

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b, 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs202t-e-mx

Email: info@E-XFL.COM

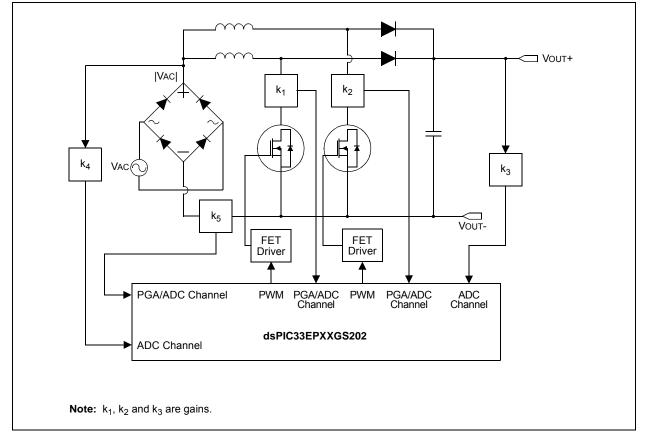
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < FIN < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os


Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins and drive the output to logic low.

2.9 Targeted Applications

- Power Factor Correction (PFC)
 - Interleaved PFC
 - Critical Conduction PFC
 - Bridgeless PFC
- DC/DC Converters
 - Buck, Boost, Forward, Flyback, Push-Pull
 - Half/Full-Bridge
 - Phase-Shift Full-Bridge
- Resonant Converters
- DC/AC
 - Half/Full-Bridge Inverter
 - Resonant Inverter

Examples of typical application connections are shown in Figure 2-4 through Figure 2-6.

FIGURE 2-4: INTERLEAVED PFC

4.3.5 X AND Y DATA SPACES

The dsPIC33EPXXGS202 core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.4 Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

4.4.1 KEY RESOURCES

- "dsPIC33E/PIC24E Program Memory" (DS70000613) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

TABLE 4-4: TIMER1 THROUGH TIMER3 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								xxxx
PR1	0102		Period Register 1											FFFF				
T1CON	0104	TON	—	TSIDL	_	—	_	—	—	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—	0000
TMR2	0106		Timer2 Register										xxxx					
TMR3HLD	0108						Time	r3 Holding F	Register (for	32-bit timer	operations	only)						xxxx
TMR3	010A								Timer3	Register								xxxx
PR2	010C								Period R	egister 2								FFFF
PR3	010E								Period R	egister 3								FFFF
T2CON	0110	TON	—	TSIDL	_	—	_	—	—	_	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	—	_	—	_	_	TGATE	TCKPS1	TCKPS0	_	—	TCS	_	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-5: INPUT CAPTURE 1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	_	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	_	—	_	_	-	_		_	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144		Input Capture 1 Buffer Register											xxxx				
IC1TMR	0146		Input Capture 1 Timer Register											0000				

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: OUTPUT COMPARE 1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900		_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_		ENFLTA	_		OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	—	—	—	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904							0	utput Com	pare 1 Seco	ndary Regis	ter						xxxx
OC1R	0906								Output	Compare 1	Register							xxxx
OC1TMR	0908		Timer Value 1 Register										xxxx					

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	 1 = Device has been in Idle mode 0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the WDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0						
GIE	DISI	SWTRAP		—	—	—	AIVTEN						
bit 15							bit 8						
					D11 (0)	D 444 0	D 444 A						
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0						
		—			INT2EP	INT1EP	INT0EP						
bit 7							bit (
Legend:													
R = Readab	le bit	W = Writable b	bit	U = Unimpler	mented bit, read	as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown						
bit 15		nterrupt Enable											
		and associated											
L:1 4 4		are disabled, b	•	still enabled									
bit 14		nstruction Status											
	1 = DISI instruction is active 0 = DISI instruction is not active												
bit 13	SWTRAP: Se	oftware Trap Sta	atus bit										
		trap is enabled											
		trap is disabled											
bit 12-9	-	ted: Read as '											
bit 8		ernate Interrupt											
		ernate Interrupt											
bit 7-3		ted: Read as '(
bit 2		ernal Interrupt 2		t Polarity Selec	t bit								
		on negative edg											
	•	on positive edge											
bit 1		ernal Interrupt 1	•	t Polarity Selec	t bit								
		on negative edg on positive edge											
bit 0	•	ernal Interrupt 0		t Polarity Selec	t bit								
		on negative edg	•	· , · , - · · · · ·	-								

