

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs202-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

in SS	ic, DP		= Pins are up to 5V tolerant
	MCLR 1 RA0 2 RA1 3 RA2 4 RB0 5 RB9 6 RB10 7 Vss 8 RB1 9 RB2 10 RB2 10 RB3 11 RB4 12 VDD 13	dsPIC33EPXXGS202	28 AVDD 27 AVss 26 RA3 25 RA4 24 RB14 23 RB13 22 RB12 21 RB11 20 VCAP 19 VSS 18 RB7 17 RB6
			16 RB5 15 RB15
PIN FI	JNCTION DESCRIPTIONS Pin Function	Pin	16 RB5 15 RB15 Pin Function
PIN FI	JNCTION DESCRIPTIONS Pin Function MCLR	Pin 15	16 RB5 15 RB15 Pin Function PGEC3/ RP47 /RB15
PIN FI	JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0	Pin 15 16	16 RB5 15 RB15 Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5
PIN FI Pin 1 2 3	RB8 14 JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1	Pin 15 16 17	16 RB5 15 RB15 Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6
PIN F(Pin 1 2 3 4	RB8 14 JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2	Pin 15 16 17 18	16 RB5 15 RB15 Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7
PIN FI Pin 1 2 3 4 5	RB8 14 JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0	Pin 15 16 17 18 19	16 RB5 15 RB15 Pin Function PGEC3/RP47/RB15 TD0/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss
PIN FI Pin 1 2 3 4 5 6	RB8 14 JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN0/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 CMP10/CMP2B/RP32/RB0	Pin 15 16 17 18 19 20	16 RB5 15 RB15 Pin Function PGEC3/RP47/RB15 TD0/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss Vcap
PIN FI Pin 1 2 3 4 5 6 7	Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10	Pin 15 16 17 18 19 20 21	16 RB5 15 RB15 PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss Vcap TMS/PWM3H/RP43/RB11
PIN FI Pin 1 2 3 4 5 6 7 8	RB8 14 JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10 Vss Vss	Pin 15 16 17 18 19 20 21 22	16 RB5 15 RB15 PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss VCAP TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12
PIN FI Pin 1 2 3 4 5 6 7 8 9	RB8 14 JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN4/CMP2D/RP42/RB10 Vss OSC1/CLKI/AN6/RP33/RB1	Pin 15 16 17 18 19 20 21 22 23	16 RB5 15 RB15 PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss VCAP TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2H/RP45/RB13
PIN FI Pin 1 2 3 4 5 6 7 8 9 10	RB8 14 JUNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10 Vss OSC1/CLKI/AN6/RP33/RB1 OSC2/CLKO/AN7/PGA1N2/RP34/RB2	Pin 15 16 17 18 19 20 21 22 23 24	16 RB5 15 RB15 PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss Vcap TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2H/RP45/RB13 PWM2L/RP46/RB14
PIN FI Pin 1 2 3 4 5 6 7 8 9 10 11	RB8 14 JUNCTION DESCRIPTIONS Pin Function MCLR ANO/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1D/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10 Vss OSC1/CLKI/AN6/RP33/RB1 OSC2/CLKO/AN7/PGA1N2/RP34/RB2 PGED2/AN8/INT0/RP35/RB3	Pin 15 16 17 18 19 20 21 22 23 24 25	16 RB5 15 RB15 Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss VCAP TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2H/RP45/RB13 PWM2L/RP46/RB14 PWM1H/RA4
PIN F ^I Pin 1 2 3 4 5 6 7 8 9 10 11 11 12	RB8 14 Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10 Vss OSC1/CLKI/AN6/RP33/RB1 OSC2/CLKO/AN7/PGA1N2/RP34/RB2 PGED2/AN8/INT0/RP35/RB3 PGEC2/ADTRG31/RP36/RB4 PGEC2/ADTRG31/RP36/RB4	Pin 15 16 17 18 19 20 21 22 23 24 25 26	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss Vcap TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2L/RP46/RB13 PWM2L/RP46/RB14 PWM1L/RA4 PWM1L/RA3
PIN FI Pin 1 2 3 4 5 6 7 8 9 10 11 11 12 13	RB8 14 JNCTION DESCRIPTIONS Pin Function MCLR AN0/PGA1P1/CMP1A/RA0 AN1/PGA1P2/PGA2P1/CMP1B/RA1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 AN4/CMP2C/RP41/RB9 AN4/CMP2C/RP41/RB9 AN5/CMP2D/RP42/RB10 Vss OSC1/CLKI/AN6/RP33/RB1 OSC2/CLKO/AN7/PGA1N2/RP34/RB2 PGED2/AN8/INT0/RP35/RB3 PGEC2/ADTRG31/RP36/RB4 VDD	Pin 15 16 17 18 19 20 21 22 23 24 25 26 27	Pin Function PGEC3/RP47/RB15 TDO/AN9/PGA2N2/RP37/RB5 PGED1/TDI/AN10/SCL1/RP38/RB6 PGEC1/AN11/SDA1/RP39/RB7 Vss Vcap TMS/PWM3H/RP43/RB11 TCK/PWM3L/RP44/RB12 PWM2L/RP45/RB13 PWM1L/RA4 PWM1L/RA3 AVss

