

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs202-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXGS202 FAMILY

FIGURE 3-1: dsPIC33EPXXGS202 CPU BLOCK DIAGRAM

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXGS202 family is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXGS202 devices contain control registers for Modulo Addressing, Bit-Reversed Addressing and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Table 3-1.

TABLE 3-1	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS
IADLE J-I.	

Register(s) Name	Description
W0 through W15 ⁽¹⁾	Working Register Array
W0 through W14 ⁽¹⁾	Alternate Working Register Array 1
W0 through W14 ⁽¹⁾	Alternate Working Register Array 2
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT	DO Loop Counter Register
DOSTARTH ⁽²⁾ , DOSTARTL ⁽²⁾	DO Loop Start Address Register (High and Low)
DOENDH, DOENDL	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: Memory-mapped W0 through W14 represents the value of the register in the currently active CPU context.

2: The DOSTARTH and DOSTARTL registers are read-only.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "dsPIC33E/PIC24E Program Memory" (DS70000613) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXGS202 family architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33EPXXGS202 family devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or Data Space remapping, as described in Section 4.9 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD operations, which use TBLPAG to permit access to calibration data and Device ID sections of the configuration memory space.

The program memory maps for the dsPIC33EP16/ 32GS202 devices are shown in Figure 4-1 and Figure 4-2.

4.2 Unique Device Identifier (UDID)

All dsPIC33EPXXGS202 family devices are individually encoded during final manufacturing with a Unique Device Identifier or UDID. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- Tracking the device
- Unique serial number
- Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 800F00h and 800F08h in the device configuration space. Table 4-1 lists the addresses of the Identifier Words and shows their contents.

FABLE 4-1:	UDID ADDRESSES
-------------------	----------------

Name	Address	Bits 23:16	Bits 15:8	Bits 7:0
UDID1	800F00	UI	DID Word 1	
UDID2	800F02	UI	DID Word 2	
UDID3	800F04	UI	DID Word 3	
UDID4	800F06	UI	DID Word 4	
UDID5	800F08	UI	DID Word 5	

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	0860	_		_	—	_	—	_			U1EIP2	U1EIP1	U1EIP0	-	_			0040
IPC18	0864	—	_		_		_		—	—	PSESIP2	PSESIP1	PSESIP0			_	_	0040
IPC23	086E	—	PWM2IP2	PWM2IP1	PWM2IP0		PWM1IP2	PWM1IP1	PWM1IP0	—	_	—	_			_	_	4400
IPC24	0870	_	_	_	_	_	_	_	_	_	_	_	_	_	PWM3IP2	PWM3IP1	PWM3IP0	0004
IPC25	0872	—	AC2IP2	AC2IP1	AC2IP0		_		—	—	_	—	—			_	_	4000
IPC27	0876	—	ADCAN1IP2	ADCAN1IP1	ADCAN1IP0		ADCAN0IP2	ADCAN0IP1	ADCAN0IP0	—	_	—	_			_	_	4400
IPC28	0878	_	ADCAN5IP2	ADCAN5IP1	ADCAN5IP0	_	ADCAN4IP2	ADCAN4IP1	ADCAN4IP0	—	ADCAN3IP2	ADCAN3IP1	ADCAN3IP0	_	ADCAN2IP2	ADCAN2IP1	ADCAN2IP0	4444
IPC29	087A	—	_		_		_		—	—	ADCAN7IP2	ADCAN7IP1	ADCAN7IP0		ADCAN6IP2	ADCAN6IP1	ADCAN6IP0	0044
IPC35	0886	—	—		—		ICDIP2	ICDIP1	ICDIP0	—	_	—	—			_	_	0400
IPC37	088A	_	ADCAN8IP2	ADCAN8IP1	ADCAN8IP0	_	_	_	_	—	_	—	_	_	_	_	_	4000
IPC38	088C	—	_		_		ADCAN11IP2	ADCAN11IP1	ADCAN11IP0	—	ADCAN10IP2	ADCAN10IP1	ADCAN10IP0		ADCAN9IP2	ADCAN9IP1	ADCAN9IP0	0444
IPC39	088E	—	—		—		_		—	—	ADCAN14IP2	ADCAN14IP1	ADCAN14IP0			_	_	0040
IPC43	0896	_	_		_		_		_	_	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0			_	_	0040
IPC44	0898	—	ADFL0IP2	ADFL0IP1	ADFL0IP0		ADCMP1IP2	ADCMP1IP1	ADCMP1IP0	—	ADCMP1IP2	ADCMP1IP1	ADCMP1IP0			_	_	4440
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	AIVTEN	_	_	_	_	_	INT2EP	INT1EP	INTOEP	8000
INTCON3	08C4	_	_	_	_	_	_	_	NAE	_	_	_	DOOVR	_	_	_	APLL	0000
INTCON4	08C6	_		_	_	_	_	_	_	_	—	_	_	_	_	—	SGHT	0000
INTTREG	08C8	_	_	_	_	ILR3	ILR2	ILR1	ILR0	VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: TIMER1 THROUGH TIMER3 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100		Timer1 Register										xxxx					
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106								Timer2	Register								xxxx
TMR3HLD	0108						Time	er3 Holding I	Register (for	32-bit timer	operations	only)						xxxx
TMR3	010A								Timer3	Register								xxxx
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	—	—	—		_	TGATE	TCKPS1	TCKPS0	T32	—	TCS		0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-5: INPUT CAPTURE 1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	_	_	_	_	_	_	_	_	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144								Input Ca	pture 1 Bu	Iffer Register	r						xxxx
IC1TMR	0146								Input Ca	pture 1 Ti	mer Register							0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: OUTPUT COMPARE 1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	—	ENFLTA	—	—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	TMD FLTOUT FLTTRIEN OCINV OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 001									000C						
OC1RS	0904							0	utput Com	pare 1 Seco	ondary Regis	ster						xxxx
OC1R	0906		Output Compare 1 Register x								xxxx							
OC1TMR	0908	Timer Value 1 Register 2							xxxx									

