STMicroelectronics - STM32F103VET6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	80
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103vet6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary
Table 2.	STM32F103xC, STM32F103xD and STM32F103xE features
	and peripheral counts
Table 3.	STM32F103xx family
Table 4.	High-density timer feature comparison
Table 5.	High-density STM32F103xC/D/E pin definitions
Table 6.	FSMC pin definition
Table 7.	Voltage characteristics
Table 8.	Current characteristics
Table 9.	Thermal characteristics
Table 10.	General operating conditions
Table 11.	Operating conditions at power-up / power-down
Table 12.	Embedded reset and power control block characteristics
Table 13.	Embedded internal reference voltage
Table 14.	Maximum current consumption in Run mode, code with data processing
	running from Flash
Table 15.	Maximum current consumption in Run mode, code with data processing
	running from RAM
Table 16.	Maximum current consumption in Sleep mode, code running from Flash or RAM
Table 17.	Typical and maximum current consumptions in Stop and Standby modes
Table 18.	Typical current consumption in Run mode, code with data processing
	running from Flash
Table 19.	Typical current consumption in Sleep mode, code running from Flash or
	RAM
Table 20.	Peripheral current consumption
Table 21.	High-speed external user clock characteristics
Table 22.	Low-speed external user clock characteristics
Table 23.	HSE 4-16 MHz oscillator characteristics
Table 24.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)
Table 25.	HSI oscillator characteristics.
Table 26.	LSI oscillator characteristics
Table 27.	Low-power mode wakeup timings
Table 28.	PLL characteristics
Table 29.	Flash memory characteristics
Table 30.	Flash memory endurance and data retention
Table 31.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings
Table 32.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings
Table 33.	Asynchronous multiplexed PSRAM/NOR read timings
Table 34.	Asynchronous multiplexed PSRAM/NOR write timings
Table 35.	Synchronous multiplexed NOR/PSRAM read timings
Table 36.	Synchronous multiplexed PSRAM write timings
Table 37.	Synchronous non-multiplexed NOR/PSRAM read timings
Table 38.	Synchronous non-multiplexed PSRAM write timings
Table 39.	Switching characteristics for PC Card/CF read and write cycles
Table 40.	Switching characteristics for NAND Flash read and write cycles
Table 41.	EMS characteristics
Table 42.	EMI characteristics
Table 43.	ESD absolute maximum ratings

List of figures

Figure 1.	STM32F103xC, STM32F103xD and STM32F103xE performance line block diagram 12
Figure 2.	Clock tree
Figure 3.	STM32F103xC/D/E BGA144 ballout
Figure 4.	STM32F103xC/D/E performance line BGA100 ballout
Figure 5.	STM32F103xC/D/E performance line LQFP144 pinout
Figure 6.	STM32F103xC/D/E performance line LQFP100 pinout
Figure 7.	STM32F103xC/D/E performance line LQFP64 pinout
Figure 8.	STM32F103xC/D/E performance line
	WLCSP64 ballout, ball side
Figure 9.	Memory map
Figure 10.	Pin loading conditions
Figure 11.	Pin input voltage
Figure 12.	Power supply scheme
Figure 13.	Current consumption measurement scheme
Figure 14.	Typical current consumption in Run mode versus frequency (at 3.6 V) -
	code with data processing running from RAM, peripherals enabled
Figure 15.	Typical current consumption in Run mode versus frequency (at 3.6 V)-
	code with data processing running from RAM, peripherals disabled
Figure 16.	Typical current consumption on V _{BAT} with RTC on vs. temperature
	at different V _{BAT} values
Figure 17.	Typical current consumption in Stop mode with regulator in run mode
-	versus temperature at different V _{DD} values
Figure 18.	Typical current consumption in Stop mode with regulator in low-power
-	mode versus temperature at different V _{DD} values
Figure 19.	Typical current consumption in Standby mode versus temperature at
	different V _{DD} values
Figure 20.	High-speed external clock source AC timing diagram
Figure 21.	Low-speed external clock source AC timing diagram
Figure 22.	Typical application with an 8 MHz crystal
Figure 23.	Typical application with a 32.768 kHz crystal
Figure 24.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
Figure 25.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
Figure 26.	Asynchronous multiplexed PSRAM/NOR read waveforms
Figure 27.	Asynchronous multiplexed PSRAM/NOR write waveforms
Figure 28.	Synchronous multiplexed NOR/PSRAM read timings
Figure 29.	Synchronous multiplexed PSRAM write timings
Figure 30.	Synchronous non-multiplexed NOR/PSRAM read timings
Figure 31.	Synchronous non-multiplexed PSRAM write timings
Figure 32.	PC Card/CompactFlash controller waveforms for common memory read access
Figure 33.	PC Card/CompactFlash controller waveforms for common memory write access
Figure 34.	PC Card/CompactFlash controller waveforms for attribute memory read
-	access
Figure 35.	PC Card/CompactFlash controller waveforms for attribute memory write
-	access
Figure 36.	PC Card/CompactFlash controller waveforms for I/O space read access
Figure 37.	PC Card/CompactFlash controller waveforms for I/O space write access
Figure 38.	NAND controller waveforms for read access
Figure 39.	NAND controller waveforms for write access

