CD	-	
G1	-	-	-	-	22	PF10	I/O	-	PF10	ADC3_IN8/FSMC_INTR	-	
D1	C1	D8	5	12	23	OSC_IN	Ι	-	OSC_IN	-	-	
E1	D1	D7	6	13	24	OSC_OUT	0	-	OSC_OUT	-	-	
F1	E1	C7	7	14	25	NRST	I/O	-	NRST	-	-	
H1	F1	E8	8	15	26	PC0	I/O	-	PC0	ADC123_IN10	-	
H2	F2	F8	9	16	27	PC1	I/O	-	PC1	ADC123_IN11	-	

Table 5. High-density STM32F103xC/D/E pin definitions

		Pir	าร							Alternate funct	tions ⁽⁴⁾
LFBGA144	LFBGA100	WLCSP64	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
H3	E2	D6	10	17	28	PC2	I/O	-	PC2	ADC123_IN12	-
H4	F3	-	11	18	29	PC3 ⁽⁷⁾	I/O	-	PC3	ADC123_IN13	-
J1	G1	E7	12	19	30	V _{SSA}	S	-	V _{SSA}	-	-
K1	H1	-	-	20	31	V _{REF-}	S	-	V _{REF-}	-	-
L1	J1	F7 (8)	-	21	32	V _{REF+}	s	-	V _{REF+}	-	-
M1	K1	G8	13	22	33	V _{DDA}	S	-	V _{DDA}	-	-
J2	G2	F6	14	23	34	PA0-WKUP	I/O	-	PA0	WKUP/USART2_CTS ⁽⁹⁾ ADC123_IN0 TIM2_CH1_ETR TIM5_CH1/TIM8_ETR	-
K2	H2	E6	15	24	35	PA1	I/O	-	PA1	USART2_RTS ⁽⁹⁾ ADC123_IN1/ TIM5_CH2/TIM2_CH2 ⁽⁹⁾	-
L2	J2	H8	16	25	36	PA2	I/O	-	PA2	USART2_TX ⁽⁹⁾ /TIM5_CH3 ADC123_IN2/ TIM2_CH3 ⁽⁹⁾	-
M2	K2	G7	17	26	37	PA3	I/O	-	PA3	USART2_RX ⁽⁹⁾ /TIM5_CH4 ADC123_IN3/TIM2_CH4 ⁽⁹⁾	-
G4	E4	F5	18	27	38	V _{SS_4}	S	-	V _{SS_4}	-	-
F4	F4	G6	19	28	39	V _{DD_4}	S	-	V _{DD_4}	-	-
J3	G3	H7	20	29	40	PA4	I/O	-	PA4	SPI1_NSS ⁽⁹⁾ / USART2_CK ⁽⁹⁾ DAC_OUT1/ADC12_IN4	-
K3	H3	E5	21	30	41	PA5	I/O	-	PA5	SPI1_SCK ⁽⁹⁾ DAC_OUT2 ADC12_IN5	-
L3	J3	G5	22	31	42	PA6	I/O	-	PA6	SPI1_MISO ⁽⁹⁾ TIM8_BKIN/ADC12_IN6 TIM3_CH1 ⁽⁹⁾	TIM1_BKIN
М3	К3	G4	23	32	43	PA7	I/O	-	PA7	SPI1_MOSI ⁽⁹⁾ / TIM8_CH1N/ADC12_IN7 TIM3_CH2 ⁽⁹⁾	TIM1_CH1N
J4	G4	H6	24	33	44	PC4	I/O	-	PC4	ADC12_IN14	-
K4	H4	H5	25	34	45	PC5	I/O	-	PC5	ADC12_IN15	-

Table 5. High-density STM32F103xC/D/E pin definitions (continued)

Symphol	Deremeter	Conditions	4	Ма	ıx ⁽¹⁾	Unit
Symbol	Parameter	Conditions	HCLK	T _A = 85 °C	T _A = 105 °C	Unit
			72 MHz	45	46	
		External clock ⁽²⁾ , all peripherals enabled	48 MHz	31	32	
			36 MHz	24	25	
			24 MHz	17	17.5	
			16 MHz	12.5	13	
	Supply current		8 MHz	8	8	mA
DD	in Sleep mode		72 MHz	8.5	9	
			48 MHz	7	7.5	
		External clock ⁽²⁾ , all	36 MHz	6	6.5	
		peripherals disabled	24 MHz	5	5.5	
			16 MHz	4.5	5	
			8 MHz	4	4	