Legend: Shaded pins are up to 5 VDC tolerant.

Note: RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXGS202 Digital Signal Controller (DSC) devices.

The dsPIC33EPXXGS202 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXGS202 FAMILY BLOCK DIAGRAM

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXGS202 family requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins regardless if ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

4.2.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-3).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented, or decremented, by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.2.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXGS202 family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-3: PROGRAM MEMORY ORGANIZATION

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

5.4.1 KEY RESOURCES

- "Flash Programming" (DS70609) in the "dsPIC33/ PIC24 Family Reference Manual",
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Five SFRs are used to write and erase the Program Flash Memory: NVMCON, NVMKEY, NVMADR, NVMADRU and NVMSRCADR.

The NVMCON register (Register 5-1) selects the operation to be performed (page erase, word/row program) and initiates the program/erase cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word/row for programming operations, or the selected page for erase operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

For row programming operation, data to be written to Program Flash Memory is written into data memory space (RAM) at an address defined by the NVMSRCADR register (location of first element in row programming data).

NOTES:

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the BOR and POR bits (RCON<1:0>) that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSCx bits is loaded into the NOSC<2:0> (OSCCON<10:8>) bits on Reset, which in turn, initializes the system clock.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

Interrupt Source	Vector	IRQ		Interrupt Bit Location		
	#	#	IVI Address	Flag	Enable	Priority
Reserved	126-158	118-150	0x000100-0x000140	—	—	
AN8 Conversion Done	159	151	0x000142	IFS9<7>	IEC9<7>	IPC37<14:12>
AN9 Conversion Done	160	152	0x000144	IFS9<8>	IEC9<8>	IPC38<2:0>
AN10 Conversion Done	161	153	0x000146	IFS9<9>	IEC9<9>	IPC38<6:4>
AN11 Conversion Done	162	154	0x000148	IFS9<10>	IEC9<10>	IPC38<10:8>
Reserved	163-164	155-156	0x00014A-0x00014C	—	—	—
AN14 Conversion Done	165	157	0x00014E	IFS9<13>	IEC9<13>	IPC39<6:4>
Reserved	163-180	155-172	0x00014A-0x00016C	—	—	—
I2C1 – I2C1 Bus Collision	181	173	0x00016E	IFS10<13>	IEC10<13>	IPC43<6:4>
Reserved	182-184	174-176	0x000170-0x000174	_	_	—
ADCMP0 – ADC Digital Comparator 0	185	177	0x000176	IFS11<1>	IEC11<1>	IPC44<6:4>
ADCMP1 – ADC Digital Comparator 1	186	178	0x000178	IFS11<2>	IEC11<2>	IPC44<10:8>
ADFL0 – ADC Filter 0	187	179	0x00017A	IFS11<3>	IEC11<3>	IPC44<14:12>
Reserved	188-253	180-245	0x00017C-0x0001FE	_	_	_

