

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs202-e-mx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

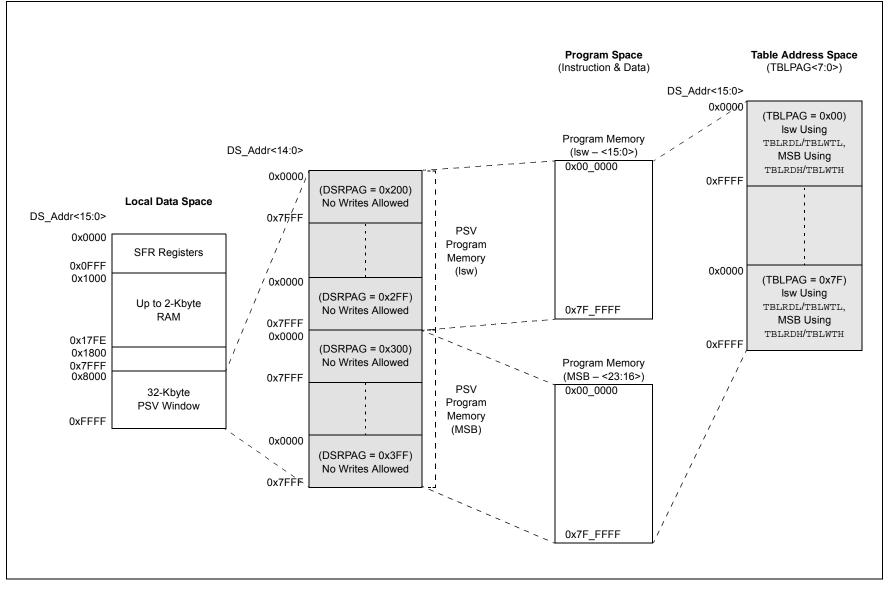
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress
	0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative
	0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that
	causes the sign bit to change state.
	1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
	0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	1 = An operation that affects the Z bit has set it at some time in the past
	0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority
	Level The value is parentheses indicates the $ \mathbf{P} $ if $ \mathbf{P} < 2 > -1$. User interrupts are disabled when

- Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priorit Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	0860	_	—	—	—	—	—	—	_	—	U1EIP2	U1EIP1	U1EIP0	—	_	—	—	0040
IPC18	0864	_	_	_	_	—	_	-	_	_	PSESIP2	PSESIP1	PSESIP0	_	_	—	_	0040
IPC23	086E	_	PWM2IP2	PWM2IP1	PWM2IP0	_	PWM1IP2	PWM1IP1	PWM1IP0	_	_	_	_	_	—	_	_	4400
IPC24	0870	_	_	_	_	_	_	_	_	_	_	_	_	_	PWM3IP2	PWM3IP1	PWM3IP0	0004
IPC25	0872	_	AC2IP2	AC2IP1	AC2IP0	—	_	-	_	_	_	_	_	_	_	—	_	4000
IPC27	0876	_	ADCAN1IP2	ADCAN1IP1	ADCAN1IP0	_	ADCAN0IP2	ADCAN0IP1	ADCAN0IP0	_	_	_	_	_	—	_	_	4400
IPC28	0878	_	ADCAN5IP2	ADCAN5IP1	ADCAN5IP0	_	ADCAN4IP2	ADCAN4IP1	ADCAN4IP0	_	ADCAN3IP2	ADCAN3IP1	ADCAN3IP0	_	ADCAN2IP2	ADCAN2IP1	ADCAN2IP0	4444
IPC29	087A	_	_	_	_	_	_	_	_	_	ADCAN7IP2	ADCAN7IP1	ADCAN7IP0	_	ADCAN6IP2	ADCAN6IP1	ADCAN6IP0	0044
IPC35	0886	_	_	_	_	_	ICDIP2	ICDIP1	ICDIP0	_	_	_	_	_	—	—	_	0400
IPC37	088A	_	ADCAN8IP2	ADCAN8IP1	ADCAN8IP0	_	_	-	_	_	_	_	-	_	_	-	_	4000
IPC38	088C	_	_	_	_	_	ADCAN11IP2	ADCAN11IP1	ADCAN11IP0	_	ADCAN10IP2	ADCAN10IP1	ADCAN10IP0	_	ADCAN9IP2	ADCAN9IP1	ADCAN9IP0	0444
IPC39	088E	_	_	_	_	—	_	-	_	_	ADCAN14IP2	ADCAN14IP1	ADCAN14IP0	_	_	—	_	0040
IPC43	0896	_	_	_	_	_	_	-	_	_	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0	_	_	-	_	0040
IPC44	0898	_	ADFL0IP2	ADFL0IP1	ADFL0IP0	_	ADCMP1IP2	ADCMP1IP1	ADCMP1IP0	_	ADCMP1IP2	ADCMP1IP1	ADCMP1IP0	_	_	_	_	4440
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	AIVTEN	_	_	_	_	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	_	—	_	_	NAE	_	_	_	DOOVR	_	_	—	APLL	0000
INTCON4	08C6	_	_	_	_	_	_	_	_	_	_	_	_	_	—	—	SGHT	0000
INTTREG	08C8	_	_	_	_	ILR3	ILR2	ILR1	ILR0	VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.