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: PWM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN		PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0C02	—	PCLKDIV<2:0> 001										0000					
PTPER	0C04							PWM Prir	nary Master T	ime Base Peri	od Register (F	PTPER<15:0>)						FFF8
SEVTCMP	0C06					ŀ	PWM Spe	ecial Event Co	mpare Registe	er (SEVTCMP	12:0>)				_	_	_	0000
MDC	0C0A									MDC<15:0	>							0000
STCON	0C0E	_	_	—	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
STCON2	0C10	—		—	—	-		—	—		—	—	—		P	CLKDIV<2:0)>	0000
STPER	0C12							PWM Seco	ndary Master	Time Base Pe	riod Register	(STPER<15:0)	>)					FFF8
SSEVTCMP	0C14					PWM S	econdary	Special Even	t Compare Re	gister (SSEVT	CMP<12:0>)				_	_	_	0000
CHOP	0C1A	CHPCLKEN	HPCLKEN — — — — CHOPCLK6 CHOPCLK5 CHOPCLK4 CHOPCLK3 CHOPCLK2 CHOPCLK1 CHOPCLK0 — — — 000									0000						
PWMKEY	0C1E		PWM Protection Lock/Unlock Key Value Register (PWMKEY<15:0>) 0000									0000						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: PWM GENERATOR 1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	_	—	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON1	0C24	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC1	0C26			PWM Generator 1 Duty Cycle Register (PDC1<15:0>)								0000						
PHASE1	0C28					PWM Phas	se-Shift Value o	or Independent	t Time Base Pe	riod for the F	WM Genera	tor 1 Register	(PHASE1<1	5:0>)				0000
DTR1	0C2A	_	_							DTR1	<13:0>							0000
ALTDTR1	0C2C	_	_	ALTDTR1<13:0>							0000							
SDC1	0C2E								SDC ²	1<15:0>								0000
SPHASE1	0C30								SPHAS	E1<15:0>								0000
TRIG1	0C32							TRGCMP<1	2:0>						_	_	_	0000
TRGCON1	0C34	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG1	0C36							STRGCMP<1	2:0>						_	—	_	0000
PWMCAP1	0C38							PWMCAP<1	2:0>						_	_	_	0000
LEBCON1	0C3A	PHR	PHF PLR PLF FLTLEBEN CLLEBEN BCH BCL BPHH BPHL BPLL B00								0000							
LEBDLY1	0C3C	_	LEB<8:0>								0000							
AUXCON1	0C3E	HRPDIS	HRDDIS	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	 1 = Device has been in Idle mode 0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the WDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

8.1 CPU Clocking System

The dsPIC33EPXXGS202 family of devices provides six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (PLL)
- FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Low-Power RC (LPRC) Oscillator

Instruction execution speed or device operating frequency, FCY, is given by Equation 8-1.

EQUATION 8-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

Figure 8-2 is a block diagram of the PLL module.

