

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b, 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs202t-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70359) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS202 CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for Digital Signal Processing (DSP). The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXGS202 devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer for interrupts and calls.

In addition, the dsPIC33EPXXGS202 devices include two Alternate Working register sets which consist of W0 through W14. The Alternate registers can be made persistent to help reduce the saving and restoring of register content during Interrupt Service Routines (ISRs). The Alternate Working registers can be assigned to a specific Interrupt Priority Level (IPL1 through IPL6) by configuring the CTXTx<2:0> bits in the FALTREG Configuration register. The Alternate Working registers can also be accessed manually by using the CTXTSWP instruction. The CCTXI<2:0> and MCTXI<2:0> bits in the CTXTSTAT register can be used to identify the current and most recent, manually selected Working register sets.

3.2 Instruction Set

The instruction set for dsPIC33EPXXGS202 devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The base Data Space (DS) can be addressed as 1K word or 2 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 16K program word boundary. The program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Refer to "**Data Memory**" (DS70595) in the "*dsPIC33/PIC24 Family Reference Manual*" for more details on PSV and table accesses.

On dsPIC33EPXXGS202 devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms.

3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	0860	_		_	—	_	—	_			U1EIP2	U1EIP1	U1EIP0	-	_			0040
IPC18	0864	—	_		_		_		—	—	PSESIP2	PSESIP1	PSESIP0			_	_	0040
IPC23	086E	—	PWM2IP2	PWM2IP1	PWM2IP0		PWM1IP2	PWM1IP1	PWM1IP0	—	_	—	_			_	_	4400
IPC24	0870	_	_	_	_	_	_	_	_	_	_	—	_	_	PWM3IP2	PWM3IP1	PWM3IP0	0004
IPC25	0872	—	AC2IP2	AC2IP1	AC2IP0		_		—	—	_	—	—			_	_	4000
IPC27	0876	—	ADCAN1IP2	ADCAN1IP1	ADCAN1IP0		ADCAN0IP2	ADCAN0IP1	ADCAN0IP0	—	_	—	_			_	_	4400
IPC28	0878	_	ADCAN5IP2	ADCAN5IP1	ADCAN5IP0	_	ADCAN4IP2	ADCAN4IP1	ADCAN4IP0	—	ADCAN3IP2	ADCAN3IP1	ADCAN3IP0	_	ADCAN2IP2	ADCAN2IP1	ADCAN2IP0	4444
IPC29	087A	—	_		_		_		—	—	ADCAN7IP2	ADCAN7IP1	ADCAN7IP0		ADCAN6IP2	ADCAN6IP1	ADCAN6IP0	0044
IPC35	0886	—	—		—		ICDIP2	ICDIP1	ICDIP0	—	_	—	—			_	—	0400
IPC37	088A	_	ADCAN8IP2	ADCAN8IP1	ADCAN8IP0	_	_	_	_	—	_	—	_	_	_	_	_	4000
IPC38	088C	—	_		_		ADCAN11IP2	ADCAN11IP1	ADCAN11IP0	—	ADCAN10IP2	ADCAN10IP1	ADCAN10IP0		ADCAN9IP2	ADCAN9IP1	ADCAN9IP0	0444
IPC39	088E	—	—		—		_		—	—	ADCAN14IP2	ADCAN14IP1	ADCAN14IP0			_	_	0040
IPC43	0896	_	_		_		_		_	_	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0			_	_	0040
IPC44	0898	—	ADFL0IP2	ADFL0IP1	ADFL0IP0		ADCMP1IP2	ADCMP1IP1	ADCMP1IP0	—	ADCMP1IP2	ADCMP1IP1	ADCMP1IP0			_	_	4440
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	AIVTEN	_	_	_	_	_	INT2EP	INT1EP	INTOEP	8000
INTCON3	08C4	_	_	_	_	_	_	_	NAE	_	_	_	DOOVR	_	_	_	APLL	0000
INTCON4	08C6	_		_	_	_	_	_	_		—	_	_	_	_	—	SGHT	0000
