

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	80
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LFBGA
Supplier Device Package	100-LFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103veh6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8	Revi	sion his	tory
7	Part	number	ing
		6.7.2	Selecting the product temperature range
		6.7.1	Reference document
	6.7	Therma	al characteristics
	6.6	LQFP6	4 package information 130
	6.5	LQFP1	00 package information
	6.4	LQFP1	44 package information
	6.3	WLCS	P64 package information 121
	6.2	LFBGA	100 package information 118
	6.1	LFBGA	144 package information 115
6	Pack	age info	ormation
		5.3.21	Temperature sensor characteristics
		5.3.20	DAC electrical specifications

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F103xC, STM32F103xD and STM32F103xE high-density performance line microcontrollers. For more details on the whole STMicroelectronics STM32F103xC/D/E family, please refer to *Section 2.2: Full compatibility throughout the family*.

The high-density STM32F103xC/D/E datasheet should be read in conjunction with the STM32F10xxx reference manual.

For information on programming, erasing and protection of the internal Flash memory please refer to the *STM32F10xxx* Flash programming manual. The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the *www.arm.com* website at the following address: *http://infocenter.arm.com*.

2 Description

The STM32F103xC, STM32F103xD and STM32F103xE performance line family incorporates the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a 72 MHz frequency, high-speed embedded memories (Flash memory up to 512 Kbytes and SRAM up to 64 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer three 12-bit ADCs, four general-purpose 16-bit timers plus two PWM timers, as well as standard and advanced communication interfaces: up to two I²Cs, three SPIs, two I²Ss, one SDIO, five USARTs, an USB and a CAN.

The STM32F103xC/D/E high-density performance line family operates in the -40 to +105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

These features make the STM32F103xC/D/E high-density performance line microcontroller family suitable for a wide range of applications such as motor drives, application control, medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems video intercom, and HVAC.

2.3 Overview

2.3.1 ARM[®] Cortex[®]-M3 core with embedded Flash and SRAM

The ARM Cortex[®]-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM Cortex[®]-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

With its embedded ARM core, STM32F103xC, STM32F103xD and STM32F103xE performance line family is compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the device family.

2.3.2 Embedded Flash memory

Up to 512 Kbytes of embedded Flash is available for storing programs and data.

2.3.3 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.3.4 Embedded SRAM

Up to 64 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.5 FSMC (flexible static memory controller)

The FSMC is embedded in the STM32F103xC, STM32F103xD and STM32F103xE performance line family. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR and NAND.

Functionality overview:

- The three FSMC interrupt lines are ORed in order to be connected to the NVIC
- Write FIFO
- Code execution from external memory except for NAND Flash and PC Card
- The targeted frequency, f_{CLK}, is HCLK/2, so external access is at 36 MHz when HCLK is at 72 MHz and external access is at 24 MHz when HCLK is at 48 MHz

2.3.10 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from user Flash: you have an option to boot from any of two memory banks. By default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash memory bank 2 by setting a bit in the option bytes.
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1.

2.3.11 **Power supply schemes**

- V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA} , $V_{DDA} = 2.0$ to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.
- V_{BAT} = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 12: Power supply scheme*.

2.3.12 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to *Table 12: Embedded reset and power control block characteristics* for the values of $V_{POR/PDR}$ and V_{PVD} .

2.3.13 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in the nominal regulation mode (Run)
- LPR is used in the Stop modes.
- Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode.

periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.17 Timers and watchdogs

The high-density STM32F103xC/D/E performance line devices include up to two advancedcontrol timers, up to four general-purpose timers, two basic timers, two watchdog timers and a SysTick timer.