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F103xC, STM32F103xD and STM32F103xE high-density performance line microcontrollers. For more details on the whole STMicroelectronics STM32F103xC/D/E family, please refer to *Section 2.2: Full compatibility throughout the family*.

The high-density STM32F103xC/D/E datasheet should be read in conjunction with the STM32F10xxx reference manual.

For information on programming, erasing and protection of the internal Flash memory please refer to the *STM32F10xxx* Flash programming manual. The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the *www.arm.com* website at the following address: *http://infocenter.arm.com*.

2 Description

The STM32F103xC, STM32F103xD and STM32F103xE performance line family incorporates the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a 72 MHz frequency, high-speed embedded memories (Flash memory up to 512 Kbytes and SRAM up to 64 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer three 12-bit ADCs, four general-purpose 16-bit timers plus two PWM timers, as well as standard and advanced communication interfaces: up to two I²Cs, three SPIs, two I²Ss, one SDIO, five USARTs, an USB and a CAN.

The STM32F103xC/D/E high-density performance line family operates in the -40 to +105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

These features make the STM32F103xC/D/E high-density performance line microcontroller family suitable for a wide range of applications such as motor drives, application control, medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems video intercom, and HVAC.

Figure 2. Clock tree

1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz.

2. For the USB function to be available, both HSE and PLL must be enabled, with the USBCLK at 48 MHz.

3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.

Pinouts and pin descriptions

Figure 8. STM32F103xC/D/E performance line WLCSP64 ballout, ball side

		Pir	าร							Alternate funct	tions ⁽⁴⁾
LFBGA144	LFBGA100	WLCSP64	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
H3	E2	D6	10	17	28	PC2	I/O	-	PC2	ADC123_IN12	-
H4	F3	-	11	18	29	PC3 ⁽⁷⁾	I/O	-	PC3	ADC123_IN13	-
J1	G1	E7	12	19	30	V _{SSA}	S	-	V _{SSA}	-	-
K1	H1	-	-	20	31	V _{REF-}	S	-	V _{REF-}	-	-
L1	J1	F7 (8)	-	21	32	V _{REF+}	s	-	V _{REF+}	-	-
M1	K1	G8	13	22	33	V _{DDA}	S	-	V _{DDA}	-	-
J2	G2	F6	14	23	34	PA0-WKUP	I/O	-	PA0	WKUP/USART2_CTS ⁽⁹⁾ ADC123_IN0 TIM2_CH1_ETR TIM5_CH1/TIM8_ETR	-
K2	H2	E6	15	24	35	PA1	I/O	-	PA1	USART2_RTS ⁽⁹⁾ ADC123_IN1/ TIM5_CH2/TIM2_CH2 ⁽⁹⁾	-
L2	J2	H8	16	25	36	PA2	I/O	-	PA2	USART2_TX ⁽⁹⁾ /TIM5_CH3 ADC123_IN2/ TIM2_CH3 ⁽⁹⁾	-
M2	K2	G7	17	26	37	PA3	I/O	-	PA3	USART2_RX ⁽⁹⁾ /TIM5_CH4 ADC123_IN3/TIM2_CH4 ⁽⁹⁾	-
G4	E4	F5	18	27	38	V _{SS_4}	S	-	V _{SS_4}	-	-
F4	F4	G6	19	28	39	V _{DD_4}	S	-	V _{DD_4}	-	-
J3	G3	H7	20	29	40	PA4	I/O	-	PA4	SPI1_NSS ⁽⁹⁾ / USART2_CK ⁽⁹⁾ DAC_OUT1/ADC12_IN4	-
K3	НЗ	E5	21	30	41	PA5	I/O	-	PA5	SPI1_SCK ⁽⁹⁾ DAC_OUT2 ADC12_IN5	-
L3	J3	G5	22	31	42	PA6	I/O	-	PA6	SPI1_MISO ⁽⁹⁾ TIM8_BKIN/ADC12_IN6 TIM3_CH1 ⁽⁹⁾	TIM1_BKIN
М3	К3	G4	23	32	43	PA7	I/O	-	PA7	SPI1_MOSI ⁽⁹⁾ / TIM8_CH1N/ADC12_IN7 TIM3_CH2 ⁽⁹⁾	TIM1_CH1N
J4	G4	H6	24	33	44	PC4	I/O	-	PC4	ADC12_IN14	-
K4	H4	H5	25	34	45	PC5	I/O	-	PC5	ADC12_IN15	-