INTTREG	08C8	_	_	_	_	ILR3	ILR2	ILR1	ILR0	VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0670	_	_	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0	_	_	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR1	0672	_		RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_		RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000
RPOR2	0674	_		RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0	_		RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	0000
RPOR3	0676	_		RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0	-		RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0	0000
RPOR4	0678	_		RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	-		RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0	0000
RPOR5	067A	_		RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	-		RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0	0000
RPOR6	067C	_		RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0	-		RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0	0000
RPOR7	067E	_		RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0			RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0	0000
RPOR8	0680	_		RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0			RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0	0000
RPOR9	0682	_		RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0			RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0	0000
RPOR10	0684	_	_	RP181R5	RP181R4	RP181R3	RP181R2	RP181R1	RP181R0	_	_	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: PERIPHERAL PIN SELECT INPUT REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0				INT1R	<7:0>					—		—	—	-	—	—	0000
RPINR1	06A2	—			_	_	—	_	_				INT2F	R<7:0>				0000
RPINR2	06A4				T1CKF	R<7:0>					—		—	—		_		0000
RPINR3	06A6	T3CKR7	T3CKR6	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	T2CKR7	T2CKR6	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	0000
RPINR7	06AE	—			_	—	—		—				IC1R	<7:0>				0000
RPINR11	06B6	—			_	—	—		—				OCFA	R<7:0>				0000
RPINR12	06B8	FLT2R7	FLT2R6	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0	FLT1R7	FLT1R6	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0	0000
RPINR13	06BA	FLT4R7	FLT4R6	FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0	FLT3R7	FLT3R6	FLT3R5	FLT3R4	FLT3R3	FLT3R2	FLT3R1	FLT3R0	0000
RPINR18	06C4	U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTS0	U1RXR7	U1RXR6	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	0000
RPINR20	06C8	SCK1INR7	SCK1INR6	SCK1INR5	SCK1INR4	SCK1INR3	SCK1INR2	SCK1INR1	SCK1INR0	SDI1R7	SDI1R6	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	0000
RPINR21	06CA	_	_	_	_	_	_	_	_				SS1F	<7:0>				0000
RPINR37	06EA				SYNCI1	R<7:0>				_	_	_	_	_	_	_	_	0000
RPINR38	06EC	_	_	_	_	_	_	_	_	SYNCI2R<7:0>					0000			
RPINR42	06F4	FLT6R7	FLT6R6	FLT6R5	FLT6R4	FLT6R3	FLT6R2	FLT6R1	FLT6R0	FLT5R7	FLT5R6	FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0	0000
RPINR43	06F6	FLT8R7	FLT8R6	FLT8R5	FLT8R4	FLT8R3	FLT8R2	FLT8R1	FLT8R0	FLT7R7	FLT7R6	FLT7R5	FLT7R4	FLT7R3	FLT7R2	FLT7R1	FLT7R0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible regardless of the contents of the Data Space Read Page register. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space in combination with DSRPAG = 0x000. Consequently, DSRPAG is initialized to 0x001 at Reset.

