

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs202t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (<1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 25.0 "Electrical Characteristics"** for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See **Section 22.4 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:

- Device Reset
- Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the \overline{MCLR} pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

TABLE 4-7: PWM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN		PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0C02	—		—	_	_		—	—	_	—	_	—	_	P	CLKDIV<2:0)>	0000
PTPER	0C04		PWM Primary Master Time Base Period Register (PTPER<15:0>) FF							FFF8								
SEVTCMP	0C06		PWM Special Event Compare Register (SEVTCMP12:0>)							_	0000							
MDC	0C0A									MDC<15:0	>							0000
STCON	0C0E	_	_	—	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
STCON2	0C10	—		—	—	-		—	—		—	—	—		P	CLKDIV<2:0)>	0000
STPER	0C12							PWM Seco	ndary Master	Time Base Pe	riod Register	(STPER<15:0)	>)					FFF8
SSEVTCMP	0C14					PWM S	econdary	Special Even	t Compare Re	gister (SSEVT	CMP<12:0>)				_	_	_	0000
CHOP	0C1A	CHPCLKEN	_	_	_	_	_	CHOPCLK6	CHOPCLK5	CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0		_		0000
PWMKEY	0C1E	PWM Protection Lock/Unlock Key Value Register (PWMKEY<15:0>) 0000																

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: PWM GENERATOR 1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	_	—	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON1	0C24	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC1	0C26		PWM Generator 1 Duty Cycle Register (PDC1<15:0>) 00							0000								
PHASE1	0C28					PWM Phas	se-Shift Value o	or Independent	t Time Base Pe	riod for the F	WM Genera	tor 1 Register	(PHASE1<1	5:0>)				0000
DTR1	0C2A	_	_							DTR1	<13:0>							0000
ALTDTR1	0C2C	_	ALTDTR1<13:0> 0007								0000							
SDC1	0C2E								SDC ²	1<15:0>								0000
SPHASE1	0C30								SPHAS	E1<15:0>								0000
TRIG1	0C32							TRGCMP<1	2:0>						_	_	_	0000
TRGCON1	0C34	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG1	0C36							STRGCMP<1	2:0>						_	—	_	0000
PWMCAP1	0C38							PWMCAP<1	2:0>						_	_	_	0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY1	0C3C	_	_	_	_	LEB<8:0> — — —						0000						
AUXCON1	0C3E	HRPDIS	HRDDIS	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPF	R IOPUWR	—		VREGSF	—	СМ	VREGS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0
·							
Legend:							
R = Reada	able bit	W = Writable I	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15 bit 14	TRAPR: Trap 1 = A Trap Co 0 = A Trap Co IOPUWR: Ille 1 = An illega Address 0 = An illegal	Reset Flag bit onflict Reset ha onflict Reset ha gal Opcode or l opcode detec Pointer caused l opcode or Uni	s occurred s not occurre Uninitialized ction, an illeg a Reset nitialized W r	d W Register Acc gal address mo egister Reset h	cess Reset Flag ode or Uninitial as not occurrec	bit ized W registe	er used as an
bit 13-12	Unimplemen	ted: Read as '()'				
bit 11	VREGSF: Fla	ash Voltage Red	ulator Stand	by During Slee	o bit		
	1 = Flash vol 0 = Flash vol	tage regulator i	s active durir goes into Sta	ng Sleep ndby mode dur	ing Sleep		
bit 10	Unimplemen	ted: Read as 'd)'				
bit 9	CM: Configur	ation Mismatch	Flag bit				
	1 = A Configu 0 = A Configu	ration Mismatc ration Mismatc	h Reset has h Reset has	occurred. not occurred			
bit 8	VREGS: Volta	age Regulator S	Standby Durir	ng Sleep bit			
	1 = Voltage r 0 = Voltage r	egulator is active egulator goes in	ve during Sleente version versi Net of the version ver	ep node during Sl	еер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit				
	1 = A Master 0 = A Master	Clear (pin) Res Clear (pin) Res	et has occur et has not oc	red curred			
bit 6	SWR: Softwa	re RESET (Instr	uction) Flag	bit			
	1 = A reset 0 = A reset	instruction has instruction has	been execute not been exe	ed ecuted			
bit 5	SWDTEN: So 1 = WDT is en 0 = WDT is di	oftware Enable/ nabled isabled	Disable of W	DT bit ⁽²⁾			
bit 4	WDTO: Watc	hdog Timer Tim	ne-out Flag bi	t			
	1 = WDT time 0 = WDT time	e-out has occur e-out has not oc	red ccurred				
Note 1:	All of the Reset sta	atus bits can be	set or cleare	d in software. S	Setting one of the	ese bits in softw	ware does not
2.	If the WDTFN<1.0	> Configuration	hits are '11'	(upprogramme	d) the WDT is	always enabled	asalbrenar b

