

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs202-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	PPS	Description					
PGA1P1-PGA1P3	I	Analog	No	PGA1 Positive Inputs 1 through 3.					
PGA1N2	I	Analog	No	PGA1 Negative Input 2.					
PGA2P1-PGA2P3	I	Analog	No	PGA2 Positive Inputs 1 through 3.					
PGA2N2	I	Analog	No	PGA2 Negative Input 2.					
ADTRG31	I	ST	No	External ADC trigger source.					
PGED1 PGEC1 PGED2 PGEC2	I/O I I/O I	ST ST ST ST	No No No No	Clock input pin for Programming/Debugging Communication Channel Data I/O pin for Programming/Debugging Communication Channel 2. Clock input pin for Programming/Debugging Communication Channel					
PGED3 PGEC3	I/O I	ST ST	No No	Data I/O pin for Programming/Debugging Communication Channel 3. Clock input pin for Programming/Debugging Communication Channel 3.					
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.					
AVdd	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.					
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.					
Vdd	Р	_	No	Positive supply for peripheral logic and I/O pins.					
VCAP	Р		No	CPU logic filter capacitor connection.					
Vss	Р		No	Ground reference for logic and I/O pins.					

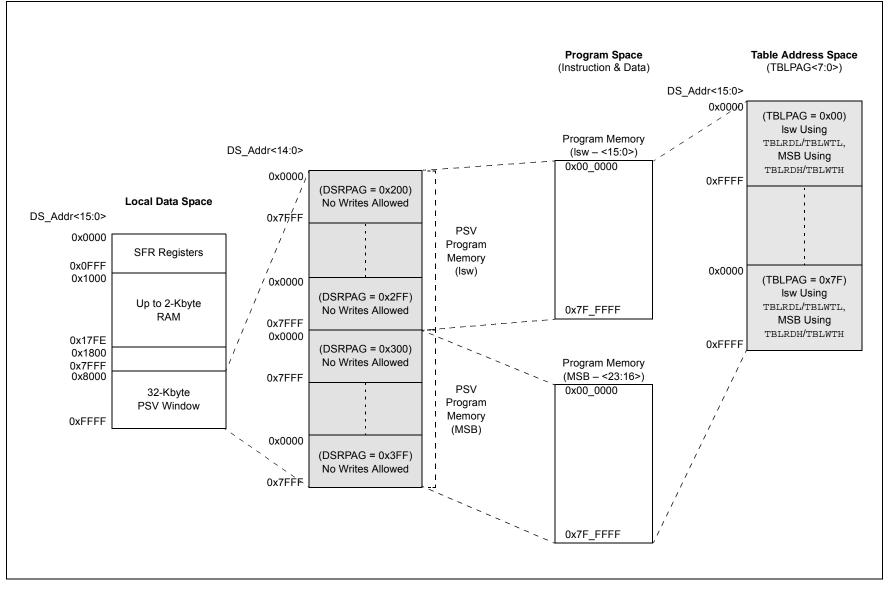
TABLE 1-1. **PINOUT I/O DESCRIPTIONS (CONTINUED)**

egend: CMOS : CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels O = Output PPS = Peripheral Pin Select

Analog = Analog Input TTL = TTL input buffer

```
= Power
I = Input
```

4.5 Special Function Register Maps


TABLE 4-2: CPU CORE REGISTER MAP

	-2.																	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WRE	G)								xxxx
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	8000								W4									xxxx
W5	000A								W5									xxxx
W6	000C								W6									xxxx
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012		W9								xxxx							
W10	0014								W10									xxxx
W11	0016								W11									xxxx
W12	0018								W12									xxxx
W13	001A								W13									xxxx
W14	001C								W14									xxxx
W15	001E								W15									xxxx
SPLIM	0020								SPLIM									0000
ACCAL	0022								ACCAL									0000
ACCAH	0024								ACCAH									0000
ACCAU	0026			Się	gn Extension	of ACCA<39)>						ACC	AU				0000
ACCBL	0028								ACCBL									0000
ACCBH	002A								ACCBH									0000
ACCBU	002C			Się	gn Extension	of ACCB<39)>						ACC	BU				0000
PCL	002E							PC	L<15:1>								_	0000
PCH	0030	_	_	_	_	—	—	_	_	_				PCH<6:0>				0000
DSRPAG	0032	_	_	_	_	_	_		E	Extended D	ata Space	EDS) Read	I Page Reg	ister (DSRI	PAG<9:0>)			0001
DSWPAG ⁽¹⁾	0034	_	_	_	_	_	_	_		Extend	ed Data Sp	ace (EDS)	Write Page	e Register (I	DSWPAG8	:0>) ⁽¹⁾		0001
RCOUNT	0036							F	RCOUNT<1	5:0>								0000
DCOUNT	0038						DO	Loop Count	er Register	(DCOUNT«	<15:0>)							0000
DOSTARTL	003A					DO	Loop Start A	Address Re	gister Low (DOSTARTL	_<15:1>)						—	0000
DOSTARTH	003C	—	—	—	—	—	—	—	—	—	—	DO LOO	p Start Add	dress Regis	ter High (D	OSTARTH	<5:0>)	0000
	• •											•						·