Note: DSRPAG should not be used to access Page 0. An EDS access with DSRPAG set to 0x000 will generate an address error trap.

The remaining PSV pages are only accessible using the DSRPAG register in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

4.5.3 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating the Stack Pointer (for example, creating stack frames).

Note:	То	protec	protect		against		misaligned			stack		
	acc	esses,	W	/15<0>	is	fixed	to	'0'	by	the		
	hard	dware.										

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXGS202 devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-7 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes). When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-7. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- Note 1: To maintain the Software Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-7: CALL STACK FRAME

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

5.4.1 KEY RESOURCES

- "Flash Programming" (DS70609) in the "dsPIC33/ PIC24 Family Reference Manual",
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Five SFRs are used to write and erase the Program Flash Memory: NVMCON, NVMKEY, NVMADR, NVMADRU and NVMSRCADR.

The NVMCON register (Register 5-1) selects the operation to be performed (page erase, word/row program) and initiates the program/erase cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word/row for programming operations, or the selected page for erase operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

For row programming operation, data to be written to Program Flash Memory is written into data memory space (RAM) at an address defined by the NVMSRCADR register (location of first element in row programming data).

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 7-1:	dsPIC33EPXXGS202 FAMILY	INTERRUPT VECTOR TABI	LE
	Reset – GOTO Instruction	0x000000	
orit	Reset – GOTO Address	0x000002	
Pri	Oscillator Fail Trap Vector	0x000004	
der	Address Error Trap Vector	0x000006	
ō	Generic Hard Trap Vector	0x000008	
nral	Stack Error Trap Vector	0x00000A	
Vati	Math Error Trap Vector	0x00000C	
ور ا	Reserved	0x00000E	
asii	Generic Soft Trap Vector	0x000010	
cre	Reserved	0x000012	
De	Interrupt Vector 0	0x000014	
E E	Interrupt Vector 1	0x000016	
2	:	:	
	:	:	
	:	:	
▼	Interrupt Vector 52	0x00007C	
	Interrupt Vector 53	0x00007E	
	Interrupt Vector 54	0x000080 See	Table 7-1 for
	:	: Inter	rupt Vector Details
	:	:	
	:	: /	
	Interrupt Vector 116	0x0000FC /	
	Interrupt Vector 117	0x0000FE /	
	Interrupt Vector 118	0x000100 /	
	Interrupt Vector 119	0x000102 /	
	Interrupt Vector 120	0x000104 /	
	:	: /	
	:	: /	
	:	: /	
	Interrupt Vector 244	0x0001FC	
▼	Interrupt Vector 245	0x0001FE	
	START OF CODE	0x000200	

REGISTER	9-4: PMD6	: PERIPHER	AL MODULE	DISABLE C	ONTROL RE	GISTER 6	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—	—	—	PWM3MD	PWM2MD	PWM1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-11	Unimplemen	ted: Read as '	כי				
bit 10	PWM3MD: P	WM3 Module D	isable bit				
	1 = PWM3 mo	odule is disable	ed				
	0 = PWM3 mo	odule is enable	d				
bit 9	PWM2MD: P	WM2 Module D	isable bit				
	1 = PWM2 mo	odule is disable	d				
	0 = PWM2 mc	odule is enable	d				
bit 8	PWM1MD: P	WM1 Module E	isable bit				
	1 = PWM1 mc	odule is disable	ed d				
hit 7 0			u n'				
Dit 7-0	ommplemen	ieu. Neau as	J				

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the **"Pin Diagrams"** section for the available 5V tolerant pins and Table 25-11 for the maximum VIH specification for each pin.

10.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UART, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin, defined as a digital input (including the ANx pins), can cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP, as shown in Example 10-1.

10.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the ICN functionality of each I/O port. The CNENx registers contain the ICN interrupt enable control bits for each of the input pins. Setting any of these bits enables an ICN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pulldowns act as a current source, or sink source, connected to the pin, and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups and pull-downs are enabled separately, using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on Input Change
	Notification pins should always be
	disabled when the port pin is configured
	as a digital output.

EXAMPLE 10-1:	PORT WRITE/READ

MOV	0xFF00, W0	; Configure PORTB<15:8>
	· · · · · ·	; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT6R7	FLT6R6	FLT6R5	FLT6R4	FLT6R3	FLT6R2	FLT6R1	FLT6R0
bit 15	•	•	•		•	•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT5R7	FLT5R6	FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0
bit 7	·				·		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8 bit 7-0	<pre>FLT6R<7:0>: 10110101 = 10110100 =</pre>	Assign PWM I Input tied to RF Input tied to RF Input tied to Vs Assign PWM I Input tied to RF Input tied to RF Input tied to RF	Fault 6 (FLT6) 2181 2180 2180 21 21 21 2181 2180 21 21 21 21 21 21 21 21 21 21 21 25	to the Corresp to the Corresp	bonding RPn Pir	n bits n bits	

REGISTER 10-14: RPINR42: PERIPHERAL PIN SELECT INPUT REGISTER 42

14.2 Output Compare Control Registers

REGISTER 14-1: OC1CON1: OUTPUT COMPARE CONTROL REGISTER 1

bit 15							bit 8
—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	—
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0

R/W-0	U-0	U-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLTA	_		OCFLTA	TRIGMODE	OCM2	OCM1	OCM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14 Unimplemented: Read as '0'

