

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

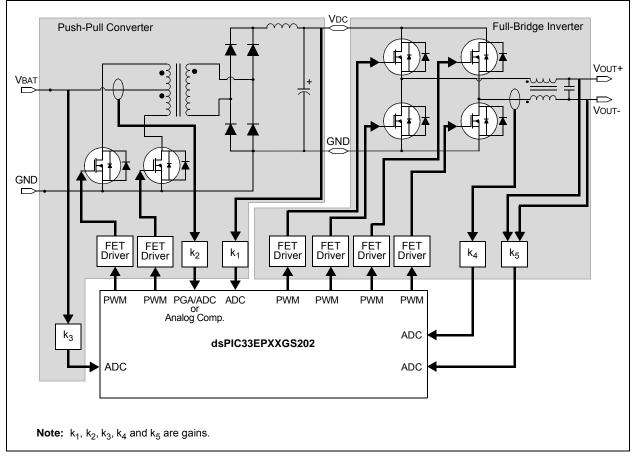
Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b, 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs202t-i-mx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name Pin Buffer Type Type			PPS	Description				
PGA1P1-PGA1P3	I	Analog	No	PGA1 Positive Inputs 1 through 3.				
PGA1N2	I	Analog	No	PGA1 Negative Input 2.				
PGA2P1-PGA2P3	I	Analog	No	PGA2 Positive Inputs 1 through 3.				
PGA2N2	I	Analog	No	PGA2 Negative Input 2.				
ADTRG31	I	ST	No	External ADC trigger source.				
PGED1 PGEC1 PGED2 PGEC2	I/O I I/O I	ST ST ST ST	No No No No	Data I/O pin for Programming/Debugging Communication Channel 1. Clock input pin for Programming/Debugging Communication Channel Data I/O pin for Programming/Debugging Communication Channel 2. Clock input pin for Programming/Debugging Communication Channel				
PGED3 PGEC3	I/O I	ST ST	No No	Data I/O pin for Programming/Debugging Communication Channel 3. Clock input pin for Programming/Debugging Communication Channel 3.				
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.				
AVdd	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.				
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.				
Vdd	Р	—	No	Positive supply for peripheral logic and I/O pins.				
VCAP	Р		No	CPU logic filter capacitor connection.				
Vss	Р		No	No Ground reference for logic and I/O pins.				


TABLE 1-1. **PINOUT I/O DESCRIPTIONS (CONTINUED)**

egend: CMOS : CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels O = Output PPS = Peripheral Pin Select

Analog = Analog Input TTL = TTL input buffer

```
= Power
I = Input
```

FIGURE 2-6: OFF-LINE UPS

TABLE 4-4: TIMER1 THROUGH TIMER3 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100		Timer1 Register									xxxx						
PR1	0102								Period R	egister 1								FFFF
T1CON	0104	TON	—	TSIDL	_	—	_	—	—	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—	0000
TMR2	0106		Timer2 Register								xxxx							
TMR3HLD	0108						Time	r3 Holding F	Register (for	32-bit timer	operations	only)						xxxx
TMR3	010A								Timer3	Register								xxxx
PR2	010C								Period R	egister 2								FFFF
PR3	010E								Period R	egister 3								FFFF
T2CON	0110	TON	TON – TSIDL – – – – – TGATE TCKPS1 TCKPS0 T32 – TCS –							0000								
T3CON	0112	TON	_	TSIDL	_	—	_	—	_	_	TGATE	TCKPS1	TCKPS0	_	—	TCS	_	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-5: INPUT CAPTURE 1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	- <u> </u>										0000					
IC1CON2	0142	_	_	_	_	-	_		_	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144		Input Capture 1 Buffer Register									xxxx						
IC1TMR	0146		Input Capture 1 Timer Register										0000					

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-6: OUTPUT COMPARE 1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900		- OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLTA OCFLTA TRIGMODE OCM2 OCM1 OCM0 0										0000					
OC1CON2	0902	FLTMD	ETMD FLTOUT FLTTRIEN OCINV OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0										000C					
OC1RS	0904							0	utput Com	pare 1 Seco	ndary Regis	ter						xxxx
OC1R	0906		Output Compare 1 Register									xxxx						
OC1TMR	0908		Timer Value 1 Register								xxxx							

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5.2 EXTENDED X DATA SPACE

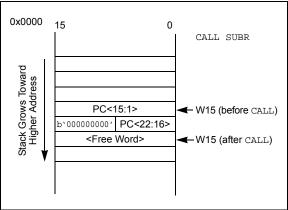
The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible regardless of the contents of the Data Space Read Page register. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space in combination with DSRPAG = 0x000. Consequently, DSRPAG is initialized to 0x001 at Reset.