TABLE 4-14: ADC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON1L	0300	ADON	_	ADSIDL	_	_	_	_	_	—	_	_	-	-	-	_	-	1000
ADCON1H	0302	_	_	_	_	_	_	_	_	FORM	SHRRES1	SHRRES0	-	_	_	_	-	0060
ADCON2L	0304	REFCIE	REFERCIE	_	EIEN	_	SHREISEL2	SHREISEL1	SHREISEL0	_	SHRADCS6	SHRADCS5	SHRADCS4	SHRADCS3	SHRADCS2	SHRADCS1	SHRADCS0	0000
ADCON2H	0306	REFRDY	REFERR	_	_	_	_	SHRSAMC9	SHRSAMC8	SHRSAMC7	SHRSAMC6	SHRSAMC5	SHRSAMC4	SHRSAMC3	SHRSAMC2	SHRSAMC1	SHRSAMC0	0000
ADCON3L	0308	REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH	SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSEL0	0000
ADCON3H	030A	CLKSEL1	CLKSEL0	CLKDIV5	CLKDIV4	CLKDIV3	CLKDIV2	CLKDIV1	CLKDIV0	SHREN		_	-	—	-	C1EN	COEN	0000
ADCON4L	030C	_	_	—	_	-	-	SYNCTRG1	SYNCTRG0	_	-	_	-	_	_	SAMC1EN	SAMC0EN	0000
ADCON4H	030E	_	-	_	_	_	_	-	-	_	-	_	_	C1CHS1	C1CHS0	C0CHS1	C0CHS0	0000
ADMOD0L	0310	-	SIGN7	_	SIGN6	-	SIGN5	-	SIGN4	_	SIGN3	_	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0	0000
ADMOD0H	0312	_	_	DIFF14	SIGN14	-	SIGN13	-	SIGN12	_	SIGN11	—	SIGN10	_	SIGN9	—	SIGN8	0000
ADIEL	0320	-	IE14	_	_						IE·	<11:0						0000
ADSTATL	0330	-	AN14RDY	_	_	AN11RDY	AN10RDY	AN9RDY	AN8RDY	AN7RDY	AN6RDY	AN5RDY	AN4RDY	AN3RDY	AN2RDY	AN1RDY	ANORDY	0000
ADCMP0ENL	0338	-	CMPEN14	_	_						CMPE	N<11:0>						0000
ADCMP0LO	033C		ADC CMPLO Register											0000				
ADCMP0HI	033E	ADC CMPHI Register											0000					
ADCMP1ENL	0340	CMPEN14 CMPEN11:0>											0000					
ADCMP1LO	0344	ADC CMPLO Register											0000					
ADCMP1HI	0346								ADC	CMPHI Registe	er							0000
ADFL0DAT	0368			-	-		-		ADC F	LDATA Regist	er	-	-		-			0000
ADFL0CON	036A	FLEN	MODE1	MODE0	OVRSAM2	OVRSAM1	OVRSAM0	IE	RDY	_	-	_	FLCHSEL4	FLCHSEL3	FLCHSEL2	FLCHSEL1	FLCHSEL0	0000
ADTRIG0L	0380	_	_	—			TRGSRC1<4:0	>		_	-	_			TRGSRC0<4:0>	,		0000
ADTRIG0H	0382	_	_	—			TRGSRC3<4:0	>		_	-	_			TRGSRC2<4:0>			0000
ADTRIG1L	0384	-	-	_			TRGSRC5<4:0	>		_	-	_			TRGSRC4<4:0>	•		0000
ADTRIG1H	0386	_	_	—			TRGSRC7<4:0	>		_	-	_			TRGSRC6<4:0>			0000
ADTRIG2L	0388	_	_	—			TRGSRC9<4:0	>		_	-	_			TRGSRC8<4:0>			0000
ADTRIG2H	038A	-	-	_			TRGSRC11<4:0	>		_	-	_			TRGSRC10<4:0	>		0000
ADTRIG3L	038C	-	-	_			TRGSRC13<4:0	>		_	-	_			TRGSRC12<4:0	>		0000
ADTRIG3H	038E	-	-	_	_	-	_	-	-	_	-	_			TRGSRC14<4:0	>		0000
ADCMP0CON	03A0	-	-	_	CHNL4	CHNL3	CHNL2	CHNL1	CHNL0	CMPEN	IE	STAT	BTWN	HIHI	HILO	LOHI	LOLO	0000
ADCMP1CON	03A4	_		_	CHNL4	CHNL3	CHNL2	CHNL1	CHNL0	CMPEN	E	STAT	BTWN	HIHI	HILO	LOHI	LOLO	0000
ADLVLTRGL	03D0	-	LVLEN14	_	_						LVLE	N<11:0>						0000
ADCORE0L	03D4	—		_	_	_	_					SAM	IC<9:0>					0000
ADCORE0H	03D6	_	-	_	EISEL2	EISEL1	EISEL0	RES1	RES0	_	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
ADCORE1L	03D8	_	-	_	_	_	_					SAM	IC<9:0>					0000
ADCORE1H	03DA	_		_	EISEL2	EISEL1	EISEL0	RES1	RES0	—	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
ADEIEL	03F0	_	EIEN14	_	—						EIEI	N<11:0						0000
ADEISTATL	03F8	_	EISTAT14	_	_						EISTA	T<11:0>						0000