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The contents of this register should never be modified. The DSWPAG must always point to the first page.

4.7 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

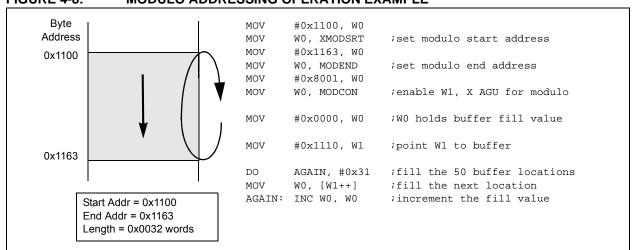
The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.7.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-2).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).


4.7.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags, as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-2). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-8: MODULO ADDRESSING OPERATION EXAMPLE

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15		•					bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7	•	•		•			bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 2 (10)

- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing latency

0 = Fixed exception processing latency

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0						
		_	—	—	—	—	NAE						
bit 15							bit 8						
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0						
			DOOVR				APLL						
bit 7							bit 0						
Legend:													
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'							
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cleared x = Bit is unknown									
bit 15-9	Unimplemen	ted: Read as	'0'										
bit 8	NAE: NVM A	NAE: NVM Address Error Soft Trap Status bit											
	1 = NVM add	1 = NVM address error soft trap has occurred											
	0 = NVM add	0 = NVM address error soft trap has not occurred											
bit 7-5	Unimplemen	ted: Read as	'0'										
bit 4	DOOVR: DO	Stack Overflov	v Soft Trap Sta	itus bit									
	1 = DO stack	overflow soft t	rap has occurr	ed									
			rap has not oc										
bit 3-1	Unimplemen	ted: Read as	'0'										
bit 0	APLL: Auxilia	ary PLL Loss o	of Lock Soft Tra	ap Status bit									
	1 = APLL loc	k soft trap has	occurred										
		k coft tran hac	not occurred										

0 = APLL lock soft trap has not occurred

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
—	—	—	—	—	—	—	SGHT				
bit 7				•		•	bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							
bit 15-1	Unimplemen	ted: Read as '	0'								
bit 0	SGHT: Softwa	are Generated	Hard Trap Sta	tus bit							
	1 = Software generated hard trap has occurred										
	0 = Software	generated har	d trap has not	occurred							

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLT4R7	FLT4R6	FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLT3R7	FLT3R6	FLT3R5	FLT3R4	FLT3R3	FLT3R2	FLT3R1	FLT3R0	
bit 7							bit (
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 7-0	10110100 = • • 00000000 = FLT3R<7:0>	Input tied to RI Input tied to RI Input tied to RI Input tied to Vs : Assign PWM Input tied to RI	⊃180 ⊃1 SS Fault 3 (FLT3)	to the Corresp	ponding RPn Pi	in bits		
	10110100 = • • • 00000001 =	Input tied to RI Input tied to RI Input tied to RI	⊃180 ⊃1					

REGISTER 10-8: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

REGISTER 15-27: PWMCAPx: PWMx PRIMARY TIME BASE CAPTURE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PWMCAP	<12:5> ^(1,2,3,4)			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	U-0	U-0	U-0
	PW	/MCAP<4:0> ^{(1,2}	,3,4)		—	—	—
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable I	bit	U = Unimplen	nented bit, read	l as '0'	

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-3 **PWMCAP<12:0>:** Captured PWMx Time Base Value bits^(1,2,3,4) The value in this register represents the captured PWMx time base value when a leading edge is detected on the current-limit input.

bit 2-0 Unimplemented: Read as '0'

- **Note 1:** The capture feature is only available on a primary output (PWMxH).
 - 2: This feature is active only after LEB processing on the current-limit input signal is complete.
 - **3:** The minimum capture resolution is 8.32 ns.
 - 4: This feature can be used when the XPRES bit (PWMCONx<1>) is set to '0'.