- bit 13 OCSIDL: Output Compare Stop in Idle Mode Control bit
 - 1 = Output compare halts in CPU Idle mode
 - 0 = Output compare continues to operate in CPU Idle mode

bit 12-10 OCTSEL<2:0>: Output Compare Clock Select bits

- 111 = Peripheral Clock (FP)
- 110 = Reserved
- 101 = Reserved
- 100 = T1CLK is the clock source of the OC1 (only the synchronous clock is supported)
- 011 = Reserved
- 010 = Reserved
- 001 = T3CLK is the clock source of the OC1
- 000 = T2CLK is the clock source of the OC1

bit 9-8 Unimplemented: Read as '0'

- bit 7 ENFLTA: Fault A Input Enable bit
 - 1 = Output Compare Fault A input (OCFA) is enabled
 - 0 = Output Compare Fault A input (OCFA) is disabled
- bit 6-5 Unimplemented: Read as '0'

bit 4 OCFLTA: PWM Fault A Condition Status bit

- 1 = PWM Fault A condition on the OCFA pin has occurred
- 0 = No PWM Fault A condition on the OCFA pin has occurred
- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OC1CON2<6>) is cleared when OC1RS = OC1TMR or in software
 - 0 = TRIGSTAT is cleared only by software
- Note 1: OC1R and OC1RS are double-buffered in PWM mode only.

FIGURE 17-1: I2C1 BLOCK DIAGRAM

REGISTER 19-11: ADCOREXL: DEDICATED ADC CORE x CONTROL REGISTER LOW (x = 0,1)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
_	_	—	_	—	—	SAMO	><9:8>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			SAI	MC<7:0>				
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable b	it	U = Unimplemented bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkno	own	
bit 15-10	Unimpleme	ented: Read as '	0'					
bit 9-0	SAMC<9:0	>: Dedicated AD	C Core x Conv	version Delay S	Selection bits			
	These bits of ADC Core	determine the tim Clock (TADCORE)	e between the periods. Dur	e trigger event a ing this time, th	nd the start of one ADC Core	conversion in the still continues	e number of the sampling. This	

feature is enabled by the SAMCxEN bit in the ADCON4L register. 1111111111 = 1025 TADCORE . 0000000001 = 3 TADCORE

0000000000 = 2 TADCORE

DS70005208D-page 212

REGISTER 19-14: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	EIEN14	—	—	EIEN<11:8>				
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	EIEN<7:0>										
bit 7							bit 0				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'	

bit 14	EIEN14: Early Interrupt Enable for Corresponding Analog Inputs bit
	1 = Early interrupt is enabled for the channel
	0 = Early interrupt is disabled for the channel

bit 13-12 Unimplemented: Read as '0'

bit 11-0	EIEN<11:0>: Early Interrupt Enable for Corresponding Analog Inputs bits
	1 = Early interrupt is enabled for the channel
	0 = Early interrupt is disabled for the channel

REGISTER 19-15: ADEISTATL: ADC EARLY INTERRUPT STATUS REGISTER LOW

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
	EISTAT14		—		EIST	AT<11:8>			
bit 15				•			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			EIST	AT<7:0>					
bit 7							bit 0		
Legend:									
R = Readal	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			wn		
bit 15	Unimpleme	nted: Read as	'0'						
bit 14	EISTAT14: E	Early Interrupt S	Status for Corres	sponding Analo	og Inputs bit				
	1 = Early int	errupt was gen	erated						
	0 = Early int	errupt was not	generated since	e the last ADCE	BUFx read				
bit 13-12	Unimpleme	nted: Read as	'0'						
bit 11-0	EISTAT<11:	0>: Early Interr	upt Status for C	orresponding A	Analog Inputs b	oits			
	1 = Early int	errupt was gen	erated						

0 = Early interrupt was not generated since the last ADCBUFx read

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
74	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
75	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
76	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
78	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
79	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
80	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
81	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
82	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
83	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
84	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
85	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
86	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 25-34:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHA	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency		_	9	MHz	-40°C to +125°C (Note 3)
SP20	TscF	SCK1 Output Fall Time	—	-	—	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	-	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	-	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	-	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid After SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	-	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

- **2:** Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.
- **3:** The minimum clock period for SCK1 is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI1 pins.

NOTES:

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support