Equation 8-2 provides the relationship between input frequency (FIN) and output frequency (FPLLO).

Equation 8-3 provides the relationship between input frequency (FIN) and VCO frequency (Fvco).

EQUATION 8-2: FPLLO CALCULATION

$$FPLLO = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV < 8:0 > + 2)}{(PLLPRE < 4:0 > + 2) \times 2(PLLPOST < 1:0 > + 1)}\right)$$

Where: N1 = PLLPRE<4:0> + 2 N2 = 2 x (PLLPOST<1:0> + 1) M = PLLDIV<8:0> + 2

EQUATION 8-3: Fvco CALCULATION

$$FVCO = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV < 8:0 > + 2)}{(PLLPRE < 4:0 > + 2)}\right)$$

REGISTER 10-3: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			T1CK	R<7:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_		—		_		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is up		x = Bit is unkr	iown
							,
bit 15-8	T1CKR<7:0	>: Assign Timer	1 External Clo	ock (T1CK) to t	he Correspond	ing RPn Pin bits	6
	10110101 =	Input tied to RF	P181		-	-	
	10110100 =	Input tied to RF	P180				
	•						
	•						
	•						
	00000001 =	Input tied to RF	P1				
	00000000 =	Input tied to Vs	S				
bit 7-0	Unimpleme	nted: Read as ')'				

REGISTER 15-6: STCON2: PWM SECONDARY CLOCK DIVIDER SELECT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—	—	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	—	—	F	CLKDIV<2:0>	[1]
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U =			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			iown				

bit 15-3 Unimplemented: Read as '0'

bit 2-0

PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾

111 = Reserved

110 = Divide-by-64, maximum PWM timing resolution

101 = Divide-by-32, maximum PWM timing resolution

100 = Divide-by-16, maximum PWM timing resolution

- 011 = Divide-by-8, maximum PWM timing resolution
- 010 = Divide-by-4, maximum PWM timing resolution
- 001 = Divide-by-2, maximum PWM timing resolution
- 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 15-7: STPER: PWM SECONDARY MASTER TIME BASE PERIOD REGISTER^(1,2)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
			STPE	R<15:8>				
bit 15	bit 15 bit 8							
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
			STPE	R<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 STPER<15:0>: Secondary Master Time Base (SMTMR) Period Value bits

Note 1: The PWM time base has a minimum value of 0x0010 and a maximum value of 0xFFF8.

2: Any period value that is less than 0x0028 must have the Least Significant 3 bits set to '0', thus yielding a period resolution at 8.32 ns (at fastest auxiliary clock rate).

17.0 INTER-INTEGRATED CIRCUIT (I²C)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit™ (I²C™)" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS202 family of devices contains one Inter-Integrated Circuit (I^2C) module.

The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCL1 pin is clock
- The SDA1 pin is data

The I²C module offers the following key features:

- I²C Interface Supporting Both Master and Slave modes of Operation
- I²C Slave mode Supports 7 and 10-Bit Addressing
- I²C Master mode Supports 7 and 10-Bit Addressing
- I²C Port allows Bidirectional Transfers between Master and Slaves
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly
- · System Management Bus (SMBus) Support

17.1 I²C Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

17.1.1 KEY RESOURCES

- "Inter-Integrated Circuit™ (I²C™)" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