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

If the WDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

TABLE 7-1: INTERRUPT VECTOR DETAILS

	Vector	IRQ		Inte	errupt Bit Lo	ocation
	#	#	IVI Address	Flag	Enable	Priority
	Hi	ghest Nat	ural Order Priority			
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>
IC1 – Input Capture 1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>
OC1 – Output Compare 1	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>
T1 – Timer1	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>
Reserved	12–14	4–6	0x00001C-0x000020	_	_	
T2 – Timer2	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>
T3 – Timer3	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>
SPI1E – SPI1 Error	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>
ADC – ADC Global Convert Done	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>
Reserved	22	14	0x000030	_	_	—
NVM – NVM Write Complete	23	15	0x000032	IFS0<15>	IEC0<15>	IPC3<14:12>
SI2C1 - I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>
CMP1 – Analog Comparator 1 Interrupt	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>
CN – Input Change Interrupt	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>
INT1 – External Interrupt 1	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>
Reserved	29-36	21-28	0x00003E-0x00004C	_	_	_
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>
Reserved	38-64	30-56	0x000050-0x000084	_	_	—
PSEM – PWM Special Event Match	65	57	0x000086	IFS3<9>	IEC3<9>	IPC14<6:4>
Reserved	63-72	55-64	0x000088-0x000094	_	_	—
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
Reserved	74-80	66-72	0x000098-0x0000A4	_	_	—
PWM Secondary Special Event Match	81	73	0x0000A6	IFS4<9>	IEC4<9>	IPC18<6:4>
Reserved	82-101	74-93	0x0000A8-0x0000CE	_	_	—
PWM1 – PWM1 Interrupt	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM2 Interrupt	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM3 Interrupt	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
Reserved	105-110	97-102	0x0000D6-0x0000E0	_	_	—
CMP2 – Analog Comparator 2 Interrupt	111	103	0x0000E2	IFS6<7>	IEC6<7>	IPC25<14:12>
Reserved	112-117	104-109	0x0000E4-0x0000EE	_	_	—
AN0 Conversion Done	118	110	0x0000F0	IFS6<14>	IEC6<14>	IPC27<10:8>
AN1 Conversion Done	119	111	0x0000F2	IFS6<15>	IEC6<15>	IPC27<14:12>
AN2 Conversion Done	120	112	0x0000F4	IFS7<0>	IEC7<0>	IPC28<2:0>
AN3 Conversion Done	121	113	0x0000F6	IFS7<1>	IEC7<1>	IPC28<6:4>
AN4 Conversion Done	122	114	0x0000F8	IFS7<2>	IEC7<2>	IPC28<10:8>
AN5 Conversion Done	123	115	0x0000FA	IFS7<3>	IEC7<3>	IPC28<14:12>
AN6 Conversion Done	124	116	0x0000FC	IFS7<4>	IEC7<4>	IPC29<2:0>
AN7 Conversion Done	125	117	0x0000FE	IFS7<5>	IEC7<5>	IPC29<6:4>

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing latency

0 = Fixed exception processing latency

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0		
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0		
bit 15							bit 8		
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0		
bit 7							bit 0		
l									
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	IOWN		
bit 15	ROI: Recover 1 = Interrupts to 1:1 0 = Interrupts	on Interrupt bi will clear the have no effec	t DOZEN bit ar t on the DOZE	nd the processo	or clock, and th	e peripheral clo	ock ratio is set		
bit 14-12	DOZE<2:0>: Processor Clock Reduction Select bits ⁽¹⁾ 111 = FcY divided by 128 110 = FcY divided by 64 101 = FcY divided by 32 100 = FcY divided by 16 011 = FcY divided by 8 (default) 010 = FcY divided by 4 001 = FcY divided by 2 000 = FcY divided by 1								
bit 11	DOZEN: Doze 1 = DOZE<2:0 0 = Processor	e Mode Enable 0> field specifie r clock and per	bit ^(2,3) es the ratio be ipheral clock i	etween the peri ratio is forced to	pheral clocks a o 1:1	nd the process	or clocks		
bit 10-8	FRCDIV<2:0>	: Internal Fast	RC Oscillator	r Postscaler bit	s				
	111 = FRC di 110 = FRC di 101 = FRC di 100 = FRC di 011 = FRC di 010 = FRC di 001 = FRC di 001 = FRC di	vided by 256 vided by 64 vided by 32 vided by 16 vided by 8 vided by 4 vided by 2 vided by 1 (def	ault)						
bit 7-6	PLLPOST<1:	0>: PLL VCO (Output Divide	r Select bits (al	so denoted as	'N2', PLL posts	caler)		
	11 = Output d 10 = Reserver 01 = Output d 00 = Output d	livided by 8 d livided by 4 (de livided by 2	fault)	, ,			·		
bit 5	Unimplement	ted: Read as '	כ'						
Note 1: TI D 2: TI	he DOZE<2:0> bi OZE<2:0> are igr his bit is cleared v	its can only be nored. when the ROI t	written to whe	en the DOZEN	bit is clear. If D :urs.	OZEN = 1, any	writes to		