Table 4 compares the features of the advanced-control, general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs				
TIM1, TIM8	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes				
TIM2, TIM3, TIM4, TIM5	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No				
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No				

 Table 4. High-density timer feature comparison

Pins						nign-density S		52F1	IU3XC/D/E PI	n definitions (continued	-
	1	Pir	ıs	1	1					Alternate funct	tions ⁽⁺⁾
LFBGA144	LFBGA100	WLCSP64	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
M11	K8	G2	33	51	73	PB12	I/O	FT	PB12	SPI2_NSS/I2S2_WS/ I2C2_SMBA/ USART3_CK ⁽⁹⁾ / TIM1_BKIN ⁽⁹⁾	-
M12	J8	G1	34	52	74	PB13	I/O	FT	PB13	SPI2_SCK/I2S2_CK USART3_CTS ⁽⁹⁾ / TIM1_CH1N	-
L11	H8	F2	35	53	75	PB14	I/O	FT	PB14	SPI2_MISO/TIM1_CH2N USART3_RTS ⁽⁹⁾ /	-
L12	G8	F1	36	54	76	PB15	I/O	FT	PB15	SPI2_MOSI/I2S2_SD TIM1_CH3N ⁽⁹⁾ /	-
L9	K9	-	-	55	77	PD8	I/O	FT	PD8	FSMC_D13	USART3_TX
K9	J9	-	-	56	78	PD9	I/O	FT	PD9	FSMC_D14	USART3_RX
J9	H9	-	-	57	79	PD10	I/O	FT	PD10	FSMC_D15	USART3_CK
H9	G9	-	-	58	80	PD11	I/O	FT	PD11	FSMC_A16	USART3_CTS
L10	K10	-	-	59	81	PD12	I/O	FT	PD12	FSMC_A17	TIM4_CH1 / USART3_RTS
K10	J10	-	-	60	82	PD13	I/O	FT	PD13	FSMC_A18	TIM4_CH2
G8	-	-	-	-	83	V _{SS_8}	S	-	V _{SS_8}	-	-
F8	-	-	-	-	84	V _{DD_8}	S	-	V _{DD_8}	-	-
K11	H10	-	-	61	85	PD14	I/O	FT	PD14	FSMC_D0	TIM4_CH3
K12	G10	-	-	62	86	PD15	I/O	FT	PD15	FSMC_D1	TIM4_CH4
J12	-	-	-	-	87	PG2	I/O	FT	PG2	FSMC_A12	-
J11	-	-	-	-	88	PG3	I/O	FT	PG3	FSMC_A13	-
J10	-	-	-	-	89	PG4	I/O	FT	PG4	FSMC_A14	-
H12	-	-	-	-	90	PG5	I/O	FT	PG5	FSMC_A15	-
H11	-	-	-	-	91	PG6	I/O	FT	PG6	FSMC_INT2	-
H10	-	-	-	-	92	PG7	I/O	FT	PG7	FSMC_INT3	-
G11	-	-	-	-	93	PG8	I/O	FT	PG8	-	-
G10	-	-	-	-	94	V _{SS_9}	S	-	V _{SS_9}	-	-
F10	-	-	-	-	95	V_{DD_9}	S	-	V_{DD_9}	-	-

Table 5. High-density STM32F103xC/D/E pin definitions (continued)	C/D/E pin definitions (continued)
---	-----------------------------------

		Pir	IS							Alternate functions ⁽⁴⁾			
LFBGA144	LFBGA100	WLCSP64	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap		
A5	D4	-	-	97	141	PE0	I/O	FT	PE0	TIM4_ETR / FSMC_NBL0	-		
A4	C4	-	-	98	142	PE1	I/O	FT	PE1	FSMC_NBL1	-		
E5	E5	A7	63	99	143	V _{SS_3}	S	-	V _{SS_3}	-	-		
F5	F5	A8	64	100	144	V_{DD_3}	S	-	V _{DD_3}	-	_		

Table 5. High-density STM32F103xC/D/E pin definitions (continued)

1. I = input, O = output, S = supply.

2. FT = 5 V tolerant.

3. Function availability depends on the chosen device.

- 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
- PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
- 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
- 7. In the WCLSP64 package, the PC3 I/O pin is not bonded and it must be configured by software to output mode (Push-pull) and writing 0 to the data register in order to avoid an extra consumption during low-power modes.
- 8. Unlike in the LQFP64 package, there is no PC3 in the WLCSP package. The V_{REF+} functionality is provided instead.
- This alternate function can be remapped by software to some other port pins (if available on the used package). For more
 details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual,
 available from the STMicroelectronics website: www.st.com.
- 10. For the WCLSP64/LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100/BGA100 and LQFP144/BGA144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.
- 11. For devices delivered in LQFP64 packages, the FSMC function is not available.