18.3 UART Control Registers

REGISTER 18-1: U1MODE: UART1 MODE REGISTER

				-			
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹) _	USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0
bit 15							bit 8
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit 0
Legend:		HC = Hardwa	re Clearable bi	t			
R = Readab	ole bit	W = Writable	oit	U = Unimplem	ented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
		2.1.0 001		0 21110 0100			
bit 15	UARTEN: UA 1 = UART1 is 0 = UART1 is minimal	RT1 Enable bits enabled; all U disabled; all U	(1) ART1 pins are ART1 pins are	controlled by L controlled by F	IART1, as defin PORT latches; L	ed by UEN<1:0 IART1 power co	onsumption is
bit 14	Unimplemen	ted: Read as 'd)'				
bit 13	USIDL: UART	1 Stop in Idle	Mode bit				
	1 = Discontin 0 = Continue	ues module op s module opera	eration when d ation in Idle mo	levice enters Id de	le mode		
bit 12	IREN: IrDA [®] I	Encoder and D	ecoder Enable	bit ⁽²⁾			
	1 = IrDA ence 0 = IrDA ence	oder and decoo oder and decoo	ler are enableo ler are disableo	t d			
bit 11	RTSMD: Mod	e Selection for	U1RTS Pin bit				
	$1 = \overline{\text{U1RTS}} p$ 0 = U1RTS p	in is in Simplex in is in Flow Co	mode Introl mode				
bit 10	Unimplemen	ted: Read as 'o)'				
bit 9-8	UEN<1:0>: U	ART1 Pin Enat	ole bits				
	11 = U1TX, U 10 = U1TX, U 01 = U1TX, U 00 = U1TX ar PORT la	I1RX and BCLI I1RX, U1CTS a I1RX and U1R nd U1RX pins a atches	(1 pins are ena and U1RTS pin IS pins are ena are enabled an	abled and used; s are enabled a abled an <u>d used</u> id used; U1CTS	; U1CTS pin is o and used ; U1CTS pin is o S and U1RTS/B	controlled by PC controlled by PC CLK1 pins are	ORT latches ORT latches controlled by
bit 7	WAKE: Wake	-up on Start bit	Detect During	Sleep Mode Er	nable bit		
	1 = UART1 c in hardwa 0 = No wake-	ontinues to sar are on the follov -up is enabled	nple the U1RX wing rising edg	pin, interrupt is e	generated on t	he falling edge;	bit is cleared
bit 6	LPBACK: UA	RT1 Loopback	Mode Select b	pit			
	1 = Enables 0 = Loopbacl	Loopback mode k mode is disab	e Iled				
bit 5	ABAUD: Auto	-Baud Enable	bit				
	1 = Enables before ot 0 = Baud rate	baud rate meas her data; cleare e measurement	surement on th ed in hardware is disabled or	e next characto upon completic completed	er – requires re on	ception of a Sy	nc field (55h)
Note 1: F	Refer to " Univers Family Reference	al Asynchron Manual" for inf	ous Receiver	Fransmitter (UA abling the UAR	ART)" (DS7000 T1 module for re	0582) in the <i>"ds</i> eceive or transn	PIC33/PIC24 nit operation.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

19.0 HIGH-SPEED, 12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (DS70005213) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS202 devices have a highspeed, 12-bit Analog-to-Digital Converter (ADC) that features a low conversion latency, high resolution and oversampling capabilities to improve performance in AC/DC, DC/DC power converters.

19.1 Features Overview

The 12-Bit High Speed Multiple SARs Analog-to-Digital Converter (ADC) includes the following features:

- 12-Bit Resolution
- Up to 3.25 Msps Conversion Rate per ADC Core @ 12-Bit Resolution
- Multiple Dedicated ADC Cores
- One Shared (common) ADC Core
- Up to 12 Analog Input Sources
- Conversion Result can be Formatted as Unsigned or Signed Data on a per Channel Basis for All Channels
- Separate 16-Bit Conversion Result Register for each Analog Input
- Simultaneous Sampling of up to 3 Analog Inputs

- Flexible Trigger Options
- Early Interrupt Generation to Enable Fast Processing of Converted Data
- Two Integrated Digital Comparators:
 - Multiple comparison options
 - Assignable to specific analog inputs
- · Oversampling Filters:
 - Provides increased resolution
 - Assignable to a specific analog input
- · Operation During CPU Sleep and Idle modes

Simplified block diagrams of the Multiple SARs 12-Bit ADC are shown in Figure 19-1, Figure 19-2 and Figure 19-3.

The module consists of two independent SAR ADC cores. The analog inputs (channels) are connected through multiplexers and switches to the Sample-and-Hold (S/H) circuit of each ADC core. The core uses the channel information (the output format, the measurement mode and the input number) to process the analog sample. When conversion is complete, the result is stored in the result buffer for the specific analog input and passed to the digital filter and digital comparator if they were configured to use data from this particular channel.

The ADC module can sample up to three inputs at a time (two inputs from the dedicated SAR ADC cores and one from the shared SAR ADC cores). If multiple ADC inputs request conversion, the ADC module will convert them in a sequential manner, starting with the lowest order input.

