

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs202-e-m6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	_	ADCIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	_	-	-	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	_	_	INT2IF	_		_	_	_	—	—	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS3	0806	_	_	_	_	_	_	PSEMIF	_	_	_	_	—	_	_	—	_	0000
IFS4	0808	_	_	_	_	—	_	PSESIF	_	_	_	-	_	_	_	U1EIF	_	0000
IFS5	080A	PWM2IF	PWM1IF	_	_	_	_		_		_	-	_	_	_	_	_	0000
IFS6	080C	ADCAN1IF	ADCAN0IF	_	_	_	_	_	_	AC2IF	_	_	_	_	_	_	PWM3IF	0000
IFS7	080E			—	_		_	_		—	—	ADCAN7IF	ADCAN6IF	ADCAN5IF	ADCAN4IF	ADCAN3IF	ADCAN2IF	0000
IFS9	0812	_	_	ADCAN14IF	_	_	ADCAN11IF	ADCAN10IF	ADCAN9IF	ADCAN8IF	_	_	—	_	_	_	_	0000
IFS10	0814	_	_	I2C1BCIF	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IFS11	0816			_	_		_	_		—	_	-	_	ADFL0IF	ADCMP1IF	ADCMP0IF	_	0000
IEC0	0820	NVMIE		ADCIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	—	_	_	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822			INT2IE	_		_	_		—	—	_	INT1IE	CNIE	AC1IF	MI2C1IE	SI2C1IE	0000
IEC3	0826			—	_		_	PSEMIE		—	—	_	_	—		_	_	0000
IEC4	0828			—	_		_	PSESIE		—	—	_	_	—		U1EIE	_	0000
IEC5	082A	PWM2IE	PWM1IE	—	_		_	_		—	—	_	_	—		_	_	0000
IEC6	082C	ADCAN1IE	ADCAN0IE	_	_	-	_	_	AC3IE	AC2IE	—	_	_	_	_	_	PWM3IE	0000
IEC7	082E	—	-	—	—	-	—	—	-	—	—	ADCAN7IE	ADCAN6IE	ADCAN5IE	ADCAN4IE	ADCAN3IE	ADCAN2IE	0000
IEC9	0832	—	_	ADCAN14IE	_	_	ADCAN11IE	ADCAN10IE	ADCAN9IE	ADCAN8IE	—	-	—	—	_	—	_	0000
IEC10	0834	—	-	I2C1BCIE	—	-	—	—	-	—	—	-	—	—	—	—	—	0000
IEC11	0836	—	-	—	—	-	—	—	-	—	—	-	—	ADFL0IE	ADCMP1IE	ADCMP0IE	—	0000
IPC0	0840		T1IP2	T1IP1	T1IP0		OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	0842	_	T2IP2	T2IP1	T2IP0	_	_	_	_	_	—	_	_	_	_	_	_	4000
IPC2	0844	—	U1RXIP2	U1RXIP1	U1RXIP0	-	SPI1IP2	SPI1IP1	SPI1IP0	—	SPI1EIP2	SPI1EIP1	SPI1EIP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	0846	_	NVMIP2	NVMIP1	NVMIP0	-	—	-	-	—	ADCIP2	ADCIP1	ADCIP0	—	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	0848	-	CNIP2	CNIP1	CNIP0		AC1IP2	AC1IP1	AC1IP0	—	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	084A			—	—		—	_		—	—	-	—	—	INT1IP2	INT1IP1	INT1IP0	0004
IPC7	084E	-		—	_		—	_	_	—	INT2IP2	INT2IP1	INT2IP0	—	-	—	_	0040
IPC14	085C			_	_		_	_	_	_	PSEMIP2	PSEMIP1	PSEMIP0	—	_	_	_	0040

dsPIC33EPXXGS202 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-5: NVMSRCADRL: NVM SOURCE DATA ADDRESS LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			NVMSRC	CADR<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			NVMSR	CADR<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is			'0' = Bit is cleared x =			x = Bit is unkr	a = Bit is unknown		

bit 15-0 NVMSRCADR<15:0>: Source Data Address bits

The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming.

REGISTER 5-6: NVMSRCADRH: NVM SOURCE DATA ADDRESS HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			NVMSRC.	ADR<31:24>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			NVMSRC	ADR<23:16>					
bit 7							bit (
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR (1' = Bit is set				'0' = Bit is cleared x = Bit is unknow					

bit 15-0 NVMSRCADR<31:16>: Source Data Address bits The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming. These bits must be always programmed to zero.