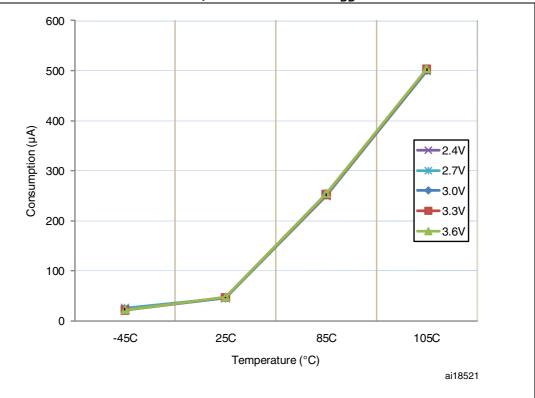
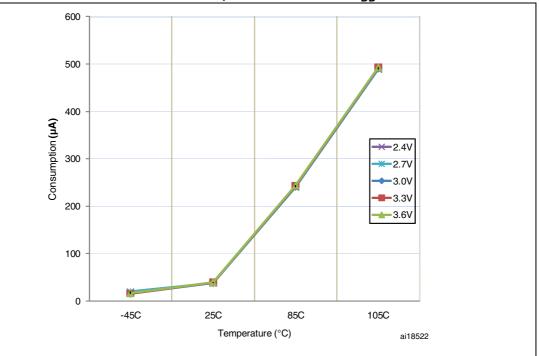



Figure 17. Typical current consumption in Stop mode with regulator in run mode versus temperature at different V_{DD} values

Figure 18. Typical current consumption in Stop mode with regulator in low-power mode versus temperature at different V_{DD} values

DocID14611 Rev 12

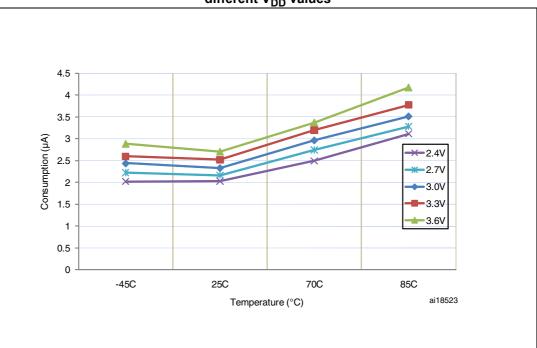


Figure 19. Typical current consumption in Standby mode versus temperature at different $\rm V_{DD}$ values

Typical current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHZ and 2 wait states above).
- Ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.
- Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)

When the peripherals are enabled $f_{PCLK1} = f_{HCLK}/4$, $f_{PCLK2} = f_{HCLK}/2$, $f_{ADCCLK} = f_{PCLK2}/4$

				Туј	p ⁽¹⁾	
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit
			72 MHz	51	30.5	
			48 MHz	34.6	20.7	
			36 MHz	26.6	16.2	
			24 MHz	18.5	11.4	
			16 MHz	12.8	8.2	
		External clock ⁽³⁾	8 MHz	7.2	5	mA
			4 MHz	4.2	3.1	
	Supply current in Run mode		2 MHz	2.7	2.1	
			1 MHz	2	1.7	
			500 kHz	1.6	1.4	
I _{DD}			125 kHz	1.3	1.2	
DD			64 MHz	45	27	
			48 MHz	34	20.1	
			36 MHz	26	15.6	
		Running on high	24 MHz	17.9	10.8	
		speed internal RC	16 MHz	12.2	7.6	
		(HSI), AHB prescaler used to	8 MHz	6.6	4.4	mA
		reduce the	4 MHz	3.6	2.5	
		frequency	2 MHz	2.1	1.5	
			1 MHz	1.4	1.1	
			500 kHz	1	0.8	
			125 kHz	0.7	0.6	