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

10.7 Peripheral Pin Select Registers

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INT1R	<7:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7	·						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 INT1R<7:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits 10110101 = Input tied to RP181 10110100 = Input tied to RP180 . . 00000001 = Input tied to RP1 00000000 = Input tied to Vss

bit 7-0 Unimplemented: Read as '0'

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	—	—	—	_
bit 15						• •	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INT2	R<7:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	Unimpleme	nted: Read as '	0'				
bit 7-0	INT2R<7:0>	: Assign Extern	al Interrupt 2	(INT2) to the C	orresponding R	Pn Pin bits	
		Input tied to R	-	. ,			
		Input tied to R					
	•	·					
	•						
	•						
	00000001 =	Input tied to R	P1				

00000000 = Input tied to Vss

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SCK1INR7	SCK1INR6	SCK1INR5	SCK1INR4	SCK1INR3	SCK1INR2	SCK1INR1	SCK1INR0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SDI1R7	SDI1R6	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 7-0	10110100 = 00000001 = 00000000 = SDI1R<7:0>: 10110101 =	Input tied to RF Input tied to RF Input tied to Vs Assign SPI1 D Input tied to RF Input tied to RF	2180 21 55 Pata Input (SDI 2181	11) to the Corre	esponding RPn	Pin bits		
		Input tied to RF Input tied to Vs						

REGISTER 10-10: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 10-24: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
bit 7							bit 0

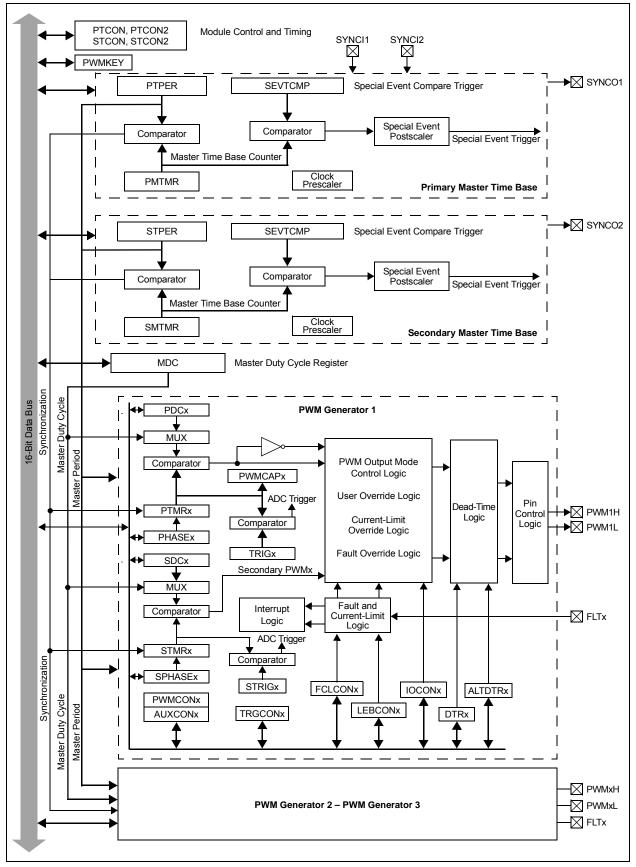
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP177R<5:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP176R<5:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-25: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	
bit 15							bit 8	

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
bit 7							bit 0


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP179R<5:0>:** Peripheral Output Function is Assigned to RP179 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0' bit 5-0 RP178R<5:0>: Peripheral Output Function is

bit 5-0 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits (see Table 10-2 for peripheral function numbers)

FIGURE 15-2: SIMPLIFIED CONCEPTUAL BLOCK DIAGRAM OF THE HIGH-SPEED PWM

REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)