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

Reserved Oscillator Fail Trap Vector Address Error Trap Vector Generic Hard Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Generic Soft Trap Vector Reserved	BSLIM<12:0>(1) + 0x000002 BSLIM<12:0>(1) + 0x000004 BSLIM<12:0>(1) + 0x000006 BSLIM<12:0>(1) + 0x000008 BSLIM<12:0>(1) + 0x00000A BSLIM<12:0>(1) + 0x00000C BSLIM<12:0>(1) + 0x00000E BSLIM<12:0>(1) + 0x00000E	
Address Error Trap Vector Generic Hard Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Generic Soft Trap Vector	BSLIM<12:0> ⁽¹⁾ + 0x000006 BSLIM<12:0> ⁽¹⁾ + 0x000008 BSLIM<12:0> ⁽¹⁾ + 0x00000A BSLIM<12:0> ⁽¹⁾ + 0x00000C BSLIM<12:0> ⁽¹⁾ + 0x00000E	
Generic Hard Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Generic Soft Trap Vector	BSLIM<12:0> ⁽¹⁾ + 0x000008 BSLIM<12:0> ⁽¹⁾ + 0x00000A BSLIM<12:0> ⁽¹⁾ + 0x00000C BSLIM<12:0> ⁽¹⁾ + 0x00000E	
Stack Error Trap Vector Math Error Trap Vector Reserved Generic Soft Trap Vector	BSLIM<12:0> ⁽¹⁾ + 0x00000A BSLIM<12:0> ⁽¹⁾ + 0x00000C BSLIM<12:0> ⁽¹⁾ + 0x00000E	
Math Error Trap Vector Reserved Generic Soft Trap Vector	BSLIM<12:0> ⁽¹⁾ + 0x00000C BSLIM<12:0> ⁽¹⁾ + 0x00000E	
Reserved Generic Soft Trap Vector	BSLIM<12:0>(1) + 0x00000E	
Generic Soft Trap Vector		
•		
Bosonvod	BSLIM<12:0>(*) + 0x000010	
Reserveu	BSLIM<12:0> ⁽¹⁾ + 0x000012	
Interrupt Vector 0	BSLIM<12:0> ⁽¹⁾ + 0x000014	
Interrupt Vector 1	BSLIM<12:0> ⁽¹⁾ + 0x000016	
:	:	
:	:	
:	:	
Interrupt Vector 52		
Interrupt Vector 53		
Interrupt Vector 54	BSLIM<12:0> ⁽¹⁾ + 0x000080	See Table 7-1 for
:	:	Interrupt Vector Details
:	:	/
:	:	
Interrupt Vector 116		
Interrupt Vector 117		
Interrupt Vector 118		
Interrupt Vector 119		
Interrupt Vector 120	BSLIM<12:0> ⁽¹⁾ + 0x000104	
:	:	
:	:	
:	:	
Interrupt Vector 245	BSLIM<12:0> ⁽¹⁾ + 0x0001FE	
	Interrupt Vector 53 Interrupt Vector 54 : Interrupt Vector 116 Interrupt Vector 117 Interrupt Vector 118 Interrupt Vector 119 Interrupt Vector 120 : Interrupt Vector 244	Interrupt Vector 53 BSLIM<12:0> ⁽¹⁾ + 0x00007E Interrupt Vector 54 BSLIM<12:0> ⁽¹⁾ + 0x000080 : : <td:< td=""> : <t< td=""></t<></td:<>

NOTES:

10.5 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 25-11 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device, that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
 - **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristics specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the Absolute Maximum Ratings in **Section 25.0 "Electrical Characteristics"**of this data sheet. For example:

VOH = 2.4V @ IOH = -8 mA and VDD = 3.3VThe maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted.