dsPIC33EPXXGS202 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

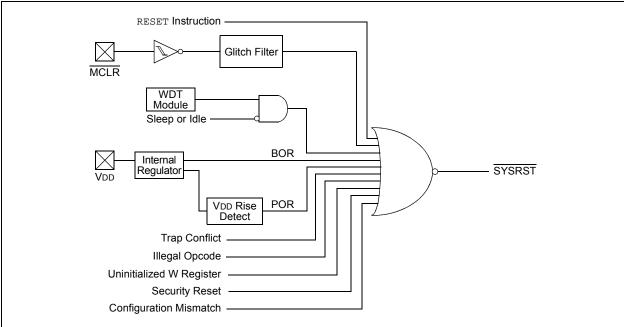
- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).


A POR clears all the bits, except for the BOR and POR bits (RCON<1:0>) that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSCx bits is loaded into the NOSC<2:0> (OSCCON<10:8>) bits on Reset, which in turn, initializes the system clock.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	0.0	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	XX	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

8.2 Auxiliary Clock Generation

The auxiliary clock generation is used for peripherals that need to operate at a frequency unrelated to the system clock, such as PWM or ADC.

The primary oscillator and internal FRC oscillator sources can be used with an Auxiliary PLL (APLL) to obtain the auxiliary clock. The Auxiliary PLL has a fixed 16x multiplication factor.

The auxiliary clock has the following configuration restrictions:

- For proper PWM operation, auxiliary clock generation must be configured for 120 MHz (see Parameter OS56 in Section 25.0 "Electrical Characteristics"). If a slower frequency is desired, the PWM Input Clock Prescaler (Divider) Select bits (PCLKDIV<2:0>) should be used.
- To achieve 1.04 ns PWM resolution, the auxiliary clock must use the 16x Auxiliary PLL (APLL). All other clock sources will have a minimum PWM resolution of 8 ns.
- If the primary PLL is used as a source for the auxiliary clock, the primary PLL should be configured up to a maximum operation of 30 MIPS or less.