The ADC provides each analog input the ability to specify its own trigger source. This capability allows the ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.

dsPIC33EPXXGS202 FAMILY

REGISTER 19-3: ADCON2L: ADC CONTROL REGISTER 2 LOW

R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
REFCIE	REFERCIE ⁽²⁾	_	EIEN	_	SHREISEL2(1)	SHREISEL1(1)	SHREISEL0 ⁽¹⁾	
bit 15			·		·		bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	SHRADCS6	SHRADCS5	SHRADCS4	SHRADCS3	SHRADCS2	SHRADCS1	SHRADCS0	
bit 7							bit 0	
[
Legend:								
R = Reada	able bit	W = Writable k	bit	U = Unimpler	nented bit, read	as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own	
bit 15 bit 14	 it 15 REFCIE: Band Gap and Reference Voltage Ready Common Interrupt Enable bit 1 = Common interrupt will be generated when the band gap will become ready 0 = Common interrupt is disabled for the band gap ready event it 14 REFERCIE: Band Gap or Reference Voltage Error Common Interrupt Enable bit⁽²⁾ 1 = Common interrupt will be generated when the band gap or reference voltage error is detected a Common interrupt is disabled for the band gap or reference voltage error is detected 							
bit 13	Unimplement	ted: Read as ')'		· ·			
bit 12	EIEN: Early In	nterrupts Enabl	e bit					
	1 = The early 0 = The indivi	interrupt featur dual interrupts	e is enabled fo are generated	r the input cha when conversi	innels interrupts ion is done (whe	(when EISTATx en ANxRDY flag	t flag is set) is set)	
bit 11	Unimplement	ted: Read as ')'					
bit 10-8	SHREISEL<2	:0>: Shared Co	ore Early Interr	upt Time Seled	ction bits ⁽¹⁾			
	SHREISEL<2:0>: Shared Core Early interrupt Time Selection bits ⁽¹⁾ 111 = Early interrupt is set and interrupt is generated 8 TADCORE clocks prior to when the data is ready 101 = Early interrupt is set and interrupt is generated 7 TADCORE clocks prior to when the data is ready 101 = Early interrupt is set and interrupt is generated 6 TADCORE clocks prior to when the data is ready 100 = Early interrupt is set and interrupt is generated 5 TADCORE clocks prior to when the data is ready 011 = Early interrupt is set and interrupt is generated 4 TADCORE clocks prior to when the data is ready 011 = Early interrupt is set and interrupt is generated 3 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and interrupt is generated 3 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and interrupt is generated 3 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and interrupt is generated 3 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and interrupt is generated 4 TADCORE clocks prior to when the data is ready 010 = Early interrupt is set and interrupt is generated 2 TADCORE clocks prior to when the data is ready 001 = Early interrupt is set and interrupt is generated 4 TADCORE clocks prior to when the data is ready 001 = Early interrupt is set and interrupt is generated 4 TADCORE clocks prior to when the data is ready							
bit 7	Unimplement	ted: Read as ')'					
bit 6-0	SHRADCS<6	:0>: Shared Al	DC Core Input	Clock Divider b	oits			
	These bits det Core Clock) p 1111111 = 25 • • • • • • • • • • • • • • • • • • •	ermine the nun eriod. 54 Core Source Core Source C Core Source C Core Source C Core Source C	ber of TCORES Clock periods Clock periods Clock periods Clock periods Clock periods	RC (Core Sourd	ce Clock) period	s for one shared	TADCORE (ADC	
Note 1:	For the 6-bit sha from '100' to '12	ared ADC core	resolution (SHF d and should ne	RRES<1:0> = (ot be used. For	00), the SHREIS	EL<2:0> setting ADC core reso	s, Iution	

- (SHRRES<1:0> = 01), the SHREISEL<2:0> settings, '110' and '111', are not valid and should not be used.
- 2: To avoid false interrupts, the REFERCIE bit must be set only after the module is enabled (ADON = 1).