16.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPI1CON2<13>) = 1, use a pull-down resistor on SS1.
 - b) If FRMPOL = 0, use a pull-up resistor on $\overline{SS1}$.

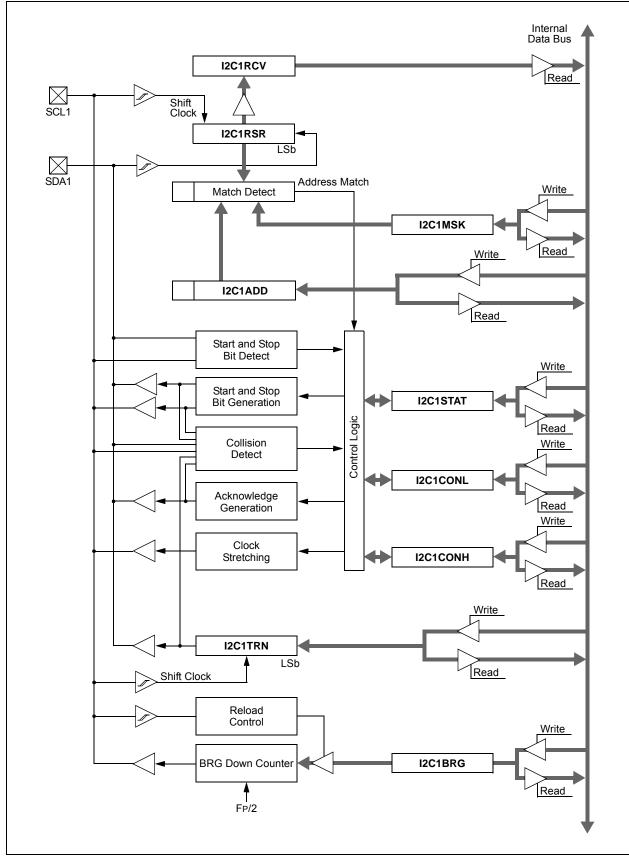
Note:	This	ensures	that	the	first	fra	ame
	transr	mission a	after in	nitializa	ation	is	not
	shifted or corrupted.						

- 2. In Non-Framed 3-Wire mode (i.e., not using SS1 from a master):
 - a) If CKP (SPI1CON1<6>) = 1, always place a pull-up resistor on SS1.
 - b) If CKP = <u>0</u>, always place a pull-down resistor on SS1.
 - **Note:** This will ensure that during power-up and initialization, the master/slave will not lose synchronization due to an errant SCK1 transition that would cause the slave to accumulate data shift errors for both transmit and receive, appearing as corrupted data.
- FRMEN (SPI1CON2<15>) = 1 and SSEN (SPI1CON1<7>) = 1 are exclusive and invalid. In Frame mode, SCK1 is continuous and the frame sync pulse is active on the SS1 pin, which indicates the start of a data frame.

Note:	Not all third-party devices support Frame							
	mode timing. Refer to the SPI1							
	specifications in Section 25.0 "Electrical							
	Characteristics" for details.							

 In Master mode only, set the SMP bit (SPI1CON1<9>) to a '1' for the fastest SPI1 data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPI1CON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPI1BUF Transmit register in advance of the next master transaction cycle. SPI1BUF is transferred to the SPI1 Shift register and is empty once the data transmission begins.