Table 16. Maximum current consumption in Sleep mode, code running from Flash or RAM

1. Guaranteed by characterization results at V_{DD} max, f_{HCLK} max with peripherals enabled.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

				Typ ⁽¹⁾		М	ax	
Symbol	Parameter	Conditions	V _{DD} /V _{BAT} = 2.0 V	V _{DD} /V _{BAT} = 2.4 V	V _{DD} /V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current	Regulator in run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	34.5	35	379	1130	
	in Stop mode	Regulator in low-power mode, low- speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	24.5	25	365	1110	
		Low-speed internal RC oscillator and independent watchdog ON	-	3	3.8	-	-	μA
	Supply current in Standby	Low-speed internal RC oscillator ON, independent watchdog OFF	-	2.8	3.6	-	-	
	mode	Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF	-	1.9	2.1	5 ⁽²⁾	6.5 ⁽²⁾	
I _{DD_VBAT}	Backup domain supply current	Low-speed oscillator and RTC ON	1.05	1.1	1.4	2 ⁽²⁾	2.3 ⁽²⁾	

Table 17. Typical and maximum current consumptions in Stop and Standby modes

1. Typical values are measured at T_A = 25 °C.

2. Guaranteed by characterization results.

Figure 16. Typical current consumption on $\rm V_{BAT}$ with RTC on vs. temperature at different $\rm V_{BAT}$ values

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 21* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	25	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7 V_{\text{DD}}$	-	V_{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle	-	45	-	55	%
١Ľ	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 21. High-speed external user clock characteristics

1. Guaranteed by design.

Low-speed external user clock generated from an external source

The characteristics given in *Table 22* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz	
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V	
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}		
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ne	
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115	
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF	
DuCy _(LSE)	Duty cycle	-	30	-	70	%	
١ _L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA	

Table 22. Low-speed external user clock characteristics

1. Guaranteed by design.

58/144

Figure 20. High-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 23*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	16	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	30	-	pF
i ₂	HSE driving current	V _{DD} = 3.3 V, V _{IN} = V _{SS} with 30 pF load	-	-	1	mA
9 _m	Oscillator transconductance	Startup	25	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

Fable 23. HSE 4-16 MHz oscillator characteristics ⁽¹⁾⁽²	2)
--	----

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 22*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

1. R_{EXT} value depends on the crystal characteristics.

DocID14611 Rev 12

Figure 23. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in *Table 25* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{HSI}	Frequency	-		-	8	-	MHz
DuCy _(HSI)	Duty cycle	-	45	-	55	%	
ACC _{HSI}		User-trimmed register ⁽²⁾	-	-	1 ⁽³⁾	%	
	Accuracy of the HSI oscillator		$T_A = -40$ to 105 °C	-2	-	2.5	%
		Factory- calibrated ⁽⁴⁾	T _A = −10 to 85 °C	-1.5	-	2.2	%
			T _A = 0 to 70 °C	-1.3	-	2	%
			T _A = 25 °C	-1.1	-	1.8	%
t _{su(HSI)} ⁽⁴⁾	HSI oscillator startup time	-	1	-	2	μs	
I _{DD(HSI)} ⁽⁴⁾	HSI oscillator power consumption	-		-	80	100	μA

Table 25. HSI oscillator characteristics⁽¹⁾

1. V_{DD} = 3.3 V, T_A = –40 to 105 $^\circ C$ unless otherwise specified.

 Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website <u>www.st.com</u>.