Note: DSRPAG should not be used to access Page 0. An EDS access with DSRPAG set to 0x000 will generate an address error trap.

The remaining PSV pages are only accessible using the DSRPAG register in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

4.5.3 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating the Stack Pointer (for example, creating stack frames).


Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the hardware.
	lidiuwale.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXGS202 devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-7 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes). When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-7. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- Note 1: To maintain the Software Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

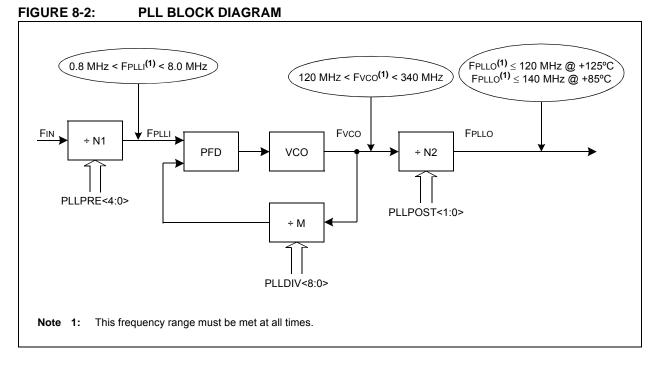
FIGURE 4-7: CALL STACK FRAME

8.1 CPU Clocking System

The dsPIC33EPXXGS202 family of devices provides six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (PLL)
- FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Low-Power RC (LPRC) Oscillator

Instruction execution speed or device operating frequency, FCY, is given by Equation 8-1.


EQUATION 8-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

Figure 8-2 is a block diagram of the PLL module.

Equation 8-2 provides the relationship between input frequency (FIN) and output frequency (FPLLO).

Equation 8-3 provides the relationship between input frequency (FIN) and VCO frequency (Fvco).

EQUATION 8-2: FPLLO CALCULATION

$$FPLLO = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV < 8:0 > + 2)}{(PLLPRE < 4:0 > + 2) \times 2(PLLPOST < 1:0 > + 1)}\right)$$

Where: N1 = PLLPRE<4:0> + 2 N2 = 2 x (PLLPOST<1:0> + 1) M = PLLDIV<8:0> + 2

EQUATION 8-3: Fvco CALCULATION

$$FVCO = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV < 8:0 > + 2)}{(PLLPRE < 4:0 > + 2)}\right)$$

U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
—	_	T3MD	T2MD	T1MD	—	PWMMD	—
bit 15							bit 8
R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
I2C1MD	_	U1MD	_	SPI1MD			ADCMD
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, re	ad as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
	-						
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13	T3MD: Time	er3 Module Disat	ole bit				
		nodule is disable					
		nodule is enable					
bit 12	-	r2 Module Disat nodule is disable					
		nodule is disable					
bit 11		r1 Module Disat					
	-	nodule is disable					
	0 = Timer1 n	nodule is enable	ed				
bit 10	Unimpleme	nted: Read as '	0'				
bit 9	PWMMD: P	WM Module Disa	able bit				
		odule is disabled					
		odule is enabled					
bit 8	-	nted: Read as '					
bit 7	-	C1 Module Disat	ble bit				
		dule is disabled					
bit 6		nted: Read as '	n'				
bit 5	-	T1 Module Disa					
bit o		module is disabl					
		module is enable					
bit 4	Unimpleme	nted: Read as '	0'				
bit 3	SPI1MD: SP	PI1 Module Disal	ole bit				
		dule is disabled					
		odule is enabled					
bit 2-1	Unimpleme	nted: Read as '	0'				
bit 0		DC Module Disat	ole bit				