3: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

9.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS202 family devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

dsPIC33EPXXGS202 family devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into Sleep mode
PWRSAV #IDLE_MODE ; Put the device into Idle mode

9.1 Clock Frequency and Clock Switching

The dsPIC33EPXXGS202 family devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXGS202 family devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T3CKR7	T3CKR6	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 15						•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2CKR7	T2CKR6	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8 bit 7-0	T3CKR<7:0> 10110101 = 10110100 =	Assign Timer Input tied to RI Input tied to RP nput tied to Vss Assign Timer Input tied to RI Input tied to RI Input tied to RI Input tied to RI	3 External Clo 2181 2180 1 2 External Clo 2181 2180	ock (T3CK) to t	he Correspondi	ng RPn Pin bit	5

REGISTER 10-4: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

REGISTER 15-16: SPHASEx: PWMx SECONDARY PHASE-SHIFT REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			SPHAS	SEx<15:8>							
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			SPHA	SEx<7:0>							
bit 7							bit 0				
Legend:											
R = Readable b	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at P	= Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown										

bit 15-0 **SPHASEx<15:0>:** Secondary Phase Offset for PWMxL Output Pin bits (used in Independent PWM mode only)

- **Note 1:** If PWMCONx<9> = 0, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); SPHASEx<15:0> = Not used
 - True Independent Output mode (IOCONx<11:10> = 11), SPHASEx<15:0> = Phase-shift value for PWMxL only
 - 2: If PWMCONx<9> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); SPHASEx<15:0> = Not used
 - True Independent Output mode (IOCONx<11:10> = 11); SPHASEx<15:0> = Independent time base period value for PWMxL only
 - When the PHASEx/SPHASEx registers provide the local period, the valid range of values is 0x0010-0xFFF8

REGISTER 18-2: U1STA: UART1 STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	C = Clearable bit	HC = Hardware Clearab	le bit
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15,13 UTXISEL<1:0>: UART1 Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: UART1 Transmit Polarity Inversion bit
 - <u>If IREN = 0:</u> 1 = U1TX Idle state is '0'
 - 0 = U1TX Idle state is '1'
 - If IREN = 1:
 - $1 = \text{IrDA}^{\mathbb{R}}$ encoded, U1TX Idle state is '1'
 - 0 = IrDA encoded, U1TX Idle state is '0'
- bit 12 Unimplemented: Read as '0'
- bit 11 UTXBRK: UART1 Transmit Break bit
 - 1 = Sends Sync Break on next transmission Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
 - 0 = Sync Break transmission is disabled or completed
- bit 10 UTXEN: UART1 Transmit Enable bit⁽¹⁾
 - 1 = Transmit is enabled, U1TX pin is controlled by UART1
 - 0 = Transmit is disabled, any pending transmission is aborted and buffer is reset; U1TX pin is controlled by the PORT
- bit 9 UTXBF: UART1 Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 TRMT: Transmit Shift Register Empty bit (read-only)
 - 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
- bit 7-6 URXISEL<1:0>: UART1 Receive Interrupt Mode Selection bits
 - 11 = Interrupt is set on U1RSR transfer, making the receive buffer full (i.e., has 4 data characters)
 - 10 = Interrupt is set on U1RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
 - 0x = Interrupt is set when any character is received and transferred from the U1RSR to the receive buffer; receive buffer has one or more characters
- **Note 1:** Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual" for information on enabling the UART1 module for transmit operation.