8.3 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

8.3.1 KEY RESOURCES

- "Oscillator Module" (DS70005131) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<7:0>
External Interrupt 2	INT2	RPINR1	INT2R<7:0>
Timer1 External Clock	T1CK	RPINR2	T1CKR<7:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<7:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<7:0>
Input Capture 1	IC1	RPINR7	IC1R<7:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<7:0>
PWM Fault 1	FLT1	RPINR12	FLT1R<7:0>
PWM Fault 2	FLT2	RPINR12	FLT2R<7:0>
PWM Fault 3	FLT3	RPINR13	FLT3R<7:0>
PWM Fault 4	FLT4	RPINR13	FLT4R<7:0>
UART1 Receive	U1RX	RPINR18	U1RXR<7:0>
UART1 Clear-to-Send	U1CTS	RPINR18	U1CTSR<7:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<7:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<7:0>
SPI1 Slave Select	SS1	RPINR21	SS1R<7:0>
PWM Synchronous Input 1	SYNCI1	RPINR37	SYNCI1R<7:0>
PWM Synchronous Input 2	SYNCI2	RPINR38	SYNCI2R<7:0>
PWM Fault 5	FLT5	RPINR42	FLT5R<7:0>
PWM Fault 6	FLT6	RPINR42	FLT6R<7:0>
PWM Fault 7	FLT7	RPINR43	FLT7R<7:0>
PWM Fault 8	FLT8	RPINR43	FLT8R<7:0>

TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

10.5 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 25-11 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device, that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
 - **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristics specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the Absolute Maximum Ratings in **Section 25.0 "Electrical Characteristics"**of this data sheet. For example:

VOH = 2.4V @ IOH = -8 mA and VDD = 3.3VThe maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 10-24: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP177R<5:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP176R<5:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-25: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP179R<5:0>:** Peripheral Output Function is Assigned to RP179 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0' bit 5-0 RP178R<5:0>: Peripheral Output Function is

bit 5-0 **RP178R<5:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits (see Table 10-2 for peripheral function numbers)

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽²⁾	_	—	_		_
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	—		TCS ⁽¹⁾	—
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable t	bit	U = Unimplem	nented bit, re	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	TON: Timer3	On bit ⁽¹⁾					
	1 = Starts 16-	bit Timer3					
	0 = Stops 16-	bit Timer3					
bit 14	Unimplemen	ted: Read as '0	,				
bit 13	TSIDL: Timer	3 Stop in Idle M	ode bit ⁽²⁾				
		ues module ope s module operat			e mode		
bit 12-7	Unimplemen	ted: Read as '0	2				
bit 6	TGATE: Time	r3 Gated Time	Accumulation I	Enable bit ⁽¹⁾			
	When TCS = This bit is igno						
	When TCS =						
	1 = Gated tim	e accumulation e accumulation					
bit 5-4	TCKPS<1:0>	: Timer3 Input C	lock Prescale	Select bits ⁽¹⁾			
	11 = 1:256						
	10 = 1:64						
	01 = 1:8						
	00 = 1:1		,				
bit 3-2	-	ted: Read as '0					
bit 1		Clock Source S					
	1 = External o 0 = Periphera	clock is from pin I Clock (FP)	, T3CK (on the	rising eage)			
bit 0	Unimplemen	ted: Read as '0	,				
	When 32-bit operative timer functions are			= 1), these bits	have no effe	ct on Timer3 ope	ration; all

2: When 32-bit timer operation is enabled (T32 = 1) in the Timer2 Control register (T2CON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

x = Bit is unknown

REGISTER 15-15: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	as '0'	

bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWMx Generator bits

Note 1: If PWMCONx<9> = 0, the following applies based on the mode of operation:

'1' = Bit is set

- Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs
- True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Phase-shift value for PWMxH only
- When the PHASEx/SPHASEx registers provide the phase shift with respect to the master time base; therefore, the valid range is 0x0000 through period

'0' = Bit is cleared

- **2:** If PWMCONx<9> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant, and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL
 - True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Independent time base period value for PWMxH only
 - When the PHASEx/SPHASEx registers provide the local period, the valid range is 0x0000 through 0xFFF8