Table 5. High-density STM32F103xC/D/E pin definitions (continued)

	FSMC						
Pins	CF	CF/IDE	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFP100 BGA100 ⁽¹⁾	
PE2	-	-	A23	A23	-	Yes	
PE3	-	-	A19	A19	-	Yes	
PE4	-	-	A20	A20	-	Yes	
PE5	-	-	A21	A21	-	Yes	
PE6	-	-	A22	A22	-	Yes	
PF0	A0	A0	A0	-	-	-	
PF1	A1	A1	A1	-	-	-	
PF2	A2	A2	A2	-	-	-	
PF3	A3	-	A3	-	-	-	
PF4	A4	-	A4	-	-	-	
PF5	A5	-	A5	-	-	-	
PF6	NIORD	NIORD	-	-	-	-	
PF7	NREG	NREG	-	-	-	-	
PF8	NIOWR	NIOWR	-	-	-	-	
PF9	CD	CD	-	-	-	-	
PF10	INTR	INTR	-	-	-	-	
PF11	NIOS16	NIOS16	-	-	-	-	
PF12	A6	-	A6	-	-	-	
PF13	A7	-	A7	-	-	-	
PF14	A8	-	A8	-	-	-	
PF15	A9	-	A9	-	-	-	
PG0	A10	-	A10	-	-	-	
PG1	-	-	A11	-	-	-	
PE7	D4	D4	D4	DA4	D4	Yes	
PE8	D5	D5	D5	DA5	D5	Yes	
PE9	D6	D6	D6	DA6	D6	Yes	
PE10	D7	D7	D7	DA7	D7	Yes	
PE11	D8	D8	D8	DA8	D8	Yes	
PE12	D9	D9	D9	DA9	D9	Yes	
PE13	D10	D10	D10	DA10	D10	Yes	
PE14	D11	D11	D11	DA11	D11	Yes	
PE15	D12	D12	D12	DA12	D12	Yes	
PD8	D13	D13	D13	DA13	D13	Yes	

Table 6. FSMC pin definition

Symbol	Paramotor	Conditions	£	Ма	Unit		
Symbol	Falailletei	Conditions	HCLK	T _A = 85 °C	T _A = 105 °C	Gint	
			72 MHz	69	70		
			48 MHz	50	50.5		
		External clock ⁽²⁾ , all	36 MHz	39	39.5		
	Supply current in Run mode	peripherals enabled	24 MHz	27	28		
			16 MHz	20	20.5		
			8 MHz	11	11.5	m۸	
'DD			72 MHz	37	37.5	IIIA	
			48 MHz	28	28.5		
		External clock ⁽²⁾ , all	36 MHz	22	22.5	-	
		peripherals disabled	24 MHz	16.5	17		
			16 MHz	12.5	13		
			8 MHz	8	8		

Table 14. Maximum current consumption in Run mode, code with data processingrunning from Flash