16.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

16.2.1 KEY RESOURCES

- "Serial Peripheral Interface (SPI)" (DS70005185) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

FIGURE 17-1: I2C1 BLOCK DIAGRAM

REGISTER 19-7: ADCON4L: ADC CONTROL REGISTER 4 LOW

-n = Value at POR (1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkno	wn	
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
Legend:							
							bit o
bit 7							bit 0
_		—				SAMC1EN	SAMC0EN
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
bit 15				·			bit 8
—	_	—	—	—	_	SYNCTRG1 ⁽¹⁾	SYNCTRG0 ⁽¹⁾
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0

bit 15-10 Unimplemented: Read as '0'

bit 9-8 **SYNCTRG<1:0>** Dedicated ADC Core x Trigger Synchronization bits⁽¹⁾ 1 = All triggers are synchronized with the Core Source Clock (TCORESRC) 0 = The ADC core triggers are not synchronized

bit 7-2 Unimplemented: Read as '0'

bit 1-0 SAMC1EN:SAMC0EN: Dedicated ADC Core x Conversion Delay Enable bits

1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORExL register

- 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle.
- **Note 1:** For proper ADC performance, this bit must be set when using level-sensitive triggers and cleared for edge-sensitive triggers.

REGISTER 19-13: ADLVLTRGL: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER LOW

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	LVLEN14	—	—		LVLE	EN<11:8>				
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			LVL	.EN<7:0>						
bit 7						bit 0				
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	wn			
bit 15	Unimpleme	nted: Read as	'0'							
bit 14	LVLEN14: L	evel Trigger 14	Enable bit							
	1 = Input Ch	1 = Input Channel 14 trigger is level-sensitive								
0 = Input Channel 14 trigger is edge-sensitive										
bit 13-12	Unimplemented: Read as '0'									
bit 11-0	LVLEN<11:0	VLEN<11:0>: Level Trigger x Enable bits								
	1 = Input Ch	annel x trigger	is level-sensitiv	ve						
	0 = Input Ch	annel x trigger	is edge-sensiti	ve						

20.0 HIGH-SPEED ANALOG COMPARATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed Analog Comparator Module" (DS70005128) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 2: Some registers and associated bits
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The high-speed analog comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

20.1 Features Overview

The SMPS comparator module offers the following major features:

- Two Rail-to-Rail Analog Comparators
- Dedicated 12-Bit DAC for each Analog Comparator
- Up to Six Selectable Input Sources per Comparator:
 - Four external inputs
 - Two internal inputs from the PGAx module
- Programmable Comparator Hysteresis
- Programmable Output Polarity
- Voltage References for the DACx:
 - AVDD
- Interrupt Generation Capability
- Functional Support for PWM:
 - PWM duty cycle control
 - PWM period control
 - PWM Fault detected

TABLE 25-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	I Characteristic Min. Typ. ⁽¹⁾ Max. Units				Conditions		
	VIL	Input Low Voltage						
DI10		Any I/O Pin and MCLR	Vss	—	0.2 Vdd	V		
DI18		I/O Pins with SDA1, SCL1	Vss	—	0.3 Vdd	V	SMBus disabled	
DI19		I/O Pins with SDA1, SCL1	Vss	—	0.8	V	SMBus enabled	
	Vih	Input High Voltage						
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾	0.8 Vdd	—	Vdd	V		
		I/O Pins 5V Tolerant and MCLR ⁽⁴⁾	0.8 VDD	—	5.5	V		
		5V Tolerant I/O Pins with SDA1, SCL1 ⁽⁴⁾	0.8 Vdd	—	5.5	V	SMBus disabled	
		5V I/O Pins with SDA1, SCL1 ⁽⁴⁾	2.1	—	5.5	V	SMBus enabled	
		I/O Pins with SDA1, SCL1 Not 5V Tolerant ⁽⁴⁾	0.8 Vdd	—	Vdd	V	SMBus disabled	
		I/O Pins with SDA1, SCL1 Not 5V Tolerant ⁽⁴⁾	2.1	—	Vdd	V	SMBus enabled	
DI30	ICNPU	Input Change Notification Pull-up Current	50	250	600	μA	VDD = 3.3V, VPIN = VSS	
DI31	ICNPD	Input Change Notification Pull-Down Current ⁽⁵⁾	—	50		μA	VDD = 3.3V, VPIN = VDD	

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 5: VIL Source < (Vss 0.3). Characterized but not tested.
- **6:** VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- 7: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 8: |Injection Currents| > 0 can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

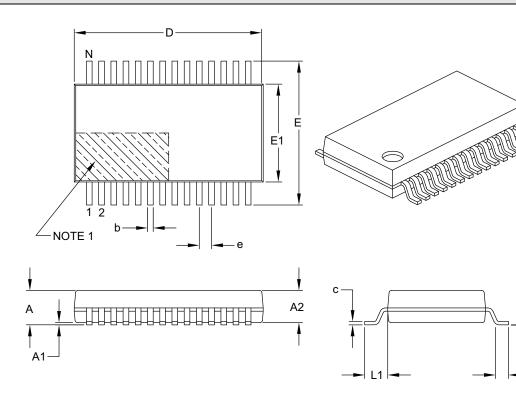
TABLE 25-42: ADC MODULE SPECIFICATIONS (CONTINUED)