Table 18. Typical current consumption in Run mode, code with data processing
running from Flash

1. Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

5.3.8 PLL characteristics

The parameters given in *Table 28* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Devementer		Unit		
	Parameter	Min	Тур	Max ⁽¹⁾	Unit
£	PLL input clock ⁽²⁾	1	8.0	25	MHz
f _{PLL_IN}	PLL input clock duty cycle	40	-	60	%
f _{PLL_OUT}	PLL multiplier output clock	16	-	72	MHz
t _{LOCK}	PLL lock time	-	-	200	μs
Jitter	Cycle-to-cycle jitter	-	-	300	ps

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by $f_{\text{PLL}_{OUT}}$.

5.3.9 Memory characteristics

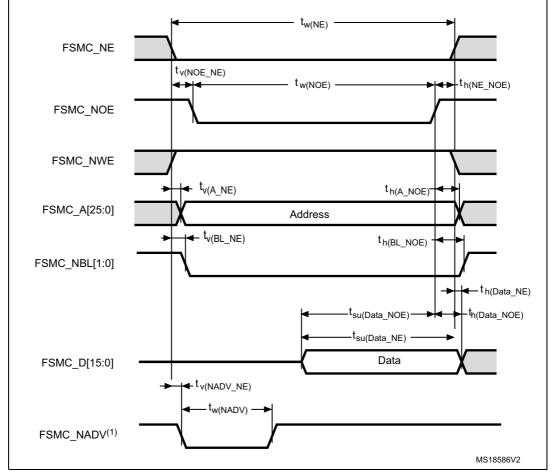
Flash memory

The characteristics are given at T_A = -40 to 105 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	$T_A = -40$ to +105 °C	40	52.5	70	μs
t _{ERASE}	Page (2 KB) erase time	$T_A = -40$ to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	$T_A = -40$ to +105 °C	20	-	40	ms
		Read mode f _{HCLK} = 72 MHz with 2 wait states, V _{DD} = 3.3 V	-	-	28	mA
I _{DD}	Supply current	Write mode f _{HCLK} = 72 MHz, V _{DD} = 3.3 V	-	-	7	mA
		Erase mode f _{HCLK} = 72 MHz, V _{DD} = 3.3 V	-	-	5	mA
		Power-down mode / Halt, V_{DD} = 3.0 to 3.6 V	-	-	50	μA
V _{prog}	Programming voltage	-	2	-	3.6	V

Table 29. Flash memory characteristics

1. Guaranteed by design.


5.3.10 FSMC characteristics

Asynchronous waveforms and timings

Figure 24 through *Figure 27* represent asynchronous waveforms and *Table 31* through *Table 34* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- AddressSetupTime = 0
- AddressHoldTime = 1
- DataSetupTime = 1

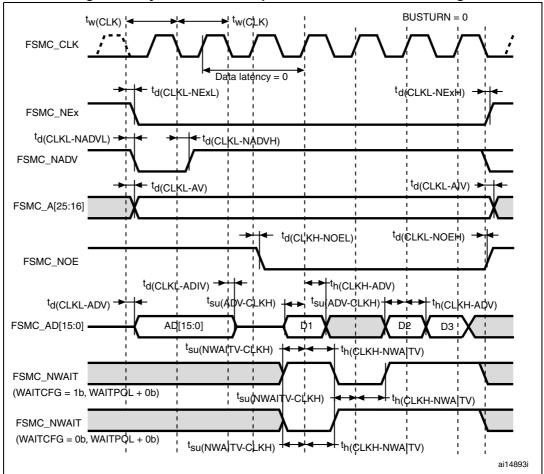
Figure 24. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