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

REGISTER 9-5: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7							
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	CMP2MD	CMP1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—		—	—	—	—	PGA1MD	—
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-10	Unimplemen	ted: Read as '	כי				
bit 9	CMP2MD: Co	mparator Char	nnel 2 (CMP2)	Module Disable	e bit		
	1 = CMP2 mc	dule is disable	d				
	0 = CMP2 mo	dule is enable	b				
bit 8	CMP1MD: Co	mparator Char	nnel 1 (CMP1)	Module Disable	e bit		
		a. 1. 2. av 1. 1.	. ,				

	1 = CMP1 module is disabled 0 = CMP1 module is enabled
bit 7-2	Unimplemented: Read as '0'
bit 1	PGA1MD: PGA1 Module Disable bit
	1 = PGA1 module is disabled
	0 = PGA1 module is enabled
bit 0	Unimplemented: Read as '0'

REGISTER 9-6: PMD8: PERIPHERAL MODULE DISABLE CONTROL REGISTER 8

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	
—	—	—	—	—	PGA2MD	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable b	oit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-11	Unimplemen	ted: Read as 'o)'					
bit 10	10 PGA2MD: PGA2 Module Disable bit							
	1 = PGA2 module is disabled0 = PGA2 module is enabled							
bit 9-0	Unimplemen	ted: Read as 'o)'					

© 2015-2016 Microchip Technology Inc.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 10-24: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP177R<5:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP176R<5:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-25: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP179R<5:0>:** Peripheral Output Function is Assigned to RP179 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0' bit 5-0 RP178R<5:0>: Peripheral Output Function is

bit 5-0 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits (see Table 10-2 for peripheral function numbers)

11.1 Timer1 Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

11.1.1 KEY RESOURCES

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 18-2: U1STA: UART1 STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Receiver is active
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	<pre>FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected</pre>
bit 1	 OERR: Receive Buffer Overrun Error Status bit (clear/read-only) 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the U1RSR to the empty state
bit 0	 URXDA: UART1 Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual" for information on enabling the UART1 module for transmit operation.

REGISTER 19-8: ADCON4H: ADC CONTROL REGISTER 4 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—		—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—		—	C1CHS1	C1CHS0	C0CHS1	C0CHS0	
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-4	Unimpleme	nted: Read as	'0'					
bit 3-2	C1CHS<1:0	>: Dedicated A	DC Core 1 Inp	ut Channel Sel	ection bits			
	11 = PGA2							
	10 = PGA1							
	01 = AN8							
	00 = AN1							
	AN8 is a neg	gative input wh	en DIFF1 (ADN	/IOD0L<3>) = 1				
bit 1-0	C0CHS<1:0	>: Dedicated A	DC Core 0 Inp	ut Channel Sel	ection bits			
	11 = PGA2							
	10 = PGA1							
	01 = AN7							
	00 = ANO							
	· · · · ·							

AN7 is a negative input when DIFF0 (ADMOD0L<1>) = 1.

REGISTER 19-13: ADLVLTRGL: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER LOW

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	LVLEN14	—	—		LVLE	N<11:8>	
bit 15				•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LVL	EN<7:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own
bit 15	Unimpleme	nted: Read as	ʻ0 '				
bit 14	LVLEN14: L	evel Trigger 14.	Enable bit				
	1 = Input Ch	annel 14 trigge	er is level-sensi	tive			
	0 = Input Ch	annel 14 trigge	er is edge-sensi	tive			
bit 13-12	Unimpleme	nted: Read as	'0'				
bit 11-0	LVLEN<11:0	D>: Level Trigg	er x Enable bits	6			
	1 = Input Ch	annel x trigger	is level-sensitiv	ve			
	0 = Input Ch	annel x trigger	is edge-sensiti	ve			