11.1 Timer1 Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

11.1.1 KEY RESOURCES

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 13-2: IC1CON2: INPUT CAPTURE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽¹⁾	TRIGSTAT ⁽²⁾		SYNCSEL4(3)	SYNCSEL3(3)	SYNCSEL2(3)	SYNCSEL1(3)	SYNCSEL0(3)
bit 7							bit 0

Legend:	HS = Hardware Settable b	it	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7

- ICTRIG: Input Capture Trigger Operation Select bit⁽¹⁾
 - 1 = Input source used to trigger the input capture timer (Trigger mode)
 - 0 = Input source used to synchronize the input capture timer to a timer of another module (Synchronization mode)
- bit 6 TRIGSTAT: Timer Trigger Status bit⁽²⁾
 - 1 = IC1TMR has been triggered and is running
 - 0 = IC1TMR has not been triggered and is being held clear

bit 5 Unimplemented: Read as '0'

- **Note 1:** The input source is selected by the SYNCSEL<4:0> bits of the IC1CON2 register.
 - 2: This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - **3:** Do not use the IC1 module as its own sync or trigger source.
 - 4: This option should only be selected as a trigger source and not as a synchronization source.

REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0

Legend:		HC = Hardware Clearable b	it HS = Hardware Settab	le bit						
R = Reada	able bit	W = Writable bit	U = Unimplemented bit	t, read as '0'						
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15		VM Module Enable bit								
		module is enabled module is disabled								
bit 14	Unimplen	Unimplemented: Read as '0'								
bit 13	PTSIDL:	PWM Time Base Stop in Idle Moo	de bit							
		time base halts in CPU Idle mod time base runs in CPU Idle mode								
bit 12	SESTAT:	Special Event Interrupt Status bit								
		al event interrupt is pending al event interrupt is not pending								
bit 11	SEIEN: S	pecial Event Interrupt Enable bit								
		al event interrupt is enabled al event interrupt is disabled								
bit 10	EIPU: Ena	EIPU: Enable Immediate Period Updates bit ⁽¹⁾								
		Period register is updated imme Period register updates occur of								
bit 9	SYNCPO	L: Synchronize Input and Output	Polarity bit ⁽¹⁾							
		Ix/SYNCO1 polarity is inverted (a Ix/SYNCO1 is active-high	active-low)							
bit 8	SYNCOE	N: Primary Time Base Synchroni	zation Enable bit ⁽¹⁾							
		O1 output is enabled O1 output is disabled								
bit 7	SYNCEN:	External Time Base Synchroniz	ation Enable bit ⁽¹⁾							
		nal synchronization of primary tim nal synchronization of primary tim								
bit 6-4	SYNCSR	C<2:0>: Synchronous Source Se	lection bits ⁽¹⁾							
	111 = Re:									
	101 = Re:									
	100 = Re: 011 = Re:									
	011 = Re: 010 = Re:									
	001 = SY									
	000 = SY	NCI1								

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 15-6: STCON2: PWM SECONDARY CLOCK DIVIDER SELECT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
_	_	—	_	—	PCLKDIV<2:0>(1)			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-3 Unimplemented: Read as '0'

bit 2-0

PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾

111 = Reserved

110 = Divide-by-64, maximum PWM timing resolution

101 = Divide-by-32, maximum PWM timing resolution

- 100 = Divide-by-16, maximum PWM timing resolution
- 011 = Divide-by-8, maximum PWM timing resolution
- 010 = Divide-by-4, maximum PWM timing resolution
- 001 = Divide-by-2, maximum PWM timing resolution
- 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 15-7: STPER: PWM SECONDARY MASTER TIME BASE PERIOD REGISTER^(1,2)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
				R<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			STPE	ER<7:0>			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unk		x = Bit is unk	nown

bit 15-0 STPER<15:0>: Secondary Master Time Base (SMTMR) Period Value bits

Note 1: The PWM time base has a minimum value of 0x0010 and a maximum value of 0xFFF8.

2: Any period value that is less than 0x0028 must have the Least Significant 3 bits set to '0', thus yielding a period resolution at 8.32 ns (at fastest auxiliary clock rate).

REGISTER 19-4: ADCON2H: ADC CONTROL REGISTER 2 HIGH

R-0, HS, HC	R-0, HS, HC	U-0	U-0	U-0	U-0	R/W-0	R/W-0
REFRDY	REFERR		_	—	—	SHRSAMC9	SHRSAMC8
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SHRSAMC7 | SHRSAMC6 | SHRSAMC5 | SHRSAMC4 | SHRSAMC3 | SHRSAMC2 | SHRSAMC1 | SHRSAMC0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 REFRDY: Band Gap and Reference Voltage Ready Flag bit 1 = Band gap is ready 0 = Band gap is not ready bit 14 REFERR: Band Gap or Reference Voltage Error Flag bit 1 = Band gap was removed after the ADC module was enabled (ADON = 1) 0 = No band gap error was detected bit 13-10 Unimplemented: Read as '0' bit 9-0 SHRSAMC<9:0>: Shared ADC Core Sample Time Selection bits These bits specify the number of shared ADC Core Clock (TADCORE) periods for the shared ADC core sample time. 1111111111 = 1025 TADCORE 000000001 = 3 TADCORE 0000000000 = 2 TADCORE