-n = Value at POR

18.3 UART Control Registers

REGISTER 18-1: U1MODE: UART1 MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0
bit 15							bit 8
	5444.6			5444.0	5444.6		
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
pit 7							bit C
Legend:		HC = Hardwar	e Clearable b	it			
R = Readable	e bit	W = Writable b	it	U = Unimplem	ented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	own
bit 15	UARTEN: UA	ART1 Enable bit	(1)				
		s enabled; all UA		controlled by U	ART1, as defir	ned by UEN<1:0	>
		s disabled; all U					
bit 14	Unimplemen	ted: Read as '0	,				
oit 13	USIDL: UAR	T1 Stop in Idle M	lode bit				
		ues module ope			le mode		
		s module opera					
oit 12		Encoder and De					
		oder and decod					
bit 11		le Selection for					
	1 = U1RTS p	in is in Simplex in is in Flow Co	mode	·			
bit 10	•	ted: Read as '0					
bit 9-8	UEN<1:0>: U	ART1 Pin Enab	le bits				
	10 = U1TX, U 01 = U1TX, U	J1RX and BCLK J1RX, U1CTS a J1RX and U1RT nd U1RX pins a	nd U1RTS pir S pins are en	ns are enabled a abled an <u>d used</u> ;	ind used ; U1CTS pin is	controlled by P	ORT latches
bit 7		e-up on Start bit	Detect During	Sleen Mode Er	able bit		
	1 = UART1 c	continues to sam are on the follow	ple the U1RX	pin, interrupt is		the falling edge	bit is cleared
		-up is enabled		,-			
oit 6	LPBACK: UA	RT1 Loopback	Mode Select	bit			
		Loopback mode k mode is disabl					
oit 5	ABAUD: Auto	o-Baud Enable b	bit				
	before ot	baud rate meas her data; cleare e measurement	d in hardware	upon completio		eception of a Sy	nc field (55h
	efer to "Univers	emeasurement		completed			

2: This feature is only available for the 16x BRG mode (BRGH = 0).

19.0 HIGH-SPEED, 12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (DS70005213) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS202 devices have a highspeed, 12-bit Analog-to-Digital Converter (ADC) that features a low conversion latency, high resolution and oversampling capabilities to improve performance in AC/DC, DC/DC power converters.

19.1 Features Overview

The 12-Bit High Speed Multiple SARs Analog-to-Digital Converter (ADC) includes the following features:

- 12-Bit Resolution
- Up to 3.25 Msps Conversion Rate per ADC Core @ 12-Bit Resolution
- Multiple Dedicated ADC Cores
- One Shared (common) ADC Core
- Up to 12 Analog Input Sources
- Conversion Result can be Formatted as Unsigned or Signed Data on a per Channel Basis for All Channels
- Separate 16-Bit Conversion Result Register for each Analog Input
- Simultaneous Sampling of up to 3 Analog Inputs

- Flexible Trigger Options
- Early Interrupt Generation to Enable Fast Processing of Converted Data
- Two Integrated Digital Comparators:
 - Multiple comparison options
 - Assignable to specific analog inputs
- · Oversampling Filters:
 - Provides increased resolution
 - Assignable to a specific analog input
- · Operation During CPU Sleep and Idle modes

Simplified block diagrams of the Multiple SARs 12-Bit ADC are shown in Figure 19-1, Figure 19-2 and Figure 19-3.

The module consists of two independent SAR ADC cores. The analog inputs (channels) are connected through multiplexers and switches to the Sample-and-Hold (S/H) circuit of each ADC core. The core uses the channel information (the output format, the measurement mode and the input number) to process the analog sample. When conversion is complete, the result is stored in the result buffer for the specific analog input and passed to the digital filter and digital comparator if they were configured to use data from this particular channel.

The ADC module can sample up to three inputs at a time (two inputs from the dedicated SAR ADC cores and one from the shared SAR ADC cores). If multiple ADC inputs request conversion, the ADC module will convert them in a sequential manner, starting with the lowest order input.

The ADC provides each analog input the ability to specify its own trigger source. This capability allows the ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.

REGISTER 19-5: ADCON3L: ADC CONTROL REGISTER 3 LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R-0, HS, HC
REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH
bit 15							bit 8

R/W-0	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSEL0
bit 7							bit 0

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 REFSEL<2:0>: ADC Reference Voltage Selection bits

	Value	VREFH	VREFL					
	000	AVdd	AVss					
	001-111 = U I	nimplement	ed: Should	not be used				
bit 12	SUSPEND: A	II ADC Core	s Triggers D	visable bit				
	1 = All new tri 0 = All ADC c			Cores are disabled				
bit 11	SUSPCIE: Su	SUSPCIE: Suspend All ADC Cores Common Interrupt Enable bit						
	and all pr	evious conv	ersions are	ed when ADC cores triggers are suspended (SUSPEND bit = finished (SUSPRDY bit becomes set) ed for suspend ADC cores event				
bit 10	SUSPRDY: A	II ADC Cores	s Suspende	d Flag bit				
			•	ISPEND bit = 1) and have no conversions in progress sions in progress				
bit 9	SHRSAMP: S	Shared ADC	Core Samp	ling Direct Control bit				
				dual channel conversion trigger controlled by the CNVRTCH bit				