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<7:0>
External Interrupt 2	INT2	RPINR1	INT2R<7:0>
Timer1 External Clock	T1CK	RPINR2	T1CKR<7:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<7:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<7:0>
Input Capture 1	IC1	RPINR7	IC1R<7:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<7:0>
PWM Fault 1	FLT1	RPINR12	FLT1R<7:0>
PWM Fault 2	FLT2	RPINR12	FLT2R<7:0>
PWM Fault 3	FLT3	RPINR13	FLT3R<7:0>
PWM Fault 4	FLT4	RPINR13	FLT4R<7:0>
UART1 Receive	U1RX	RPINR18	U1RXR<7:0>
UART1 Clear-to-Send	U1CTS	RPINR18	U1CTSR<7:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<7:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<7:0>
SPI1 Slave Select	SS1	RPINR21	SS1R<7:0>
PWM Synchronous Input 1	SYNCI1	RPINR37	SYNCI1R<7:0>
PWM Synchronous Input 2	SYNCI2	RPINR38	SYNCI2R<7:0>
PWM Fault 5	FLT5	RPINR42	FLT5R<7:0>
PWM Fault 6	FLT6	RPINR42	FLT6R<7:0>
PWM Fault 7	FLT7	RPINR43	FLT7R<7:0>
PWM Fault 8	FLT8	RPINR43	FLT8R<7:0>

TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

13.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture with Dedicated Timer" (DS70000352) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurements. The dsPIC33EPXXGS202 family devices support one input capture channel.

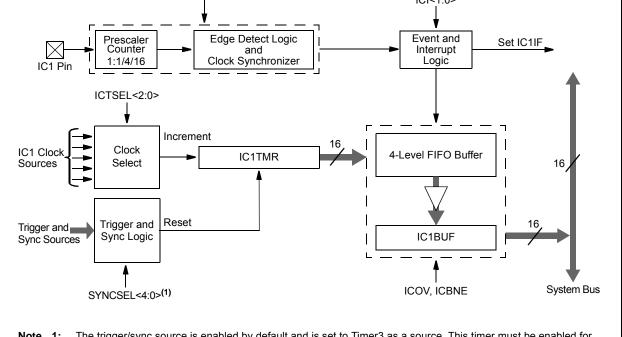
Key features of the input capture module include:

FIGURE 13-1:

 Hardware-Configurable for 32-Bit Operation in all modes by Cascading Two Adjacent Modules

- Synchronous and Trigger modes of Output Compare Operation, with up to 6 User-Selectable Trigger/Sync Sources Available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to Four Clock Sources Available, Driving a Separate Internal 16-Bit Counter

13.1 Input Capture Resources


Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

13.1.1 KEY RESOURCES

- "Input Capture with Dedicated Timer" (DS70000352) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections

INPUT CAPTURE MODULE BLOCK DIAGRAM

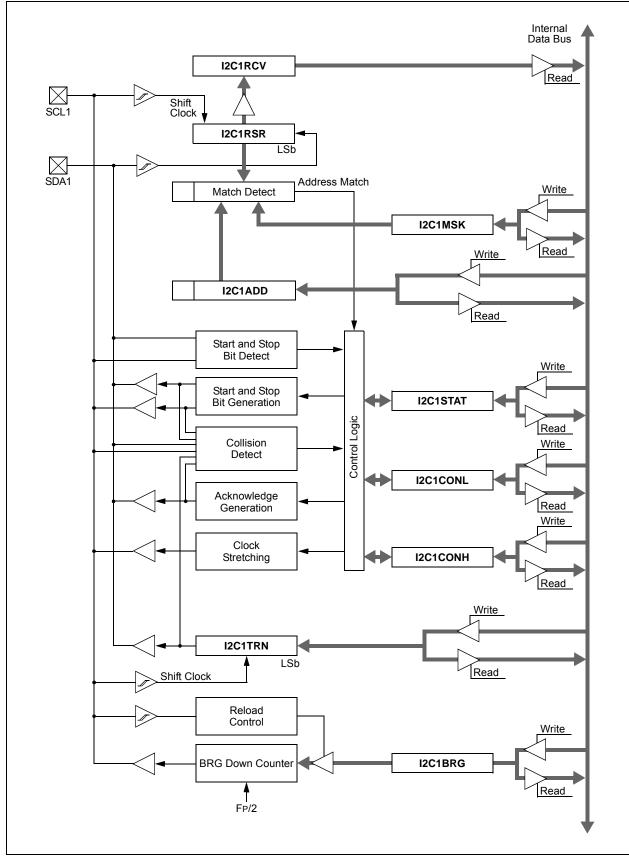
Note 1: The trigger/sync source is enabled by default and is set to Timer3 as a source. This timer must be enabled for proper IC1 module operation or the trigger/sync source must be changed to another source option.