1. Guaranteed by characterization results.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Symbol	Paramotor	Conditions	f	Ма	Unit	
	Farameter	Conditions	HCLK	T _A = 85 °C	T _A = 105 °C	Unit
			72 MHz	66	67	
			48 MHz	43.5	45.5	
		External clock ⁽²⁾ , all	36 MHz	33	35	
	Supply current in Run mode	peripherals enabled	24 MHz	23	24.5	
			16 MHz	16	18	
			8 MHz	9	10.5	m۸
DD			72 MHz	33	33.5	
			48 MHz	23	23.5	
		External clock ⁽²⁾ , all	36 MHz	18	18.5	
		peripherals disabled	24 MHz	13	13.5	1
			16 MHz	10	10.5	
			8 MHz	6	6.5	

Table 15. Maximum current consumption in Run mode, code with data processing running from RAM

1. Guaranteed by characterization results at $V_{\text{DD}}\,\text{max},\,f_{\text{HCLK}}\,\text{max}.$

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

			Тур ⁽¹⁾			М		
Symbol	Parameter	Conditions	V _{DD} /V _{BAT} = 2.0 V	V _{DD} /V _{BAT} = 2.4 V	V _{DD} /V _{BAT} = 3.3 V	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD}	Supply current	Regulator in run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	34.5	35	379	1130	
	in Stop mode	Regulator in low-power mode, low- speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	24.5	25	365	1110	
		Low-speed internal RC oscillator and independent watchdog ON	-	3	3.8	-	-	μA
	Supply current in Standby mode	Low-speed internal RC oscillator ON, independent watchdog OFF	-	2.8	3.6	-	-	
		Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF	-	1.9	2.1	5 ⁽²⁾	6.5 ⁽²⁾	
I _{DD_VBAT}	Backup domain supply current	Low-speed oscillator and RTC ON	1.05	1.1	1.4	2 ⁽²⁾	2.3 ⁽²⁾	

Table 17. Typical and maximum current consumptions in Stop and Standby modes

1. Typical values are measured at T_A = 25 °C.

2. Guaranteed by characterization results.

Figure 16. Typical current consumption on $\rm V_{BAT}$ with RTC on vs. temperature at different $\rm V_{BAT}$ values

Figure 19. Typical current consumption in Standby mode versus temperature at different $\rm V_{DD}$ values

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 23*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	16	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	30	-	pF
i ₂	HSE driving current	V _{DD} = 3.3 V, V _{IN} = V _{SS} with 30 pF load	-	-	1	mA
9 _m	Oscillator transconductance	Startup	25	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

|--|

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 22*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

1. R_{EXT} value depends on the crystal characteristics.

DocID14611 Rev 12

Figure 23. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in *Table 25* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-		-	8	-	MHz
DuCy _(HSI)	Duty cycle	-	45	-	55	%	
ACC _{HSI}		User-trimmed register ⁽²⁾	with the RCC_CR	-	-	1 ⁽³⁾	%
	Accuracy of the HSI oscillator	Factory- calibrated ⁽⁴⁾	$T_A = -40$ to 105 °C	-2	-	2.5	%
			$T_A = -10$ to 85 °C	-1.5	-	2.2	%
			$T_A = 0$ to 70 °C	-1.3	-	2	%
			T _A = 25 °C	-1.1	-	1.8	%
t _{su(HSI)} ⁽⁴⁾	HSI oscillator startup time	-		1	-	2	μs
I _{DD(HSI)} ⁽⁴⁾	HSI oscillator power consumption	-		-	80	100	μA

Table 25. HSI oscillator characteristics⁽¹⁾

1. V_{DD} = 3.3 V, T_A = –40 to 105 $^\circ C$ unless otherwise specified.

 Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website <u>www.st.com</u>.