REGISTER 19-20: ADTRIGXL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW

(x = 0 to 3)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		_	TRGSRC(4x+1)<4:0>					
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		—	TRGSRC(4x)<4:0>					
bit 7							bit 0	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8	TRGSRC(4x+1)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits
	11111 = ADTRG31
	11110 = Reserved
	11101 = Reserved
	11100 = Reserved
	11011 = Reserved
	11010 = PWM Generator 3 current-limit trigger
	11001 = PWM Generator 2 current-limit trigger
	11000 = PWM Generator 1 current-limit trigger
	10111 = Reserved
	10110 = Output Compare 1 trigger
	10101 = Reserved
	10100 = Reserved
	10011 = Reserved
	10010 = Reserved
	10001 = PWM Generator 3 secondary trigger
	10000 = PWM Generator 2 secondary trigger
	01111 = PWM Generator 1 secondary trigger
	01110 = PWM secondary Special Event Trigger
	01101 = Timer2 period match
	01100 = Timer1 period match
	01011 = Reserved
	01010 = Reserved
	01001 = Reserved
	01000 = Reserved
	00111 = PWM Generator 3 primary trigger
	00110 = PWM Generator 2 primary trigger 00101 = PWM Generator 1 primary trigger
	00100 = PWM Secial Event Trigger
	00011 = Reserved
	00010 = Level software trigger
	00001 = Common software trigger
	00000 = No trigger is enabled
bit 7-5	Unimplemented: Read as '0'
DIL 7-0	Uninpienteu. Nedu as U

REGISTER 20-1: CMPxCON: COMPARATOR x CONTROL REGISTER (x = 1,2) (CONTINUED)

bit 2	ALTINP: Alternate Input Select bit
	1 = INSEL<1:0> bits select alternate inputs 0 = INSEL<1:0> bits select comparator inputs
bit 1	CMPPOL: Comparator Output Polarity Control bit
	1 = Output is inverted 0 = Output is non-inverted
	•
bit 0	Unimplemented: Read as '0'

REGISTER 20-2: CMPxDAC: COMPARATOR DACx CONTROL REGISTER (x = 1,2)

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	_		CMRE	-<11:8>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CMREF<7:0>								
bit 7								

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-12 Unimplemented: Read as '0'

bit 11-0 CMREF<11:0>: Comparator Reference Voltage Select bits 11111111111 = (CMREF<11:0> * (AVDD)/4096)

• 000000000000 = 0.0 volts

21.2 PGA Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

21.2.1 KEY RESOURCES

- "Programmable Gain Amplifier (PGA)" (DS70005146) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 21-1: PGAxCON: PGAx CONTROL REGISTER (x = 1,2)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PGAEN	—	SELPI2	SELPI1	SELPI0	SELNI2	SELNI1	SELNI0
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	-	—	GAIN2	GAIN1	GAIN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PGAEN: PGAx Enable bit
	1 = PGAx module is enabled
	0 = PGAx module is disabled (reduces power consumption)
bit 14	Unimplemented: Read as '0'
bit 13-11	SELPI<2:0>: PGAx Positive Input Selection bits
	111 = Reserved
	110 = Reserved
	101 = Reserved
	100 = Reserved
	011 = Reserved
	010 = PGAxP3
	001 = PGAxP2
	000 = PGAxP1
bit 10-8	SELNI<2:0>: PGAx Negative Input Selection bits
	111 = Reserved
	110 = Reserved
	101 = Reserved
	100 = Reserved
	011 = Ground (Single-Ended mode)
	010 = Reserved
	001 = PGAxN2
	000 = Ground (Single-Ended mode)
bit 7-3	Unimplemented: Read as '0'

22.2 Device Calibration and Identification

The PGAx modules on the dsPIC33EPXXGS202 family devices require Calibration Data registers to improve performance of the module over a wide operating range. These Calibration registers are read-only and are stored in configuration memory space. Prior to enabling the module, the calibration data must be read (TBLPAG and Table Read instruction) and loaded into their respective SFR registers. The device calibration addresses are shown in Table 22-3.