REGISTER 15-12: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

- bit 7-6 DTC<1:0>: Dead-Time Control bits
- 11 = Reserved
 - 10 = Dead-time function is disabled
 - 01 = Negative dead time is actively applied for Complementary Output mode
 - 00 = Positive dead time is actively applied for all Output modes
- bit 5-4 Unimplemented: Read as '0'
- bit 3 MTBS: Master Time Base Select bit
 - 1 = PWMx generator uses the secondary master time base for synchronization and the clock source for the PWMx generation logic (if secondary time base is available)
 - 0 = PWMx generator uses the primary master time base for synchronization and the clock source for the PWMx generation logic
- bit 2 **CAM:** Center-Aligned Mode Enable bit^(2,3,4) 1 = Center-Aligned mode is enabled
 - 0 = Edge-Aligned mode is enabled
- bit 1 XPRES: External PWMx Reset Control bit⁽⁵⁾
 - 1 = Current-limit source resets the time base for this PWMx generator if it is in Independent Time Base mode
 - 0 = External pins do not affect the PWMx time base
- bit 0 IUE: Immediate Update Enable bit
 - 1 = Updates to the active Duty Cycle, Phase Offset, Dead-Time and local Time Base Period registers are immediate
 - 0 = Updates to the active Duty Cycle, Phase Offset, Dead-Time and local Time Base Period registers are synchronized to the local PWMx time base
- Note 1: Software must clear the interrupt status here and in the corresponding IFSx register in the interrupt controller.
 - 2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
 - 3: These bits should not be changed after the PWM is enabled by setting PTEN (PTCON<15>) = 1.
 - 4: Center-Aligned mode ignores the Least Significant 3 bits of the Duty Cycle, Phase and Dead-Time registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to the fastest clock.
 - 5: Configure CLMOD (FCLCONx<8>) = 0 and ITB (PWMCONx<9>) = 1 to operate in External Period Reset mode.

REGISTER 15-20: IOCONX: PWMx I/O CONTROL REGISTER R/W-1 **R/W-1** R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 PMOD1⁽¹⁾ PMOD0⁽¹⁾ PENH PENL POLH POLL **OVRENH** OVRENL bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 **OVRDAT0** FLTDAT1⁽²⁾ FLTDAT0⁽²⁾ CLDAT1⁽²⁾ CLDAT0⁽²⁾ SWAP OVRDAT1 OSYNC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PENH: PWMxH Output Pin Ownership bit 1 = PWM module controls the PWMxH pin 0 = GPIO module controls the PWMxH pin bit 14 PENL: PWMxL Output Pin Ownership bit 1 = PWM module controls the PWMxL pin 0 = GPIO module controls the PWMxL pin bit 13 POLH: PWMxH Output Pin Polarity bit 1 = PWMxH pin is active-low 0 = PWMxH pin is active-high bit 12 POLL: PWMxL Output Pin Polarity bit 1 = PWMxL pin is active-low 0 = PWMxL pin is active-high PMOD<1:0>: PWMx I/O Pin Mode bits⁽¹⁾ bit 11-10 11 = PWMx I/O pin pair is in the True Independent Output mode 10 = PWMx I/O pin pair is in the Push-Pull Output mode 01 = PWMx I/O pin pair is in the Redundant Output mode 00 = PWMx I/O pin pair is in the Complementary Output mode bit 9 **OVRENH:** Override Enable for PWMxH Pin bit 1 = OVRDAT1 provides data for output on the PWMxH pin 0 = PWMx generator provides data for the PWMxH pin bit 8 **OVRENL:** Override Enable for PWMxL Pin bit 1 = OVRDAT0 provides data for output on the PWMxL pin 0 = PWMx generator provides data for the PWMxL pin bit 7-6 OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits If OVERENH = 1, OVRDAT1 provides the data for the PWMxH pin. If OVERENL = 1, OVRDAT0 provides the data for the PWMxL pin. bit 5-4 FLTDAT<1:0>: State for PWMxH and PWMxL Pins if FLTMOD<1:0> are Enabled bits⁽²⁾ IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode: If Fault is active, then FLTDAT1 provides the state for the PWMxH pin. If Fault is active, then FLTDAT0 provides the state for the PWMxL pin. IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode: If current-limit is active, then FLTDAT1 provides the state for the PWMxH pin. If Fault is active, then FLTDAT0 provides the state for the PWMxL pin.