10001 = 12 Postscaler generates a Special Event Trigger on every second compare match event 0000 = 1:1 Postscaler generates a Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 15-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		_	—	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	PCLKDIV<2)
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						1 as '0'	
-n = Value at PO	R	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾

111 = Reserved

110 = Divide-by-64, maximum PWM timing resolution

101 = Divide-by-32, maximum PWM timing resolution

- 100 = Divide-by-16, maximum PWM timing resolution
- 011 = Divide-by-8, maximum PWM timing resolution
- 010 = Divide-by-4, maximum PWM timing resolution
- 001 = Divide-by-2, maximum PWM timing resolution
- 000 = Divide-by-1, maximum PWM timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 15-26: AUXCONX: PWMx AUXILIARY CONTROL REGISTER

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
HRPDIS	HRDDIS	_	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN			
bit 7							bit 0			
r										
Legend:										
R = Readable		W = Writable		•	ented bit, read					
-n = Value at P	'UR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	iown			
bit 15	1 = High-reso 0 = High-reso	lution PWMx p	eriod is disabl eriod is enable	ed to reduce po ed	ower consumpt	ion				
bit 14	0	h-Resolution P								
		lution PWMx d lution PWMx d		sabled to reduc nabled	e power consu	mption				
bit 13-12	-	ted: Read as '								
bit 11-8	•			urce Select bits						
	1001 = Reset 1000 = Reset 0111 = Reset 0101 = Reset 0100 = Reset 0011 = PWM 0010 = PWM 0001 = PWM	rved rved rved rved rved rved 3H is selected 2H is selected 1H is selected ate blanking	as the state b as the state b as the state b	lank source	gister).					
bit 7-6	-	ted: Read as '								
bit 5-2		:0>: PWMx Ch	-							
	The selected signal will enable and disable (chop) the selected PWMx outputs. 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = Reserved 0100 = Reserved 0011 = PWM3H is selected as the chop clock source 0010 = PWM2H is selected as the chop clock source 0001 = PWM1H is selected as the chop clock source 0000 = Chop clock generator is selected as the chop clock source									
bit 1	1 = PWMxH c	WMxH Output hopping function	on is enabled	able bit						
bit 0	CHOPLEN: P 1 = PWMxL c	WMxL Output hopping function hopping function	Chopping Ena on is enabled	able bit						

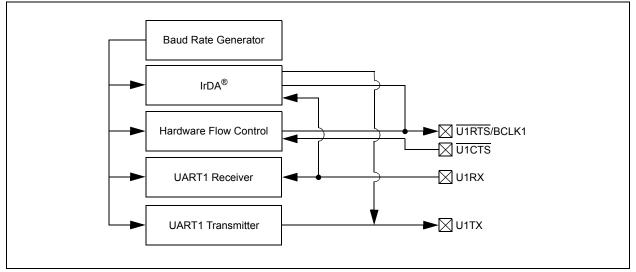
NOTES:

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

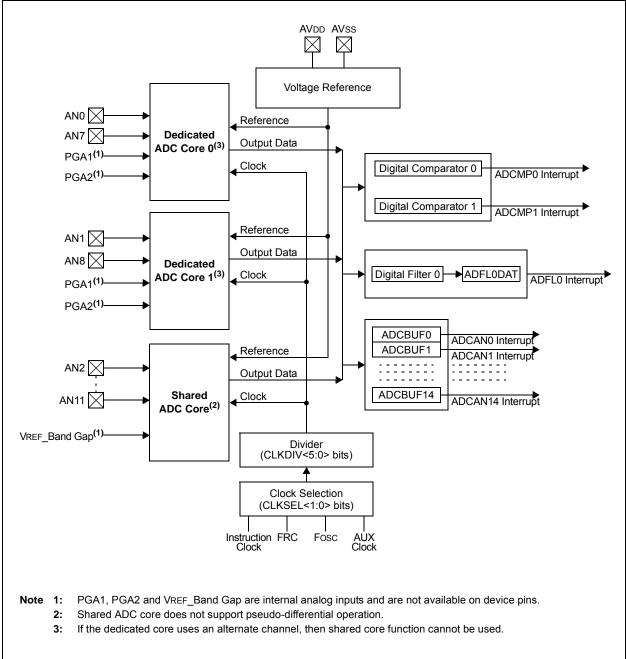
- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS202 family of devices contains one UART module.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXGS202 device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the U1CTS and U1RTS pins, and also includes an IrDA[®] encoder and decoder.