The dsPIC33EPXXGS202 devices have two Identification registers near the end of configuration memory space that store the Device ID (DEVID) and Device Revision (DEVREV). These registers are used to determine the mask, variant and manufacturing information about the device. These registers are read-only and are shown in Register 22-1 and Register 22-2.

TABLE 22-3: DEVICE CALIBRATION ADDRESSES⁽¹⁾

Calibration Name	Address	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PGA1CAL	800E48	—	—	—	_		_		_		_	_		PGA1	Calibra	tion Da	ta bits	
PGA2CAL	800E4C	_	—	—	—	_	-	_	_	_	—	-	I	PGA2 (Calibra	tion Da	ta bits	

Note 1: The calibration data must be copied into its respective registers prior to enabling the module.

25.1 DC Characteristics

TABLE 25-1: OPERATING MIPS vs. VOLTAGE

Characteristic	VDD Range	Temperature Range	Maximum MIPS
Characteristic	(in Volts)	(in °C)	dsPIC33EPXXGS202 Family
_			70
—	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, PGAs and comparators) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 25-13 for the minimum and maximum BOR values.

TABLE 25-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit		
Industrial Temperature Devices							
Operating Junction Temperature Range	TJ	-40		+125	°C		
Operating Ambient Temperature Range	TA	-40		+85	°C		
Extended Temperature Devices							
Operating Junction Temperature Range	TJ	-40		+140	°C		
Operating Ambient Temperature Range	TA	-40		+125	°C		
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PI/O			W		
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$							
Maximum Allowed Power Dissipation	PDMAX	(TJ — ΤΑ)/θ.	(Tj – Ta)/θja			

TABLE 25-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 28-Pin QFN-S	θJA	30.0		°C/W	1
Package Thermal Resistance, 28-Pin UQFN	θJA	26.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	69.7	—	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71.0	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			(unles	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial								
Param. Symbol Characteristic				Тур.	Max.	-40°C Units	\leq TA \leq +125°C for Extended Conditions					
r ai airi.	Symbol	Characteristic	Min. ⁽¹⁾	тур.	WIAN.	Units	Conditions					
DO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	-	_	0.4	V						
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	_	0.4	V	$V_{DD} = 3.3V$, $I_{OL} \le 12 \text{ mA}$, $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$, $I_{OL} \le 8 \text{ mA}$, $+85^{\circ}\text{C} < \text{TA} \le +125^{\circ}\text{C}$					
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4		—	V	IOH ≥ -10 mA, VDD = 3.3V					
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4		_	V	IOH ≥ -15 mA, VDD = 3.3V					
DO20A	VoH1	Output High Voltage	1.5	_		V	ІОН ≥ -14 mA, VDD = 3.3V					
		4x Source Driver Pins ⁽²⁾	2.0	_		V	IOH ≥ -12 mA, VDD = 3.3V					
			3.0	_		V	$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$					
		Output High Voltage	1.5	—		V	$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{V}$					
		8x Source Driver Pins ⁽³⁾	2.0	_		V	IOH ≥ -18 mA, VDD = 3.3V					
			3.0	_		V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$					

TABLE 25-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Includes RB<14:11> pins.

3: Includes all I/O pins that are not 4x driver pins (see Note 2).

TABLE 25-13: ELECTRICAL CHARACTERISTICS: BOR

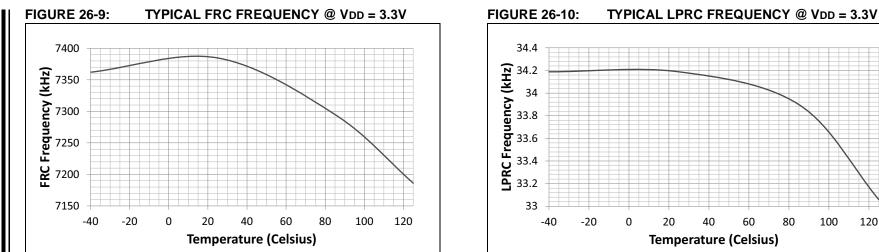
DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions			
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	—	2.95	V	VDD (Notes 2, 3)			

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, PGAs and comparators) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

TABLE 25-37:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS


AC CHA		Standard Op (unless othe Operating ter	erwise st	t ated) re -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended	
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—		15	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid After SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1 ↑ After SCK1 Edge	1.5 Tcy + 40	—		ns	(Note 4)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

120

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0578-8