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).


2: State represents the active/inactive state of the PWMx depending on the POLH and POLL bits settings.

REGISTER 16-1: SPI1STAT: SPI1 STATUS AND CONTROL REGISTER (CONTINUED)

bit 1	SPITBF: SPI1 Transmit Buffer Full Status bit
	1 = Transmit has not yet started, SPI1TXB is full
	0 = Transmit has started, SPI1TXB is empty
	Standard Buffer mode:
	Automatically set in hardware when core writes to the SPI1BUF location, loading SPI1TXB. Automatically cleared in hardware when SPI1 module transfers data from SPI1TXB to SPI1SR.
	Enhanced Buffer mode: Automatically set in hardware when the CPU writes to the SPI1BUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.
bit 0	SPIRBF: SPI1 Receive Buffer Full Status bit
	 1 = Receive is complete, SPI1RXB is full 0 = Receive is incomplete, SPI1RXB is empty
	<u>Standard Buffer mode:</u> Automatically set in hardware when SPI1 transfers data from SPI1SR to SPI1RXB. Automatically cleared in hardware when the core reads the SPI1BUF location, reading SPI1RXB.
	Enhanced Buffer mode: Automatically set in hardware when SPI1 transfers data from SPI1SR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from

SPI1SR.

FIGURE 17-1: I2C1 BLOCK DIAGRAM

REGISTER 19-26: ADFL0CON: ADC DIGITAL FILTER 0 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLEN	MODE1	MODE0	OVRSAM2	OVRSAM1	OVRSAM0	R/W-U	R-0, HC, HS RDY
	MODET	MODEU	OVRSANIZ	OVRSAMI	OVRSAIVIU	IE	
bit 15							bit 8
			DAMA	DAMO	DAMA	DAMA	DAMO
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—	FLCHSEL4	FLCHSEL3	FLCHSEL2	FLCHSEL1	FLCHSEL0
bit 7							bit 0
			Clearable bit		o Cottoblo bit		
Legend:	I		e Clearable bit	HS = Hardwar		(0)	
R = Readab		W = Writable		•	ented bit, read		
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	FLEN: Filter						
	1 = Filter is		e RDY bit is cle	arad			
bit 14-13		Silter Mode b		areu			
DIL 14-13	11 = Averag		115				
	10 = Reserv						
	01 = Reserv						
	00 = Oversa	ampling mode					
bit 12-10	OVRSAM<2	2:0>: Filter Ave	raging/Oversam	pling Ratio bits			
	If MODE<1:						
			the ADFL0DAT				
	•		he ADFLODAT r	•	,		
			e ADFL0DAT re e ADFL0DAT re				
			the ADFL0DAT				
	010 = 64x (15-bit result in t	he ADFL0DAT r	register is in 12.	3 format)		
			he ADFL0DAT r				
	•		e ADFLODAT re	•	,		
	<u>IT MODE<1:</u> 111 = 256x		result in the AD	FLUDAI registe	<u>r):</u>		
	111 = 230x 110 = 128x						
	101 = 64x						
	100 = 32x						
	011 = 16x						
	010 = 8x 001 = 4x						
	001 = 4x 000 = 2x						
bit 9	IE: Filter Co	mmon ADC Int	errupt Enable bi	t			
	1 = Commo	n ADC interrup	t will be generate t will not be gene	ed when the filte		ready	
bit 8		-	Data Ready Flag				
			are when the re		n the ADFL0DA	T reaister.	
			register is ready				
	0 = The AD	FL0DAT registe	r has been read	and new data i	n the ADFL0DA	T register is no	t ready
bit 7-5	Unimpleme	ented: Read as	'0'				