3. Guaranteed by design.

4. Guaranteed by characterization results.

Symbol	Parameter	Min	Мах	Unit
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC_NADV high	t _{HCLK} – 3	-	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	4t _{HCLK}	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	1.6	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	t _{HCLK} – 1.5	-	ns
t _{v(Data_NADV)}	FSMC_NADV high to Data valid	-	t _{HCLK} + 1.5	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	t _{HCLK} – 5	-	ns

 Table 34. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾⁽²⁾

1. C_L = 15 pF.

2. BGuaranteed by characterization results.

Figure 33. PC Card/CompactFlash controller waveforms for common memory write access

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

5.3.18 CAN (controller area network) interface

Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

5.3.19 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 59* are preliminary values derived from tests performed under ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 10*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply	-	2.4	-	3.6	V
V _{REF+}	Positive reference voltage	-	2.4 -		V _{DDA}	V
V _{REF-}	Negative reference voltage	-	0			V
I _{VREF}	Current on the V_{REF} input pin	-	-	160 ⁽¹⁾	220	μA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
f _S ⁽²⁾	Sampling rate	-	0.05	-	1	MHz
f (2)	External trigger frequency	f _{ADC} = 14 MHz	-	-	823	kHz
^I TRIG` ′	External ingger requercy	-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 60</i> for details	-	-	50	κΩ
R _{ADC} ⁽²⁾	Sampling switch resistance	-	-	-	1	кΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
+ (2)	Calibration time	f _{ADC} = 14 MHz	5.9		μs	
'CAL`´		-	83			1/f _{ADC}
+ (2)	Injection trigger conversion	f _{ADC} = 14 MHz	-	-	0.214	μs
4at` ´	latency	-	-	-	3 ⁽⁴⁾	1/f _{ADC}
t _{latr} (2)	Regular trigger conversion	f _{ADC} = 14 MHz	-	-	0.143	μs
	latency	-	-	-	2 ⁽⁴⁾	1/f _{ADC}
ts ⁽²⁾	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
		-	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	0	0	1	μs
	Total conversion time	f _{ADC} = 14 MHz	1	-	18	μs
t _{CONV} ⁽²⁾	(including sampling time)	-	14 to 252 (t _S for sampling +12.5 for successive approximation)			1/f _{ADC}

Table 59. ADC characteristics

Electrical characteristics

- Guaranteed by characterization results. 1.
- 2. Guaranteed by design.
- V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA} , depending on the package. Refer to *Section 3: Pinouts and pin descriptions* for further details. 3.
- 4. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 59.

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ)
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

Table 60.	RAIN	max	for	fADC	=	14	MHz ⁽¹	I)
-----------	------	-----	-----	------	---	----	-------------------	----

1. Guaranteed by design.

Table 61. ADC accuracy	- limited test conditions ⁽¹⁾⁽²⁾
------------------------	---

Symbol	Parameter	Test conditions	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error	$f_{PCLK2} = 56 \text{ MHz},$	±1.3	±2	
EO	Offset error	$f_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$	±1	±1.5	
EG	Gain error	$T_{A} = 25 \ ^{\circ}C$	±0.5	±1.5	LSB
ED	Differential linearity error	Measurements made after	±0.7	±1	
EL	Integral linearity error	$V_{\text{REF+}} = V_{\text{DDA}}$	±0.8	±1.5	

1. ADC DC accuracy values are measured after internal calibration.

affect the ADC accuracy.

3. Guaranteed by characterization results.

ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.14 does not affact the ADC accuracy 2.

meenamear data (continued)								
Symbol	millimeters			inches ⁽¹⁾				
	Min	Тур	Мах	Min	Тур	Мах		
е	-	0.500	-	-	0.0197	-		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
k	0°	3.5°	7°	0°	3.5°	7°		
ccc	-	-	0.08	-	-	0.0031		

Table 72. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 74. LQFP100 recommended footprint

1. Dimensions are in millimeters.

6.7.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 75: Ordering information scheme*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F103xC, STM32F103xD and STM32F103xE at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax = 20} × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax =} 175 ₊ 272 = 447 mW

Thus: P_{Dmax} = 447 mW

Using the values obtained in *Table 74* T_{Jmax} is calculated as follows:

- For LQFP100, 46 °C/W
- T_{Jmax} = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 75: Ordering information scheme*).

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 115 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}, V_{DD} = 3.5 \text{ V}, \text{ maximum } 20 \text{ I/Os used at the same time in output at low level with } I_{OL} = 8 \text{ mA}, V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = _{20} \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

DocID14611 Rev 12