REGISTER 19-5: ADCON3L: ADC CONTROL REGISTER 3 LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R-0, HS, HC
REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH
bit 15							bit 8

R/W-0	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSEL0
bit 7							bit 0

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13 REFSEL<2:0>: ADC Reference Voltage Selection bits

	Value	VREFH	VREFL	
	000	AVdd	AVss	
	001-111 = U I	nimplement	ed: Should	not be used
bit 12	SUSPEND: A	II ADC Core	s Triggers D	isable bit
	1 = All new tri 0 = All ADC c	ggers events ores can be	s for all ADC triggered	cores are disabled
bit 11	SUSPCIE: Su	spend All Al	DC Cores C	ommon Interrupt Enable bit
	1 = Common and all pr 0 = Common	interrupt wil evious conv interrupt is i	l be generat ersions are not generate	ed when ADC cores triggers are suspended (SUSPEND bit = 1) finished (SUSPRDY bit becomes set) ed for suspend ADC cores event
bit 10	SUSPRDY: A	II ADC Cores	s Suspende	d Flag bit
	1 = All ADC c 0 = ADC core	ores are sus s have previ	pended (SL ous convers	SPEND bit = 1) and have no conversions in progress ions in progress
bit 9	SHRSAMP: S	Shared ADC	Core Samp	ing Direct Control bit
	This bit should	d be used wi	th the indivi	dual channel conversion trigger controlled by the CNVRTCH bit.

bit 9	SHRSAMP: Shared ADC Core Sampling Direct Control bit
	This bit should be used with the individual channel conversion trigger controlled by the CNVRTCH bit. It connects an analog input, specified by CNVCHSEL<5:0> bits, to the shared ADC core and allows extending the sampling time. This bit is not controlled by hardware and must be cleared before the conversion starts (setting CNVRTCH to '1').
	 1 = Shared ADC core samples an analog input specified by the CNVCHSEL<5:0> bits 0 = Sampling is controlled by the shared ADC core hardware
bit 8	CNVRTCH: Software Individual Channel Conversion Trigger bit
	1 = Single trigger is generated for an analog input specified by the CNVCHSEL<5:0> bits. When the bit

- is set, it is automatically cleared by hardware on the next instruction cycle.
 - 0 = Next individual channel conversion trigger can be generated
- bit 7 SWLCTRG: Software Level-Sensitive Common Trigger bit
 - 1 = Triggers are continuously generated for all channels with the software, level-sensitive, common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers
 - 0 = No software, level-sensitive, common triggers are generated
- bit 6 SWCTRG: Software Common Trigger bit
 - 1 = Single trigger is generated for all channels with the software, common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers. When the bit is set, it is automatically cleared by hardware on the next instruction cycle
 - 0 = Ready to generate the next software, common trigger
- bit 5-0 **CNVCHSEL <5:0>:** Channel Number Selection for Software Individual Channel Conversion Trigger bits These bits define a channel to be converted when the CNVRTCH bit is set.

R-0, HC, HS	S U-0	U-0	U-0	U-0	U-0	R-0, HC, HS	R-0, HC, HS	
SHRRDY	_	—	—	—	— — C1RDY			
bit 15	-	·					bit 8	
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
SHRPWR	_	—	—	—	_	C1PWR	C0PWR	
bit 7	-	·					bit 0	
Legend:		HS = Hardwar	e Settable bit	HC = Hardwa	re Clearable bit	:		
R = Readab	R = Readable bit W = Writable bit		bit	U = Unimplem	nented bit, read	as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15	SHRRDY: S	hared ADC Cor	e Ready Flag b	bit				
	1 = ADC cor	re is powered ar	nd ready for ope	eration				
	0 = ADC cor	re is not ready fo	or operation					
bit 14-10	Unimpleme	nted: Read as '	0'					
bit 9-8	C1RDY:C0F	RDY: Dedicated	ADC Core x Re	eady Flag bits				
	1 = ADC Co	re x is powered	and ready for o	operation				
	0 = ADC Co	re x is not ready	/ for operation					
bit 7	SHRPWR: Shared ADC Core x Power Enable bit							
	1 = ADC Co	re x is powered						
hit 6-2		nted: Pead as '	0'					
bit 1_0		DWP : Dedicated		Power Enable b	ite			
	1 = ADC Co	re v is nowered			110			
	0 = ADC CO	re x is off						

REGISTER 19-9: ADCON5L: ADC CONTROL REGISTER 5 LOW

20.6 Hysteresis

An additional feature of the module is hysteresis control. Hysteresis can be enabled or disabled and its amplitude can be controlled by the HYSSEL<1:0> bits in the CMPxCON register. Three different values are available: 5 mV, 10 mV and 20 mV. It is also possible to select the edge (rising or falling) to which hysteresis is to be applied.