bit 9	SHRSAMP: Shared ADC Core Sampling Direct Control bit
	This bit should be used with the individual channel conversion trigger controlled by the CNVRTCH bit. It connects an analog input, specified by CNVCHSEL<5:0> bits, to the shared ADC core and allows extending the sampling time. This bit is not controlled by hardware and must be cleared before the conversion starts (setting CNVRTCH to '1').
	 1 = Shared ADC core samples an analog input specified by the CNVCHSEL<5:0> bits 0 = Sampling is controlled by the shared ADC core hardware
bit 8	CNVRTCH: Software Individual Channel Conversion Trigger bit
	1 = Single trigger is generated for an analog input specified by the CNVCHSEL<5:0> bits. When the bit

- is set, it is automatically cleared by hardware on the next instruction cycle.
 - 0 = Next individual channel conversion trigger can be generated
- bit 7 SWLCTRG: Software Level-Sensitive Common Trigger bit
 - 1 = Triggers are continuously generated for all channels with the software, level-sensitive, common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers
 - 0 = No software, level-sensitive, common triggers are generated
- bit 6 SWCTRG: Software Common Trigger bit
 - 1 = Single trigger is generated for all channels with the software, common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers. When the bit is set, it is automatically cleared by hardware on the next instruction cycle
 - 0 = Ready to generate the next software, common trigger
- bit 5-0 **CNVCHSEL <5:0>:** Channel Number Selection for Software Individual Channel Conversion Trigger bits These bits define a channel to be converted when the CNVRTCH bit is set.

R-0, HC, HS	U-0	U-0	U-0	U-0	U-0	R-0, HC, HS	R-0, HC, HS	
SHRRDY	—	—	—	—	—	C1RDY	CORDY	
bit 15							bit 8	
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
SHRPWR	—	_	_		—	C1PWR	COPWR	
bit 7							bit 0	
Legend:		HS = Hardware	e Settable bit	HC = Hardwa	re Clearable b	it		
R = Readable	e bit	W = Writable b	it	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15	SHRRDY: S	Shared ADC Core	e Ready Flag b	bit				
		re is powered an		eration				
		re is not ready fo						
bit 14-10		ented: Read as '						
bit 9-8		RDY: Dedicated		, ,				
		ore x is powered ore x is not ready		operation				
bit 7	SHRPWR:	Shared ADC Cor	e x Power Ena	able bit				
	1 = ADC Co	ore x is powered						
	0 = ADC Co	ore x is off						
bit 6-2	Unimpleme	ented: Read as '	0'					
bit 1-0	C1PWR:C0	PWR: Dedicated	I ADC Core x F	Power Enable bi	ts			
	1 = ADC Co 0 = ADC Co	ore x is powered ore x is off						

REGISTER 19-9: ADCON5L: ADC CONTROL REGISTER 5 LOW

REGISTER 19-21: ADTRIGXH: ADC CHANNEL TRIGGER x SELECTION REGISTER HIGH

(x = 0 to 3)

1							
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	—		TR	RGSRC(4x+3)<4	:0>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—		TR	GSRC(4x+2)<4	:0>	
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

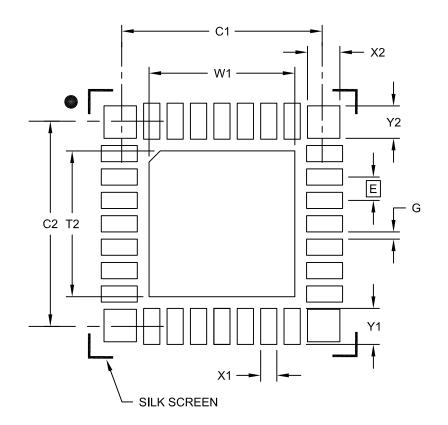
bit 12-8	TRGSRC(4x+3)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits
----------	--

