

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	112
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 21x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103zgt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 44.	Electrical sensitivities
Table 45.	I/O current injection susceptibility
Table 46.	I/O static characteristics
Table 47.	Output voltage characteristics
Table 48.	I/O AC characteristics
Table 49.	NRST pin characteristics
Table 50.	TIMx characteristics
Table 51.	I ² C characteristics
Table 52.	SCL frequency (f _{PCLK1} = 36 MHz., V _{DD 12C} = 3.3 V)
Table 53.	SPI characteristics
Table 54.	I ² S characteristics
Table 55.	SD / MMC characteristics
Table 56.	USB startup time
Table 57.	USB DC electrical characteristics
Table 58.	USB: full-speed electrical characteristics
Table 59.	ADC characteristics
Table 60.	R_{AIN} max for $f_{ADC} = 14$ MHz
Table 61.	ADC accuracy - limited test conditions
Table 62.	ADC accuracy
Table 63.	DAC characteristics
Table 64.	TS characteristics
Table 65.	LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
	0.8 mm pitch, package mechanical data 115
Table 66.	LFBGA144 recommended PCB design rules (0.8 mm pitch BGA)
Table 67.	LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package
	mechanical data
Table 68.	LFBGA100 recommended PCB design rules (0.8 mm pitch BGA)
Table 69.	WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale
	package mechanical data
Table 70.	WLCSP64 recommended PCB design rules (0.5 mm pitch) 122
Table 71.	LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
	mechanical data
Table 72.	LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package
	mechanical data
Table 73.	LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data
Table 74.	Package thermal characteristics
Table 75.	Ordering information scheme

Figure 40	NAND controller waveforms for common memory read access	85
Figure 40.	NAND controller waveforms for common memory write access	86
Figure 41.	Standard I/O input characteristics - CMOS port	Q1
Figure 43	Standard I/O input characteristics - TTL port	Q1
Figure 11	5 V tolerant I/O input characteristics - CMOS port	Q1
Figure 44.	5 V tolerant I/O input characteristics - CMOS port	02
Figure 45.	1/0 AC obstractoristics definition	
Figure 40.	Recommonded NPST pin protection	95
Figure 47.	I^2C bus AC waveforms and measurement sizewit	
Figure 40.	SPI timing diagram slave mode and CPUA = 0	100
Figure 49.	SPI timing diagram - slave mode and CPHA = $1^{(1)}$	100
Figure 50.	SPI timing diagram master mode ⁽¹⁾	101
Figure 51.	J^{2} alove timing diagram (Dhilips protocol) ⁽¹⁾	102
Figure 52.	13 Slave uning diagram (Philips protocol) $(7, \dots, 12)$	103
Figure 53.		104
Figure 54.		104
Figure 55.	SD delault mode	100
Figure 56.	USB umings: definition of data signal rise and fail time	100
Figure 57.	ADC accuracy characteristics	
Figure 58.	Typical connection diagram using the ADC	
Figure 59.	Power supply and reference decoupling ($v_{\text{REF+}}$ not connected to v_{DDA})	
Figure 60.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	
Figure 61.	I2-DIT DUTTERED /non-DUTTERED DAC	
Figure 62.	LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,	445
E imune 00	U.8 mm pltch, package outline	
Figure 63.	LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,	110
F ' A A	U.8 mm pitch, package recommended tootprint	
Figure 64.		
Figure 65.	LFBGA100 - 10 X 10 mm low profile fine pitch ball grid array package	110
F '		
Figure 66.	LFBGA100 – 100-ball low profile fine pitch ball grid array, 10 x 10 mm,	110
F '	0.8 mm pitch, package recommended footprintoutline	
Figure 67.		120
Figure 68.	WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, water-level chip-scale	101
- : 00		121
Figure 69.	WLCSP64 - 64-ball, 4.4/5/ x 4.4049 mm, 0.5 mm pitch water level chip scale	100
- : - 0		
Figure 70.	LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline	123
Figure 71.	LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package	105
Figure 72.	LQFP144 marking example (package top view)	
Figure 73.	LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline	
Figure 74.	LQFP100 recommended footprint	128
Figure 75.	LQFP100 marking example (package top view)	129
Figure 76.	LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline	130
Figure 77.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint	131
Figure 78.	LQFP64 marking example (package top view)	132
Figure 79.	LQFP100 P _D max vs. T _A	135

2.3.14 Low-power modes

The STM32F103xC, STM32F103xD and STM32F103xE performance line supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB wakeup.

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

2.3.15 DMA

The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose, basic and advanced-control timers TIMx, DAC, I²S, SDIO and ADC.