The primary features of the UART1 module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the U1TX and U1RX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with U1CTS and U1RTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps in 16x mode at 60 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps in 4x mode at 60 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UART1 Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support


A simplified block diagram of the UART1 module is shown in Figure 18-1. The UART1 module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UART1 SIMPLIFIED BLOCK DIAGRAM

TABLE 22-1: CONFIGURATION REGISTER MAP

Name	Address	Device Memory Size (Kbytes)	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
FSEC	002B80	16		AIVTDIS	_	_	_	C	SS <2:0>		CWRP	GSS <1	.0>	GWRP	_	BSEN	BSS <1:	05	BWRP			
FSEC	005780	32	_	AIVIDIS				ن ا	55 ~2.0-	-	CWRF	655 ~1	.0	GWRF	_	DOEN	600 1.	0-	DWKF			
FBSLIM	002B90	16					BSLIM <12:0>															
FDOLIN	005790	32											DOLIN	1<12.02								
FSIGN	002B94	16		Reserved ⁽²⁾																		
FSIGN	005794	32	_	Keserved(2)	Reserved-	Reserved-	Neserved.	_	_	_	—	_	—	_	_	—	_	_	_	_	_	_
FOSCSEL	002B98	16					T1000.000					.0.										
FUSUSEL	005798	32	_	_	_	_	_	_	_	—	_	IESO		_	_	_	FNOSC<2:0>		.0>			
FOSC	002B9C	16										FOKOM	4.05					DOO				
FUSC	00579C	32	_	_	_	_	_		_	-	PLLKEN	FCKSM<	-1:0>	IOL1WAY	_	_	OSCIOFNC	P05	CMD<1:0>			
FWDT	002BA0	16											WDT		WDTDDE							
FWDI	0057A0	32	—	_	_	_	_	_	—	VVDIV	VIN<1:0>	WINDIS	VVDTE	EN<1:0>	WDTPRE		WDTPOS	51 < 3:02	>			
FPOR	002BA4	16																	D			
FPUR	0057A4	32	—	_	_	_	_	_	_	-	_	—		_	_	_	_	-	Reserved ⁽¹⁾			
FICD	002BA8	16										Reserved ⁽¹⁾							S <1:0>			
FICD	0057A8	32		_	_		_		_	_		Reserved	—	JTAGEN	—	_	—		S <1:0>			
FDEVOPT	002BAC	16															Reserved ⁽¹⁾		PWMLOCK			
FDEVOPT	0057AC	32	_	_	_		_		_	_	—	_	_	_	_	_	reserved.,	—	FVVIVILUUK			
FALTREG	002BB0	16												OTVT0 -01) ~		CT	VT1 -0	.0.			
FALIKEG	0057B0	32	—	_	_	_	_	—	_	—	_	—		CTXT2 <2:0	<ر	_		XT1 <2:	.0>			

Note 1: These bits are reserved and must be programmed as '1'.

2: This bit is reserved and must be programmed as '0'.

TABLE 25-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTI	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No.	Тур.	Max.	Units		Conditions			
Operating Cur	rent (IDD) ⁽¹⁾							
DC20d	5	10	mA	-40°C				
DC20a	5	10	mA	+25°C	- 3.3V	10 MIPS		
DC20b	5	10	mA	+85°C	5.5V	10 1011-5		
DC20c	5	10	mA	+125°C				
DC22d	10	15	mA	-40°C				
DC22a	10	15	mA	+25°C	2.21/			
DC22b	10	15	mA	+85°C	- 3.3V	20 MIPS		
DC22c	10	15	mA	+125°C				
DC24d	15	20	mA	-40°C				
DC24a	15	20	mA	+25°C	3.3V	40 MIPS		
DC24b	15	20	mA	+85°C	- 3.3V	40 MIPS		
DC24c	15	20	mA	+125°C				
DC25d	20	28	mA	-40°C				
DC25a	20	28	mA	+25°C	2.21/			
DC25b	20	28	mA	+85°C	- 3.3V	60 MIPS		
DC25c	20	28	mA	+125°C				
DC26d	30	35	mA	-40°C				
DC26a	30	35	mA	+25°C	3.3V	70 MIPS		
DC26b	30	35	mA	+85°C				