AC CHA		STICS	Standard Op (unless othe Operating ter	erwise stat	ed)⁽⁴⁾ -40°C ≤ T⁄	م ≤ +85°	3.6V C for Industrial °C for Extended
Param No.	Symbol	Characteristics ⁽³⁾	Min.	Typical	Max.	Units	Conditions
		ADC	Accuracy: S	ingle-Ende	ed Input		
AD20b	Nr	Resolution		12		bits	
AD21b	INL	Integral Nonlinearity	> -4	_	< 4	LSb	AVss = 0V, AVDD = 3.3V
AD22b	DNL	Pseudo-Differential Nonlinearity	> -1	—	< 1.5	LSb	AVss = 0V, AVDD = 3.3V (Note 5)
AD23b	Gerr	Gain Error (Dedicated Core)	> -5	—	< 5	LSb	AVss = 0V, AVdd = 3.3V
		Gain Error (Shared Core)	> -5	—	< 5	LSb	AVss = 0V, AVdd = 3.3V, -40°C < TA ≤ +85°C
			> -6	—	< 6	LSb	AVss = 0V, AVdd = 3.3V, -85°C < TA ≤ +125°C
AD24b	EOFF	Offset Error (Dedicated Core)	0	7	< 12	LSb	AVss = 0V, AVdd = 3.3V
		Offset Error (Shared Core)	0	7	< 12	LSb	
AD25b	_	Monotonicity	—	_	—	—	Guaranteed
			Dynamic Po	erformanc	e		
AD31b	SINAD	Signal-to-Noise and Distortion	63	_	> 65	dB	(Notes 2, 3)
AD34b	ENOB	Effective Number of bits	10.3	_		bits	(Notes 2, 3)

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized but not tested in manufacturing.

3: Characterized with a 1 kHz sine wave.


4: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

5: No missing codes, limits are based on the characterization results.

27.2 Package Details

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

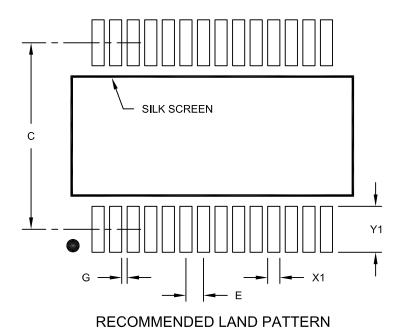
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			5	
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		0.65 BSC		
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	Е	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	_	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

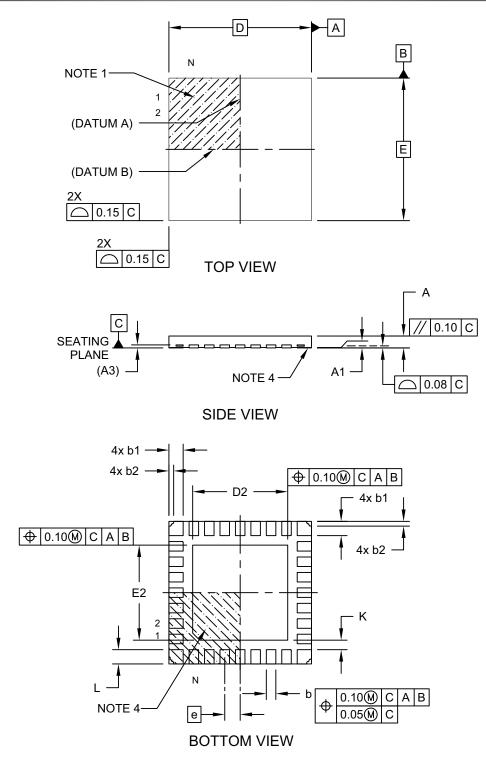
Microchip Technology Drawing C04-073B

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimensio	Dimension Limits			MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6x0.5mm Body [UQFN] Ultra-Thin with 0.40 x 0.60 mm Terminal Width/Length and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-0209 Rev C Sheet 1 of 2