REGISTER 19-26: ADFL0CON: ADC DIGITAL FILTER 0 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HC, HS
FLEN	MODE1	MODE0	OVRSAM2	OVRSAM1	OVRSAM0	IE	RDY
bit 15		1		1	1		bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FLCHSEL4	FLCHSEL3	FLCHSEL2	FLCHSEL1	FLCHSEL0
bit 7							bit 0
Leaend:		HC = Hardwar	e Clearable bit	HS = Hardwa	re Settable bit		
R = Readab	ole bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		$(0)^{2} = \text{Bit is clear}$	ared	x = Rit is unkr	nown
							lowin
hit 15		- Enchla hit					
DIL 15	1 = Filter is						
	0 = Filter is 0	disabled and th	e RDY bit is clea	ared			
bit 14-13	MODE<1:05	Filter Mode b	its				
	11 = Average	ina mode					
	10 = Reserv	ved					
	01 = Reserv	ved					
	00 = Oversa	ampling mode					
bit 12-10	OVRSAM<2	2:0>: Filter Aver	aging/Oversam	pling Ratio bits			
	If MODE<1:	0> = 00:					
	111 = 128x	(16-bit result in	the ADFL0DAT	register is in 12	2.4 format)		
	110 = 32x (15-bit result in t	he ADFLODAT r	register is in 12.	3 format)		
	101 = 8x(14)	4-DIT result in the		gister is in 12.2	format)		
	011 = 256x	(16-bit result in	the ADFL0DAT	register is in 12	2.4 format)		
	010 = 64x (*	15-bit result in t	he ADFL0DAT r	egister is in 12.	3 format)		
	001 = 16x (*	14-bit result in t	he ADFL0DAT r	register is in 12.	2 format)		
	000 = 4x (13)	3-bit result in the	e ADFL0DAT re	gister is in 12.1	format)		
	If MODE<1:	0> = 11 (12-bit	result in the AD	FL0DAT registe	<u>er):</u>		
	111 = 256x						
	110 = 128x						
	101 = 04x 100 = 32x						
	011 = 16x						
	010 = 8x						
	001 = 4x						
	000 = 2x						
bit 9	IE: Filter Co	mmon ADC Inte	errupt Enable bi	t			
	1 = Commo 0 = Commo	n ADC interrupt n ADC interrupt	will be generate will not be gene	ed when the filte erated for the fil	er result will be ter	ready	
bit 8	RDY: Overs	ampling Filter D	ata Ready Flag	bit			
	This bit is clo	eared by hardw the ADFL0DAT	are when the re register is ready	sult is read from	n the ADFLODA	T register.	tradu
hit 7 5		ntod. Dood oo	1 1103 DEELLIEBU				auy
UIL / -D	Unimpierne	meu: Reau as	U				

REGISTER 20-1: CMPxCON: COMPARATOR x CONTROL REGISTER (x = 1,2) (CONTINUED)

bit 2	ALTINP: Alternate Input Select bit
	1 = INSEL<1:0> bits select alternate inputs
	0 = INSEL<1:0> bits select comparator inputs
bit 1	CMPPOL: Comparator Output Polarity Control bit
	1 = Output is inverted
	0 = Output is non-inverted
bit 0	Unimplemented: Read as '0'

REGISTER 20-2: CMPxDAC: COMPARATOR DACx CONTROL REGISTER (x = 1,2)

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	_		CMREF	-<11:8>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CMRE	F<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-0 CMREF<11:0>: Comparator Reference Voltage Select bits 11111111111 = (CMREF<11:0> * (AVDD)/4096)

• 000000000000 = 0.0 volts

21.0 PROGRAMMABLE GAIN AMPLIFIER (PGA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programmable Gain Amplifier (PGA)" (DS70005146) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS202 family devices have two Programmable Gain Amplifiers (PGA1, PGA2). The PGA is an op amp-based, non-inverting amplifier with user-programmable gains. The output of the PGA can be connected to a number of dedicated Sample-and-Hold inputs of the Analog-to-Digital Converter and/or to the high-speed analog comparator module. The PGA has five selectable gains and may be used as a ground referenced amplifier (single-ended) or used with an independent ground reference point.

Key features of the PGA module include:

- Single-Ended or Independent Ground Reference
- Selectable Gains: 4x, 8x, 16x, 32x and 64x
- High Gain Bandwidth
- Rail-to-Rail Output Voltage
- Wide Input Voltage Range

FIGURE 21-1: PGAx MODULE BLOCK DIAGRAM

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
9	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
10	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
11	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
12	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
13	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
14	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
15	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
16	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
17	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,SLEEP
18	COM	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	Wd = Ws	1	1	N,Z
19	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
20	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
21	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb – Ws – C)	1	1	C,DC,N,OV,Z
22	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
23	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
24	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
L	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
25	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if \neq	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if ≠	1	1 (5)	None

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

25.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33EPXXGS202 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXGS202 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	-0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	-0.3V to +3.6V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sunk/sourced by any 4x I/O pin	
Maximum current sunk/sourced by any 8x I/O pin	
Maximum current sunk by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.

27.0 PACKAGING INFORMATION

27.1 Package Marking Information

28-Lead SSOP

28-Lead SOIC (.300")

28-Lead UQFN (4x4x0.6 mm)

28-Lead UQFN (6x6x0.5 mm)

28-Lead QFN-S (6x6x0.9 mm)

Example dsPIC33EP16 GS202 C 1610017

Example

Example

Example

Example

Legend	: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	

© 2015-2016 Microchip Technology Inc.