3. Guaranteed by design.

4. Guaranteed by characterization results.

Low-speed internal (LSI) RC oscillator

Table 26. LS	l oscillator	characteristics	(1))
--------------	--------------	-----------------	-----	---

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽²⁾	Frequency	30	40	60	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	0.65	1.2	μA

1. V_{DD} = 3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by characterization results.

3. Guaranteed by design.

Wakeup time from low-power mode

The wakeup times given in *Table 27* is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Тур	Unit
t _{WUSLEEP} ⁽¹⁾	Wakeup from Sleep mode	1.8	μs
t(1)	Wakeup from Stop mode (regulator in run mode)	3.6	116
WUSTOP ?	Wakeup from Stop mode (regulator in low-power mode)	5.4	μο
t _{WUSTDBY} ⁽¹⁾	Wakeup from Standby mode	50	μs

Table 27. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction.

5.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 41*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP144, T _A = +25 °C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$\label{eq:VDD} \begin{array}{l} V_{DD} = 3.3 \text{ V}, \text{LQFP144}, \text{T}_{\text{A}} = +25 \\ ^{\circ}\text{C}, \\ \text{f}_{\text{HCLK}} = 72 \text{ MHz} \\ \text{conforms to IEC 61000-4-4} \end{array}$	4A

Table 41. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

Figure 42. Standard I/O input characteristics - CMOS port

Figure 43. Standard I/O input characteristics - TTL port

Figure 44. 5 V tolerant I/O input characteristics - CMOS port

5.3.18 CAN (controller area network) interface

Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

5.3.19 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 59* are preliminary values derived from tests performed under ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 10*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply	-	2.4	-	3.6	V
V _{REF+}	Positive reference voltage	-	2.4	-	V _{DDA}	V
V _{REF-}	Negative reference voltage	-	0			V
I _{VREF}	Current on the V_{REF} input pin	-	-	160 ⁽¹⁾	220	μA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
f _S ⁽²⁾	Sampling rate	-	0.05	-	1	MHz
f (2)	External trigger frequency	f _{ADC} = 14 MHz	-	-	823	kHz
^I TRIG` ′	External ingger requercy	-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 60</i> for details	-	-	50	кΩ
R _{ADC} ⁽²⁾	Sampling switch resistance	-	-	-	1	κΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
+ (2)	Calibration time	f _{ADC} = 14 MHz	5.9			μs
'CAL`		-	83			1/f _{ADC}
+ (2)	Injection trigger conversion	f _{ADC} = 14 MHz	-	-	0.214	μs
4at` ´	latency	-	-	-	3 ⁽⁴⁾	1/f _{ADC}
+ (2)	Regular trigger conversion	f _{ADC} = 14 MHz	-	-	0.143	μs
4atr` ´	latency	-	-	-	2 ⁽⁴⁾	1/f _{ADC}
+ (2)	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
LS.		-	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	0	0	1	μs
	Total conversion time	f _{ADC} = 14 MHz	1	-	18	μs
t _{CONV} ⁽²⁾	(including sampling time)	-	14 to 252 (t _S for sa successive approx	mpling - imation)	+12.5 for	1/f _{ADC}

Table 59. ADC characteristics

Figure 58. Typical connection diagram using the ADC

1. Refer to Table 59 for the values of R_{AIN} , R_{ADC} and C_{ADC} .

C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 59* or *Figure 60*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

5.3.20 DAC electrical specifications

Symbol	Parameter	Min	Тур	Мах	Unit	Comments
V _{DDA}	Analog supply voltage	2.4	-	3.6	V	-
V _{REF+}	Reference supply voltage	2.4	-	3.6	V	V_{REF^+} must always be below V_{DDA}
V _{SSA}	Ground	0	-	0	V	-
R _{LOAD} ⁽¹⁾	Resistive load with buffer ON	5	-	-	kΩ	-
R ₀ ⁽²⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	and (0x155) and (0xEAB) at $V_{REF+} = 3.0 \text{ V}$ 2.4 V
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{REF+} – 1LSB	V	excursion of the DAC.
I _{DDVREF+}	DAC DC current consumption in quiescent mode (Standby mode)	-	-	220	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
	DAC DC current	-	-	380	μA	With no load, middle code (0x800) on the inputs
I _{DDA}	consumption in quiescent mode ⁽³⁾	_	-	480	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽⁴⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration
	consecutive code-1LSB)		-	±2	LSB	Given for the DAC in 12-bit configuration
	Integral non linearity (difference between	-	-	±1	LSB	Given for the DAC in 10-bit configuration
INL ⁽³⁾	(3) measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)		-	±4	LSB	Given for the DAC in 12-bit configuration