	-		•	
Symbol	Parameter	Min	Мах	Unit
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC_NADV high	t _{HCLK} – 3	-	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	4t _{HCLK}	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	1.6	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	t _{HCLK} – 1.5	-	ns
t _{v(Data_NADV)}	FSMC_NADV high to Data valid	-	t _{HCLK} + 1.5	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	t _{HCLK} – 5	-	ns

 Table 34. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾⁽²⁾

1. C_L = 15 pF.


2. BGuaranteed by characterization results.

Synchronous waveforms and timings

Figure 28 through *Figure 31* represent synchronous waveforms and *Table 36* through *Table 38* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- BurstAccessMode = FSMC_BurstAccessMode_Enable;
- MemoryType = FSMC_MemoryType_CRAM;
- WriteBurst = FSMC_WriteBurst_Enable;
- CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual)
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

Figure 28. Synchronous multiplexed NOR/PSRAM read timings

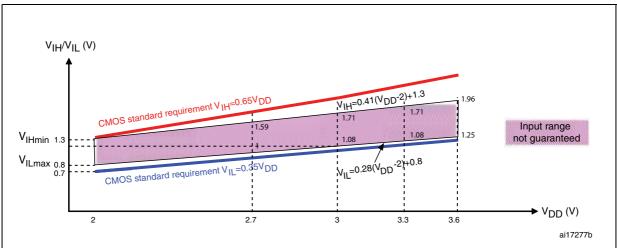


Figure 42. Standard I/O input characteristics - CMOS port

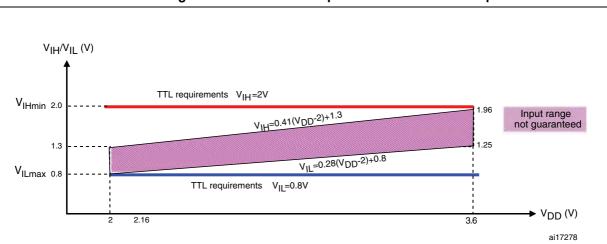
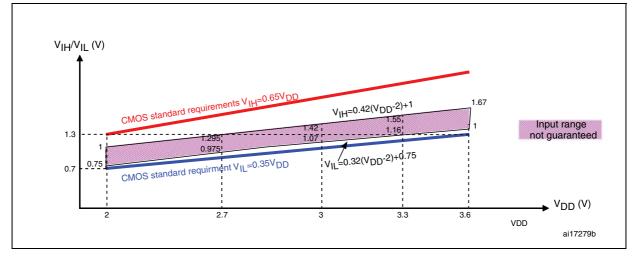



Figure 43. Standard I/O input characteristics - TTL port

Figure 44. 5 V tolerant I/O input characteristics - CMOS port

5.3.18 CAN (controller area network) interface

Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

5.3.19 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 59* are preliminary values derived from tests performed under ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 10*.

Note: It is recommended to perform a calibration after each power-up.