Hysteresis control prevents the comparator output from continuously changing state because of small perturbations (noise) at the input (see Figure 20-2).

20.7 Analog Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

20.7.1 KEY RESOURCES

- "High-Speed Analog Comparator Module" (DS70005128) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

DC CHARACTI	ERISTICS		Standard O (unless oth Operating te	perating Condition erwise stated) emperature -40°C -40°C	ns: 3.0V to 3.6V ≤ Ta ≤ +85°C for Ind ≤ Ta ≤ +125°C for E	ustrial ktended		
Parameter No.	Тур.	Max.	Units	Units Conditions				
Idle Current (II	dle) ⁽¹⁾							
DC40d	1	3	mA	-40°C				
DC40a	1	3	mA	+25°C	3.31/			
DC40b	1	3	mA	+85°C	5.5V 10 Will 5			
DC40c	1	3	mA	+125°C				
DC42d	3	5	mA	-40°C		20 MIPS		
DC42a	3	5	mA	+25°C	3 3\/			
DC42b	3	5	mA	+85°C	5.5 V			
DC42c	3	5	mA	+125°C				
DC44d	5	7	mA	-40°C				
DC44a	5	7	mA	+25°C	3 3\/			
DC44b	5	7	mA	+85°C	5.5 V	40 1011 3		
DC44c	5	7	mA	+125°C				
DC45d	7	9	mA	-40°C				
DC45a	7	9	mA	+25°C	3 3\/	60 MIPS		
DC45b	7	9	mA	+85°C	5.5 V	00 1011 3		
DC45c	7	9	mA	+125°C				
DC46d	9	12	mA	-40°C				
DC46a	9	12	mA	+25°C	3.3V	70 MIPS		
DC46b	9	12	mA	+85°C				

TABLE 25-7: DC CHARACTERISTICS: IDLE CURRENT (lidle)

Note 1: Base Idle current (IIDLE) is measured as follows:

CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with
external square wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as outputs and driving low
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

DC CHARACTER	Standard C (unless oth Operating t	Dperating nerwise s emperatur	Condition tated) re -40°C -40°C	ns: 3.0V t ≤ Ta ≤ +8 ≤ Ta ≤ +1	o 3.6V 5°C for Industrial 25°C for Extended		
Parameter No.	Doze Ratio	Units		Conditions			
Doze Current (IDC	DZE) ⁽¹⁾						
DC73a ⁽²⁾	15	20	1:2	mA	40°C	3.3V	E000 - 140 MH7
DC73g	7	9	1:128	mA	-40 C		FUSC = 140 MITZ
DC70a ⁽²⁾	15	20	1:2	mA	+25°C	2 21/	Fosc = 140 MHz
DC70g	7	9	1:128	mA	+25 C	3.3V	
DC71a ⁽²⁾	15	20	1:2	mA	195%	2 2)/	5000 - 140 MU-
DC71g	7	9	1:128	mA	+05 C	3.3V	FOSC = 140 MHZ
DC72a ⁽²⁾	15	20	1:2	mA	+125°C	2 21/	E000 - 120 MHz
DC72g	7	9	1:128	mA	+125 C	3.3V	Fosc = 120 MHz

TABLE 25-10: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing:

```
while(1)
  {
   NOP();
  }
```

- JTAG is disabled
- **2:** These parameters are characterized but not tested in manufacturing.

AC/DC CHARACTERISTICS ⁽¹⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characterist	ic	Min.	Тур.	Max.	Units	Comments
PA01	VIN	Input Voltage Rang	е	AVss - 0.3	_	AVDD + 0.3	V	
PA02	Vсм	Common-Mode Inp Voltage Range	ut	AVss	—	AVDD – 1.6	V	
PA03	Vos	Input Offset Voltage	;	-20	—	+20	mV	
PA04	Vos	Input Offset Voltage with Temperature	e Drift	—	±15	_	µV/∘C	
PA05	Rin+	Input Impedance of Positive Input		—	>1M 7 pf	_	Ω pF	
PA06	Rin-	Input Impedance of Negative Input		—	10K 7 pf	_	Ω pF	
PA07	Gerr	Gain Error		-2	—	+2	%	Gain = 4x and 8x
				-3	—	+3	%	Gain = 16x
				-4	—	+4	%	Gain = 32x and 64x
PA08	LERR	Gain Nonlinearity Error		_	_	0.5	%	% of full scale, Gain = 16x
PA09	IDD	Current Consumption	on	_	2.0		mA	Module is enabled with a 2-volt P-P output voltage swing
PA10a	BW	Small Signal	G = 4x	—	10	—	MHz	
PA10b		Bandwidth (-3 dB)	G = 8x		5	—	MHz	
PA10c			G = 16x	—	2.5	—	MHz	
PA10d			G = 32x		1.25	—	MHz	
PA10e			G = 64x		0.625	—	MHz	
PA11	OST	Output Settling Tim of Final Value	e to 1%	—	0.4	—	μs	Gain = 16x, 100 mV input step change
PA12	SR	Output Slew Rate		—	40	—	V/µs	Gain = 16x
PA13	TGSEL	Gain Selection Time	e		1	_	μs	
PA14	ΤΟΝ	Module Turn On/Se Time	tting	—	_	10	μs	