12-0	TRUSRC(4x+3)<4.0>. Thyyer Source Selection to
	11111 = ADTRG31
	11110 = Reserved
	11101 = Reserved
	11100 = Reserved
	11011 = Reserved
	11010 = PWM Generator 3 current-limit trigger
	11001 = PWM Generator 2 current-limit trigger
	11000 = PWM Generator 1 current-limit trigger
	10111 = Reserved
	10110 = Output Compare 1 trigger
	10101 = Reserved
	10100 = Reserved
	10011 = Reserved
	10010 = Reserved
	10001 = PWM Generator 3 secondary trigger
	10000 = PWM Generator 2 secondary trigger
	01111 = PWM Generator 1 secondary trigger
	01110 = PWM secondary Special Event Trigger
	01101 = Timer2 period match
	01100 = Timer1 period match
	01011 = Reserved
	01010 = Reserved
	01001 = Reserved
	01000 = Reserved
	00111 = PWM Generator 3 primary trigger
	00110 = PWM Generator 2 primary trigger
	00101 = PWM Generator 1 primary trigger
	00100 = PWM Special Event Trigger
	00011 = Reserved
	00010 = Level software trigger
	00001 = Common software trigger
	00000 = No trigger is enabled
7-5	Unimplemented: Read as '0'

TABLE 25-35:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	_	_	Lesser of: FP or 15	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid After SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	_	ns	(Note 4)
SP60	TssL2doV	SDO1 Data Output Valid After SS1 Edge	—	—	50	ns	

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6 mm Body [UQFN] With 0.60mm Contact Length And Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W1			4.05
Optional Center Pad Length	T2			4.05
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.00
Corner Pad Width (X4)	X2			0.90
Corner Pad Length (X4)	Y2			0.90
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2209B

Note: Corner anchor pads are not connected internally and are designed as mechanical features when the package is soldered to the PCB.

CPU

Addressing Modes	17
Clocking System Options	89
Fast RC (FRC) Oscillator	
FRC Oscillator with PLL	89
FRC Oscillator with Postscaler	89
Low-Power RC (LPRC) Oscillator	89
Primary (XT, HS, EC) Oscillator	89
Primary Oscillator with PLL	
Control Registers	
Data Space Addressing	
Instruction Set	17
Registers	17
Resources	21
Customer Change Notification Service	
Customer Notification Service	
Customer Support	338

D

Data Address Space	31
Memory Map for dsPIC33EP16/32GS202	
Devices	32
Near Data Space	
Organization, Alignment	31
SFR Space	31
Width	31
Data Space	
Extended X	52
Paged Data Memory Space (figure)	50
Paged Memory Scheme	
DC Characteristics	
Brown-out Reset (BOR)	275
Doze Current (IDOZE)	271
I/O Pin Input Specifications	272
I/O Pin Output Specifications	275
Idle Current (IIDLE)	269
Operating Current (IDD)	268
Operating MIPS vs. Voltage	266
Power-Down Current (IPD)	270
Program Memory	276
Temperature and Voltage Specifications	267
Watchdog Timer Delta Current (ΔIWDT)	270
DC/AC Characteristics	
Graphs and Tables	311
Demo/Development Boards, Evaluation and	
Starter Kits	264
Development Support	261
Device Calibration	244
Addresses	244
and Identification	244
Doze Mode	101
DSP Engine	26
E	

Electrical Characteristics	
AC	
Equations	
Device Operating Frequency	
FPLLO Calculation	
Fvco Calculation	
Frrata	6

F

Filter Capacitor (CEFC) Specifications	
Flash Program Memory	
and Table Instructions	61
Control Registers	63
Operations	62
Resources	63
RTSP Operation	62
Flexible Configuration	239

G

1
1
2
1
3
3
2
4
4
4

н

High-Speed Analog Comparator	
Applications	231
Control Registers	233
Description	230
Digital-to-Analog Comparator (DAC)	231
Features Overview	229
Hysteresis	232
Pulse Stretcher and Digital Logic	
Resources	232
High-Speed PWM	
Description	151
Features	151
Resources	152
Write-Protected Registers	152
High-Speed, 12-Bit Analog-to-Digital	
Converter (ADC)	199
Control Registers	202
Features Overview	
Resources	202

I

I/O Ports	107
Configuring Analog/Digital Port Pins	108
Helpful Tips	113
Open-Drain Configuration	108
Parallel I/O (PIO)	107
Resources	114
Write/Read Timing	108
In-Circuit Debugger	248
In-Circuit Emulation	239
In-Circuit Serial Programming (ICSP)	9, 248
Input Capture	141
Control Registers	142
Resources	141
Input Change Notification (ICN)	108

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0578-8