2.3.16 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are forty-two 16-bit registers used to store 84 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) and the advanced-control timers (TIM1 and TIM8) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.3.27 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the STM32F103xC, STM32F103xD and STM32F103xE performance line family. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

Figure 5. STM32F103xC/D/E performance line LQFP144 pinout

1. The above figure shows the package top view.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 20*. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 7

Peripheral		Current consumption	Unit
AHB (up to 72 MHz)	DMA1	20,42	
	DMA2	19,03	
	FSMC	52,36	
	CRC	2,36	μΑ/ΜΠΖ
	SDIO	33,33	
	BusMatrix ⁽¹⁾	9,72	

Table 20. Peripheral current consumption

Figure 23. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in *Table 25* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-		-	8	-	MHz
DuCy _(HSI)	Duty cycle	-		45	-	55	%
		User-trimmed with the RCC_CR register ⁽²⁾		-	-	1 ⁽³⁾	%
ACC _{HSI} Accuracy oscillator	Accuracy of the HSI oscillator	Factory- calibrated ⁽⁴⁾	$T_A = -40$ to 105 °C	-2	-	2.5	%
			T _A = −10 to 85 °C	-1.5	-	2.2	%
			T _A = 0 to 70 °C	-1.3	-	2	%
			T _A = 25 °C	-1.1	-	1.8	%
t _{su(HSI)} ⁽⁴⁾	HSI oscillator startup time	-		1	-	2	μs
I _{DD(HSI)} ⁽⁴⁾	HSI oscillator power consumption	-		-	80	100	μA

Table 25. HSI oscillator characteristics⁽¹⁾

1. V_{DD} = 3.3 V, T_A = –40 to 105 $^\circ C$ unless otherwise specified.

 Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website <u>www.st.com</u>.

3. Guaranteed by design.

4. Guaranteed by characterization results.

Symbol	Baramatar	Conditions	Value	Unit
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

 Table 30. Flash memory endurance and data retention

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	5t _{HCLK} – 1.5	5t _{HCLK} + 2	ns
$t_{v(NOE_NE)}$	FSMC_NEx low to FSMC_NOE low	0.5	1.5	ns
t _{w(NOE)}	FSMC_NOE low time	5t _{HCLK} – 1.5	5t _{HCLK} + 1.5	ns
$t_{h(NE_NOE)}$	FSMC_NOE high to FSMC_NE high hold time	-1.5	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	0.1	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0	ns
$t_{h(BL_NOE)}$	FSMC_BL hold time after FSMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	2t _{HCLK} + 25	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOEx high setup time	2t _{HCLK} + 25	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	5	ns
t _{w(NADV)}	FSMC_NADV low time	-	t _{HCLK} + 1.5	ns

Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾

1. C_L = 15 pF.

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

PC Card/CompactFlash controller waveforms and timings

Figure 32 through *Figure 37* represent synchronous waveforms and *Table 39* provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC_SetupTime = 0x04;
- COM.FSMC_WaitSetupTime = 0x07;
- COM.FSMC_HoldSetupTime = 0x04;
- COM.FSMC_HiZSetupTime = 0x00;
- ATT.FSMC_SetupTime = 0x04;
- ATT.FSMC_WaitSetupTime = 0x07;
- ATT.FSMC_HoldSetupTime = 0x04;
- ATT.FSMC HiZSetupTime = 0x00;
- IO.FSMC_SetupTime = 0x04;
- IO.FSMC_WaitSetupTime = 0x07;
- IO.FSMC HoldSetupTime = 0x04;
- IO.FSMC_HiZSetupTime = 0x00;
- TCLRSetupTime = 0;
- TARSetupTime = 0;

Figure 32. PC Card/CompactFlash controller waveforms for common memory read access

1. FSMC_NCE4_2 remains high (inactive during 8-bit access.

Figure 39. NAND controller waveforms for write access

Figure 40. NAND controller waveforms for common memory read access

Figure 47. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 49. Otherwise the reset will not be taken into account by the device.

5.3.16 TIM timer characteristics

The parameters given in Table 50 are guaranteed by design.

Refer to *Section 5.3.14: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
+	Timer resolution time	-	1	-	t _{TIMxCLK}
^r res(TIM)		f _{TIMxCLK} = 72 MHz	13.9	-	ns
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
^I EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	36	MHz
Res _{TIM}	Timer resolution	-	-	16	bit
	16-bit counter clock period	-	1	65536	t _{TIMxCLK}
^t COUNTER	selected	f _{TIMxCLK} = 72 MHz	0.0139	910	μs
t _{MAX_COUNT}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
		f _{TIMxCLK} = 72 MHz	-	59.6	S

Table 50. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.

Symbol	Parameter	Conditions	Min	Max	Unit	
	CMD, D inputs (re	eferenced to CK)				
t _{ISU}	Input setup time	$C_L \le 30 \text{ pF}$	2	-	200	
t _{IH}	Input hold time	$C_L \le 30 \text{ pF}$	0	-	115	
CMD, D out	CMD, D outputs (referenced to CK) in MMC and SD HS mode					
t _{OV}	Output valid time	$C_L \le 30 \text{ pF}$	-	6	200	
t _{OH}	Output hold time	$C_L \le 30 \text{ pF}$	0	-	115	
CMD, D outputs (referenced to CK) in SD default mode ⁽¹⁾						
t _{OVD}	Output valid default time	$C_L \le 30 \text{ pF}$	-	7	ne	
t _{OHD}	Output hold default time	$C_L \le 30 \text{ pF}$	0.5	-	115	

Table 55. SD / MMC characteristics

1. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.