REGISTER 19-23: ADCAL1H: ADC CALIBRATION REGISTER 1 HIGH

R/W-0, HS	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CSHRRDY	—	—	—	CSHRSKIP	CSHRDIFF	CSHREN	CSHRRUN
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	CSHRRDY: Shared ADC Core Calibration Status Flag bit
	1 = Shared ADC core calibration is finished
	0 = Shared ADC core calibration is in progress
bit 14-12	Unimplemented: Read as '0'
bit 11	CSHRSKIP: Shared ADC Core Calibration Bypass bit
	 1 = After power-up, the shared ADC core will not be calibrated 0 = After power-up, the shared ADC core will be calibrated
bit 10	CSHRDIFF: Shared ADC Core Pseudo-Differential Input Mode Calibration bit
	1 = Shared ADC core will be calibrated in Pseudo-Differential Input mode
	0 = Shared ADC core will be calibrated in Single-Ended Input mode
bit 9	CSHREN: Shared ADC Core Calibration Enable bit
	1 = Shared ADC core calibration bits (CSHRRDY, CSHRSKIP, CSHRDIFF and CSHRRUN) can be accessed by software
	0 = Shared ADC core calibration bits are disabled
bit 8	CSHRRUN: Shared ADC Core Calibration Start bit
	 1 = If this bit is set by software, the shared ADC core calibration cycle is started; this bit is cleared auto- matically by hardware
	0 = Software can start the next calibration cycle
bit 7-0	Unimplemented: Read as '0'

NOTES:

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
9	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
10	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
11	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
12	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
13	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	1,#D114 Dit lest 1 C Ws,#bit4 Bit Test Ws to C		1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
14	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
15	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
16	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
17	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,SLEEP
18	COM	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
19	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
20	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
21	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – C)	1	1	C,DC,N,OV,Z
22	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
23	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
24	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
L	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
25	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if \neq	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if ≠	1	1 (5)	None

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 23-2:	INSTRUCTION SET OVERVIEW ((CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
26	CTXTSWP	CTXTSWP	#lit3	Switch CPU register context to context defined by lit3	1	2	None
		CTXTSWP	Wn	Switch CPU register context to context defined by Wn	1	2	None
27	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
28	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
29	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
30	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
31	DIV	DIV.S	Wm, Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm, Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm, Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm, Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
32	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
33	DO	DO	#lit15,Expr	Do code to PC + Expr, lit15 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
34	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
35	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
36	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
37	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
38	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
39	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
40	GOTO	GOTO	Expr	Go to address	2	4	None
		GOTO	Wn	Go to indirect	1	4	None
		GOTO.L	Wn	Go to indirect (long address)	1	4	None
41	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
42	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
43	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
44	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
45	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
46	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

FIGURE 25-2: EXTERNAL CLOCK TIMING

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symb	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	60	MHz	EC	
		Oscillator Crystal Frequency	3.5 10		10 40	MHz MHz	XT HS	
OS20	Tosc	Tosc = 1/Fosc	8.33	_	DC	ns	+125°C	
		Tosc = 1/Fosc	7.14	—	DC	ns	+85°C	
OS25	TCY	Instruction Cycle Time ⁽²⁾	16.67	_	DC	ns	+125°C	
		Instruction Cycle Time ⁽²⁾	14.28	—	DC	ns	+85°C	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ^(3,4)	_	5.2	—	ns		
OS41	TckF	CLKO Fall Time ^(3,4)	—	5.2	—	ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	_	12	—	mA/V	HS, VDD = 3.3V, TA = +25°C	
			-	6		mA/V	XT, VDD = 3.3V, TA = +25°C	

TABLE 25-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- **4:** Parameters are for design guidance only and are not tested in manufacturing.

FIGURE 25-21: I2C1 BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