22.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXGS202 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

22.1 Configuration Bits

In the dsPIC33EPXXGS202 family devices, the Configuration Words are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored at the end of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 22-1 with detailed descriptions in Table 22-2. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration Shadow registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Words for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled. Program code executing out of configuration space will cause a device Reset.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles, with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note:	For more deta	ils on the inst	ruction set,
	refer to the	"16-bit MCU	and DSC
	Programmer's		
	(DS70157).		

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
$a\in\{b,c,d\}$	a is selected from the set of values b, c, d
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write-back destination address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)

TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

24.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

24.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

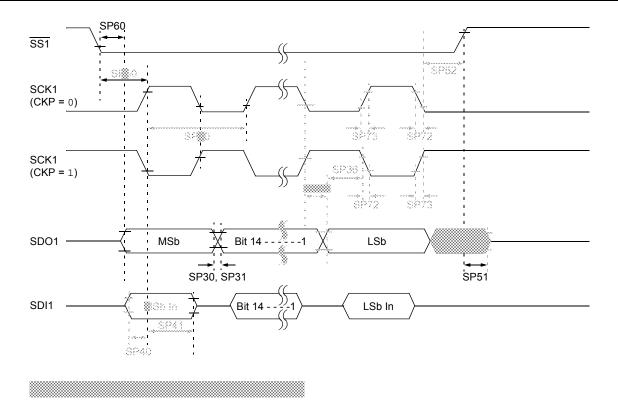
- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

24.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:


- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

24.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

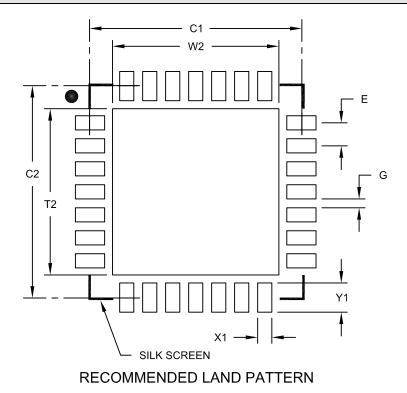
- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

TABLE 25-42: ADC MODULE SPECIFICATIONS

Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽⁴⁾							
AC CHARACTERISTICS			Operating temperature $-40^{\circ}C \le TA$			≤ +85°C for Industrial ≤ +125°C for Extended	
Param No.	Symbol	Characteristics ⁽³⁾	Min.	Typical	Max.	Units	Conditions
Device Supply							
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	—	Lesser of: VDD + 0.3 or 3.6	V	The difference between AVDD supply and VDD supply must not exceed ±300 mV at all times, including device power-up
AD02	AVss	Module Vss Supply	Vss	_	Vss + 0.3	V	
		·	Analog	j Input			
AD12	VINH-VINL	Full-Scale Input Span	AVss	_	AVdd	V	
AD14	Vin	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V	
AD15	Vin+	Pseudo-Differential Mode	0	_	3.3	V	VIN- = (VR+ + VR-)/2 ±150 mV
AD16	Vin-	Pseudo-Differential Mode	0	_	3.3	V	VIN+ = (VR+ + VR-)/2 ±150 mV
AD17	RIN	Recommended Impedance of Analog Voltage Source	_	100	—	Ω	For minimum sampling time (Note 1)
AD66	VREF1	Internal Voltage Reference Source	—	1.2	—	V	
		ADC Ac	curacy: Pseu	do-Differe	ential Input		
AD20a	Nr	Resolution		12		bits	
AD21a	INL	Integral Nonlinearity	> -4	_	< 4	LSb	AVss = 0V, AVDD = 3.3V
AD22a	DNL	Pseudo-Differential Nonlinearity	> -1	—	< 1	LSb	AVss = 0V, AVDD = 3.3V (Note 5)
AD23a	Gerr	Gain Error (Dedicated Core)	> -5		< 5	LSb	AVss = 0V, AVDD = 3.3V
AD24a	EOFF	Offset Error (Dedicated Core)	> -5	—	< 5	LSb	AVss = 0V, AVDD = 3.3V
AD25a	_	Monotonicity	_	_	_	_	Guaranteed