USB characteristics

The USB interface is USB-IF certified (Full Speed).

Table 56. USB startup time

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾ USB transceiver startup time		1	μs

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input levels					
V _{DD}	USB operating voltage ⁽²⁾	-	3.0 ⁽³⁾	3.6	V
V _{DI} ⁽⁴⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-	
V _{CM} ⁽⁴⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V
V _{SE} ⁽⁴⁾	Single ended receiver threshold	-	1.3	2.0	
Output levels					
V _{OL}	Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(5)}$	-	0.3	V
V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}^{(5)}$	2.8	3.6	v

Table 57. USB DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. The STM32F103xC/D/E USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V $\rm V_{DD}$ voltage range.

4. Guaranteed by characterization results.

5. $\ensuremath{\,R_L}$ is the load connected on the USB drivers

Tahla 58	IISB full_snoor	d alactrical	charactoristics
Table 50.	USD. IUII-SDEE	i electitudi	Characteristics

Driver characteristics ⁽¹⁾							
Symbol	Parameter	Conditions	Min	Мах	Unit		
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%		
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V		

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

Electrical characteristics

- Guaranteed by characterization results. 1.
- 2. Guaranteed by design.
- V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA} , depending on the package. Refer to *Section 3: Pinouts and pin descriptions* for further details. 3.
- 4. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 59.

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ)
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

Table 60.	RAIN	max	for	fADC	=	14	MHz ⁽¹	I)
-----------	------	-----	-----	------	---	----	-------------------	----

1. Guaranteed by design.

Table 61. ADC accuracy	- limited test conditions ⁽¹⁾⁽²⁾
------------------------	---

Symbol	Parameter	Test conditions	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error	$f_{PCLK2} = 56 \text{ MHz},$	±1.3	±2	
EO	Offset error	$f_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$	±1	±1.5	
EG	Gain error	$T_{A} = 25 \ ^{\circ}C$	±0.5	±1.5	LSB
ED	Differential linearity error	Measurements made after	±0.7	±1	
EL	Integral linearity error	$V_{\text{REF+}} = V_{\text{DDA}}$	±0.8	±1.5	

1. ADC DC accuracy values are measured after internal calibration.

affect the ADC accuracy.

3. Guaranteed by characterization results.

ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.14 does not affact the ADC accuracy 2.

6.3 WLCSP64 package information

Figure 68. WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale package outline

1. Drawing is not to scale.

2. Primary datum Z and seating plane are defined by the spherical crowns of the ball.

Table 69. WLC	SP, 64-ball 4.46	6 × 4.395 mm	, 0.500 mm	pitch, v	wafer-level	chip-scale
	p	ackage mech	anical data	1		

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
A	0.535	0.585	0.635	0.0211	0.0230	0.0250
A1	0.205	0.230	0.255	0.0081	0.0091	0.0100
A2	0.330	0.355	0.380	0.0130	0.0140	0.0150
b ⁽²⁾	0.290	0.320	0.350	0.0114	0.0126	0.0138

Figure 71. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

	mechanical data (continued)						
Symbol		millimeters		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
ccc	-	-	0.08	-	-	0.0031	

Table 72. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 74. LQFP100 recommended footprint

1. Dimensions are in millimeters.

Using the values obtained in *Table 74* T_{Jmax} is calculated as follows:

- For LQFP100, 46 °C/W
- T_{Jmax} = 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C

This is within the range of the suffix 7 version parts (–40 < T_J < 125 °C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Table 75: Ordering information scheme*).

Date	Revision	Changes
12-Dec-2008	4	Timers specified on page 1 (motor control capability mentioned). Section 2.2: Full compatibility throughout the family updated. Table 6: High-density timer feature comparison added. General-purpose timers (TIMx) and Advanced-control timers (TIM1 and TIM8) on page 27 updated. Figure 1: STM32F103xF, STM32F103xD and STM32F103xGSTM32F103xF and STM32F103xG performance line block diagram modified. Note 10 added, main function after reset and Note 5 on page 44 updated in Table 8: High-density STM32F103xx pin definitions. Note 2 modified below Table 11: Voltage characteristics on page 58, $ DV_{DDx} $ min and $ DV_{DDx} $ min removed. Note 2 and P _D values for LQFP144 and LFBGA144 packages added to Table 14: General operating conditions on page 59. Measurement conditions specified in Section 5.3.5: Supply current characteristics on page 62. Max values at T _A = 85 °C and T _A = 105 °C updated in Table 21: Typical and maximum current consumptions in Stop and Standby modes on page 68. Section 5.3.10: FSMC characteristics on page 111. I_{VREF} added to Table 67: ADC characteristics on page 130. Table 81: Package thermal characteristics on page 146 updated. Small text changes.

Table 76.Document revision history