TABLE 25-46: PGAx MODULE SPECIFICATIONS

Note 1: The PGAx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6x0.5mm Body [UQFN] Ultra-Thin with 0.40 x 0.60 mm Terminal Width/Length and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-0209 Rev C Sheet 1 of 2

Instruction Addressing Modes. 53 File Register Instructions 53 Fundamental Modes Supported. 53 MAC Instructions. 54 MCU Instructions 53 Move and Accumulator Instructions. 54 Other Instructions. 54
Instruction Set
Overview
Summary251
Symbols Used in Opcode Descriptions252
Instruction-Based Power-Saving Modes
Idle
Sleep100
Inter-Integrated Circuit (I ² C)
Control Registers 187
Resources185
Inter-Integrated Circuit. See I ² C.
Internet Address
Interrupt Controller
Alternate Interrupt Vector Table (AIVT)73
Control and Status Registers78
INTCON178
INTCON2
INTCON378
INTCON478
INTTREG78
Interrupt Vector Details76
Interrupt Vector Table (IVT)73
Reset Sequence73
Resources78
Interrupts Coincident with Power Save Instructions 100
.I

J

JTAG Boundary Scan Interface	
JTAG Interface	
1	

L Le

Leading-Edge Blanking (LEB)	151
LPRC Oscillator	
Use with WDT	.247

Μ

Memory Organization	
Resources	
Microchip Internet Web Site	338
Modulo Addressing	
Applicability	
Operation Example	
Start and End Address	
W Address Register Selection	
MPLAB Assembler, Linker, Librarian	
MPLAB ICD 3 In-Circuit Debugger	
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLAB X Integrated Development	
Environment Software	
MPLINK Object Linker/MPLIB Object Librarian	

O

Oscillator	
Control Registers	
Resources	
OTP Memory Area	
Output Compare	
Control Registers	
Resources	

Ρ

•	
Packaging	315
Details	316
Marking	315
Peripheral Module Disable (PMD)	101
Peripheral Pin Select (PPS)	109
Available Peripherals	109
Available Pins	109
Control	109
Control Registers	115
Input Mapping	110
Output Mapping	112
Output Selection for Remappable Pins	112
Selectable Input Sources	111
Peripheral Pin Select. See PPS.	
PICkit 3 In-Circuit Debugger/Programmer	263
Pinout I/O Descriptions (table)	8
Power-Saving Features	99
Clock Frequency and Switching	99
Control Registers	102
Resources	101
Program Address Space	27
Construction	58
Data Access from Program Memory Using	
Table Instructions	59
Memory Map (dsPIC33EP16GS202 Devices)	28
Memory Map (dsPIC33EP32GS202 Devices)	29
Table Read High Instructions (TBLRDH)	59
Table Read Low Instructions (TBLRDL)	59
Program Memory	
Organization	30
Reset Vector	30
Programmable Gain Amplifier (PGA)	235
Control Registers	237
Description	236
Resources	237
Programmable Gain Amplifier. See PGA.	
Programmer's Model	19
Register Descriptions	19
Pulse-Width Modulation. See PWM.	

R

Register Maps	
ADC	43
Analog Comparator	47
CPU Core	34
I2C1	42
Input Capture 1	38
Interrupt Controller	36
NVM	46
Output Compare 1	38
Peripheral Pin Select Output	45
PMD	46
PORTA	48
PORTB	48
Programmable Gain Amplifier	47
PWM	39
PWM Generator 1	39
PWM Generator 2	40
PWM Generator 3	41
SPI1	42
System Control	46
Timer1 through Timer3	38
UART1	42

© 2015-2016 Microchip Technology Inc.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support