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized but not tested in manufacturing.


3: Characterized with a 1 kHz sine wave.

4: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

5: No missing codes, limits are based on the characterization results.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

Instruction Addressing Modes. 53 File Register Instructions 53 Fundamental Modes Supported. 53 MAC Instructions. 54 MCU Instructions 53 Move and Accumulator Instructions. 54 Other Instructions. 54
Instruction Set
Overview
Summary251
Symbols Used in Opcode Descriptions
Instruction-Based Power-Saving Modes
Idle
Sleep100
Inter-Integrated Circuit (I ² C)
Control Registers 187
Resources185
Inter-Integrated Circuit. See I ² C.
Internet Address
Interrupt Controller
Alternate Interrupt Vector Table (AIVT)73
Control and Status Registers78
INTCON178
INTCON2
INTCON378
INTCON478
INTTREG78
Interrupt Vector Details76
Interrupt Vector Table (IVT)73
Reset Sequence73
Resources78
Interrupts Coincident with Power Save Instructions 100

J

JTAG Boundary Scan Interface	239
JTAG Interface	248
1	

L Le

Leading-Edge Blanking (LEB)1	51
LPRC Oscillator	
Use with WDT 2	47

Μ

Memory Organization	
Resources	
Microchip Internet Web Site	338
Modulo Addressing	
Applicability	
Operation Example	
Start and End Address	
W Address Register Selection	
MPLAB Assembler, Linker, Librarian	
MPLAB ICD 3 In-Circuit Debugger	
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLAB X Integrated Development	
Environment Software	
MPLINK Object Linker/MPLIB Object Librarian	

O

Oscillator	
Control Registers	91
Resources	
OTP Memory Area	
Output Compare	
Control Registers	
Resources	

Ρ

•	
Packaging	315
Details	316
Marking	315
Peripheral Module Disable (PMD)	101
Peripheral Pin Select (PPS)	109
Available Peripherals	109
Available Pins	109
Control	109
Control Registers	115
Input Mapping	110
Output Mapping	112
Output Selection for Remappable Pins	112
Selectable Input Sources	111
Peripheral Pin Select. See PPS.	
PICkit 3 In-Circuit Debugger/Programmer	
Pinout I/O Descriptions (table)	8
Power-Saving Features	99
Clock Frequency and Switching	99
Control Registers	102
Resources	101
Program Address Space	27
Construction	58
Data Access from Program Memory Using	
Table Instructions	59
Memory Map (dsPIC33EP16GS202 Devices)	
Memory Map (dsPIC33EP32GS202 Devices)	29
Table Read High Instructions (TBLRDH)	59
Table Read Low Instructions (TBLRDL)	59
Program Memory	
Organization	30
Reset Vector	
Programmable Gain Amplifier (PGA)	235
Control Registers	237
Description	236
Resources	237
Programmable Gain Amplifier. See PGA.	
Programmer's Model	
Register Descriptions	19
Pulse-Width Modulation. See PWM.	

R

Register Maps	
ADC	43
Analog Comparator	47
CPU Core	34
I2C1	42
Input Capture 1	38
Interrupt Controller	
NVM	46
Output Compare 1	38
Peripheral Pin Select Output	
PMD	
PORTA	48
PORTB	48
Programmable Gain Amplifier	47
PWM	39
PWM Generator 1	39
PWM Generator 2	40
PWM Generator 3	41
SPI1	42
System Control	46
Timer1 through Timer3	38
UART1	42

© 2015-2016 Microchip Technology Inc.