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

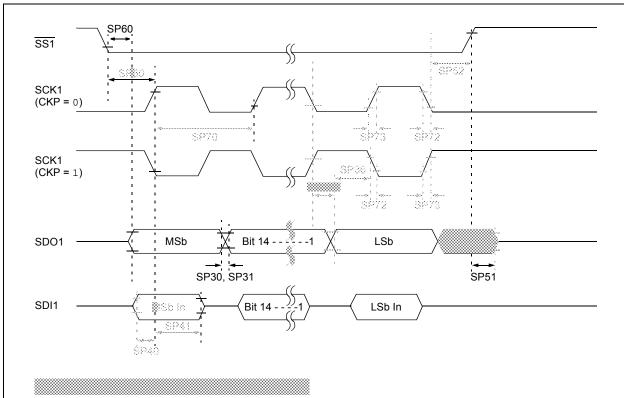
 Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing:

while(1) {

· JTAG is disabled

TABLE 25-35:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS


АС СНА	ARACTERIS	TICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions			
SP70	FscP	Maximum SCK1 Input Frequency	_	_	Lesser of: FP or 15	MHz	(Note 3)			
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)			
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)			
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)			
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)			
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid After SCK1 Edge	—	6	20	ns				
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns				
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns				
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)			
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	_	ns	(Note 4)			
SP60	TssL2doV	SDO1 Data Output Valid After SS1 Edge	—	—	50	ns				

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

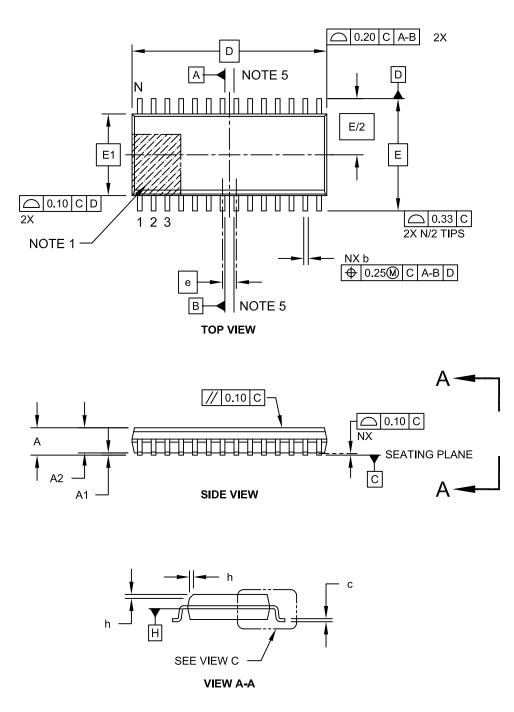
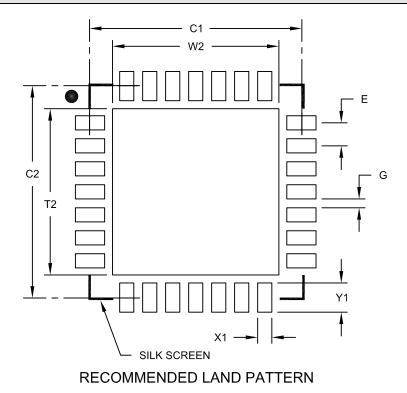

4: Assumes 50 pF load on all SPI1 pins.

FIGURE 25-16: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensio	on Limits	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			4.70	
Optional Center Pad Length	T2			4.70	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.40	
Contact Pad Length (X28)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A