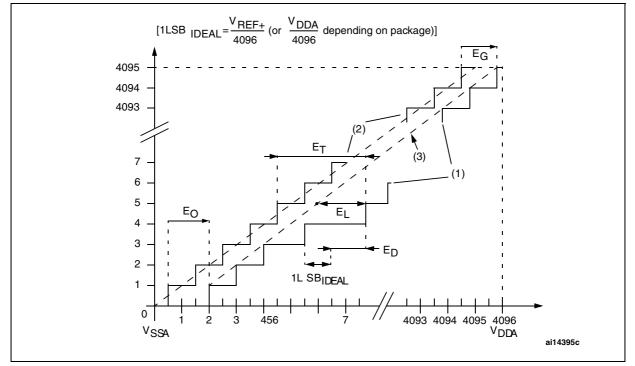
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply	-	2.4	-	3.6	V
V _{REF+}	Positive reference voltage	-	2.4	-	V _{DDA}	V
V _{REF-}	Negative reference voltage	-	0	•		V
I _{VREF}	Current on the V _{REF} input pin	-	-	160 ⁽¹⁾	220	μA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
f _S ⁽²⁾	Sampling rate	-	0.05	-	1	MHz
£ (2)	External trigger frequency	f _{ADC} = 14 MHz	-	-	823	kHz
f _{TRIG} ⁽²⁾	External trigger frequency	-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾ - 0 (V _{SSA} or V _R tied to ground		0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 60</i> for details	-	-	50	κΩ
R _{ADC} ⁽²⁾	Sampling switch resistance	-	-	-	1	κΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
+ (2)	Collibration time	f _{ADC} = 14 MHz	5.	μs		
t _{CAL} ⁽²⁾	Calibration time	-	83			1/f _{ADC}
t _{lat} (2)	Injection trigger conversion	f _{ADC} = 14 MHz	-	-	0.214	μs
⁴ lat` ′	latency	-	-	-	3 ⁽⁴⁾	1/f _{ADC}
t _{latr} (2)	Regular trigger conversion	f _{ADC} = 14 MHz	-	-	0.143	μs
'latr' '	latency	-	-	-	2 ⁽⁴⁾	1/f _{ADC}
ts ⁽²⁾	Compling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
ι _{S`} ΄	Sampling time	-	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	0	0	1	μs
		f _{ADC} = 14 MHz	1	-	18	μs
t _{CONV} ⁽²⁾	Total conversion time (including sampling time)	-	14 to 252 (t _S for sampling +12.5 for successive approximation)			1/f _{ADC}

Table 59. ADC characteristics

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error	6 - 50 MUL	±2	±5	
EO	Offset error	f _{PCLK2} = 56 MHz, f _{ADC} = 14 MHz, R _{AIN} < 10 kΩ	±1.5	±2.5	
EG	Gain error	$V_{DDA} = 2.4 V \text{ to } 3.6 V$	±1.5	±3	LSB
ED	Differential linearity error	Measurements made after ADC calibration	±1	±2	
EL	Integral linearity error		±1.5	±3	

Table 62. ADC accuracy^{(1) (2)(3)}

1. ADC DC accuracy values are measured after internal calibration.

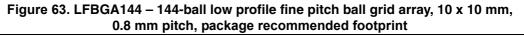

2. Better performance could be achieved in restricted V_{DD} , frequency, V_{REF} and temperature ranges.

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.14 does not affect the ADC accuracy.

4. Guaranteed by characterization results.

- 1. Example of an actual transfer curve.
- 2. Ideal transfer curve.
- 3. End point correlation line.
- 4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.


DocID14611 Rev 12

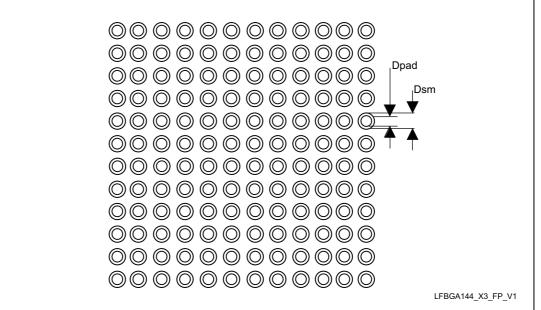

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Тур	Min	Max
b	0.350	0.400	0.450	0.0138	0.0157	0.0177
D	9.900	10.000	10.100	0.3898	0.3937	0.3976
D1	-	8.800	-	-	0.3465	-
E	9.900	10.000	10.100	0.3898	0.3937	0.3976
E1	-	8.800	-	-	0.3465	-
е	-	0.800	-	-	0.0315	-
F	-	0.600	-	-	0.0236	-
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

Table 65. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,0.8 mm pitch, package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. STATSChipPAC package dimensions.

Table 66. LFBGA144 recommended PCB design rules (0.8 mm pitch BGA)

Dimension	Recommended values	
Pitch	0.8 mm	
Dpad	0.400 mm	
UBM	0.350 mm	

DocID14611 Rev 12

8 Revision history

Date	Revision	Changes
07-Apr-2008	1	Initial release.
		-
		Tolerance values corrected in <i>Table 74: LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package data on page 139.</i>

Table 76.Document revision history