Tahlo	63	DAC	characteristics
Table	65.	DAC	characteristics

Symbol	Parameter	Min	Тур	Мах	Unit	Comments
	Offset error	-	-	±10	mV	-
Offset ⁽³⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
	(0x800) and the ideal value = V _{REF+} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V
Gain error ⁽³⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12bit configuration
tsettling ⁽³⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	-	3	4	μs	C_{LOAD} ≤ 50 pF, R_{LOAD} ≥ 5 kΩ
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)		-	1	MS/s	$C_{LOAD} \le 50 \text{ pF}, \text{ R}_{LOAD} \ge 5 \text{ k}\Omega$
t _{wakeup} (3)	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5 \text{ k}\Omega$ input code between lowest and highest possible ones.
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

Table 63. DAC characteristics (continued)

1. Guaranteed by design.

2. Guaranteed by characterization.

3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

4. Guaranteed by characterization results.

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

	incenanical data					
Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

Table 67. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 66. LFBGA100 – 100-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package recommended footprintoutline

Table 68. LFBGA100 recommended PCB design rules (0.8 mm pitch BGA)

Dimension	Recommended values
Pitch	0.8
Dpad	0.500 mm
Dsm	0.570 mm typ. (depends on the soldermask reg- istration tolerance)
Stencil opening	0.500 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.120 mm

	Table 76.Document revision history				
Date	Revision	Changes			
Date	Revision	Changes I/O information clarified on page 1. Figure 4: STM32F103xC and STM32F103xE performance line BGA100 ballout corrected. I/O information clarified on page 1. In Table 5: High-density STM32F103xx pin definitions: - I/O level of pins PF11, PF12, PF13, PF14, PF15, G0, G1 and G15 updated - PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column PG14 pin description modified in Table 6: FSMC pin definition. Figure 9: Memory map on page 54 modified. Note medified in Table 18: Maximum current consumption in Pun			
		Note modified in Table 18: Maximum current consumption in Run mode, code with data processing running from Flash and Table 20: Maximum current consumption in Sleep mode, code running from Flash or RAM. Figure 17, Figure 18 and Figure 19 show typical curves (titles changed). Table 25: High-speed external user clock characteristics and Table 26: Low-speed external user clock characteristics modified. ACC _{HSI} max values modified in Table 29: HSI oscillator characteristics. FSMC configuration modified for Asynchronous waveforms and timings. Notes modified below Figure 24: Asynchronous non-			
30-Mar-2009	0-Mar-2009 5	multiplexed SRAM/PSRAM/NOR read waveforms and Figure 25: Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms. t _{w(NADV)} values modified in Table 35: Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings and Table 39: Asynchronous multiplexed PSRAM/NOR write timings. t _{h(Data_NWE)} modified in Table 36: Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings In Table 41: Synchronous multiplexed PSRAM write timings and			
		Table 43: Synchronous non-multiplexed PSRAM write timings:- $t_{v(Data-CLK)}$ renamed as $t_{d(CLKL-Data)}$ - $t_{d(CLKL-Data)}$ min value removed and max value added- $t_{d(CLKL-Data)}$ min value removed and max value added- $t_{h(CLKL-DV)} / t_{h(CLKL-ADV)}$ removedFigure 28: Synchronous multiplexed NOR/PSRAM read timings,Figure 29: Synchronous multiplexed PSRAM write timings andFigure 31: Synchronous non-multiplexed PSRAM write timingsmodified.Figure 52: I2S slave timing diagram (Philips protocol)(1) and Figure 53:I2S master timing diagram (Philips protocol)(1) modified.WLCSP64 package added (see Figure 8: STM32F103xC andSTM32F103xE performance line WLCSP64 ballout, ball side, Table 8:High-density STM32F103xx pin definitions, Figure 65: WLCSP, 64-ball4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale packageoutline and Table 76: WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mmpitch, wafer-level chip-scale package mechanical data).Small text changes.			

Table 76 Document revision histo

