

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs202-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	7
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	11
3.0	CPU	17
4.0	Memory Organization	
5.0	Flash Program Memory	
6.0	Resets	
7.0	Interrupt Controller	
8.0	Oscillator Configuration	
9.0	Power-Saving Features	
10.0	I/O Ports	107
11.0	Timer1	133
12.0	Timer2/3	137
13.0	Input Capture	141
14.0	Output Compare	
15.0	High-Speed PWM	151
16.0	Serial Peripheral Interface (SPI)	
17.0	Inter-Integrated Circuit (I ² C)	
18.0	Universal Asynchronous Receiver Transmitter (UART)	
19.0	High-Speed, 12-Bit Analog-to-Digital Converter (ADC)	
20.0	High-Speed Analog Comparator	
21.0	Programmable Gain Amplifier (PGA)	
22.0	Special Features	239
23.0	Instruction Set Summary	
24.0	Development Support	
25.0	Electrical Characteristics	
26.0	DC and AC Device Characteristics Graphs	
	Packaging Information	
Appe	ndix A: Revision History	331
Index	۲	
The N	Vicrochip Web Site	
Custo	omer Change Notification Service	
	omer Support	
Produ	uct Identification System	

3.7 CPU Control Registers

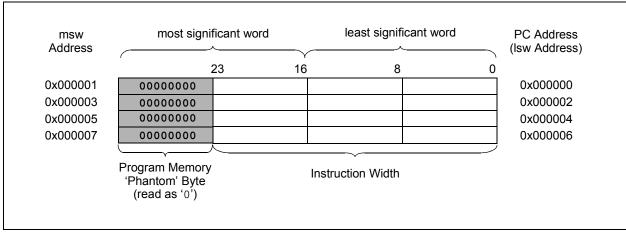
REGISTER 3-1: SR: CPU STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0								
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC								
bit 15							bit 8								
R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0								
IPL2 ⁽¹⁾	IPL1 ⁽¹⁾	IPL0 ⁽¹⁾	RA	Ν	OV	Z	С								
bit 7							bit (
Legend:		C = Clearable	e bit												
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'									
-n = Value at	POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown								
bit 14 bit 13	1 = Accumul 0 = Accumul SA: Accumu 1 = Accumul	 0 = Accumulator A has not overflowed OB: Accumulator B Overflow Status bit 1 = Accumulator B has overflowed 0 = Accumulator B has not overflowed SA: Accumulator A Saturation 'Sticky' Status bit⁽³⁾ 1 = Accumulator A is saturated or has been saturated at some time 													
bit 12	SB: Accumu 1 = Accumul	ator A is not sa lator B Saturati ator B is satura ator B is not sa	on 'Sticky' Sta ted or has bee		some time										
bit 11	1 = Accumul	DB Combined A ators A or B ha Accumulators A	ve overflowed		bit										
bit 10	1 = Accumul	B Combined A ators A or B are Accumulator A c	e saturated, or	have been sat		time									
bit 9	DA: DO Loop 1 = DO loop i 0 = DO loop r														
bit 8	-	U Half Carry/B	orrow bit												

1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred

- 0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred
- **Note 1:** The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

4.2.1 PROGRAM MEMORY ORGANIZATION

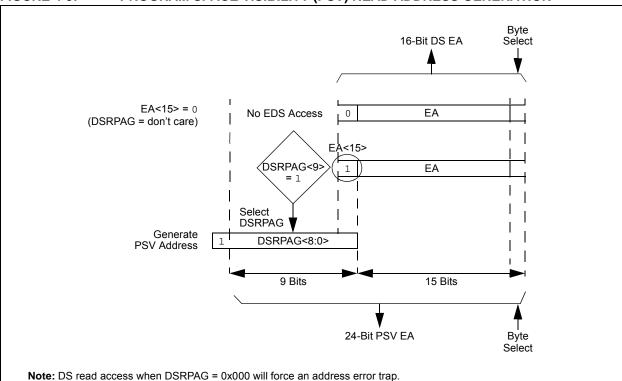

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-3).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented, or decremented, by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.2.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXGS202 family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.1** "Interrupt Vector Table".


FIGURE 4-3: PROGRAM MEMORY ORGANIZATION

4.5.1 PAGED MEMORY SCHEME

The dsPIC33EPXXGS202 architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EAs). The upper half of the base Data Space address is used in conjunction with the Data Space Read Page (DSRPAG) register to form the Program Space Visibility (PSV) address.

The Data Space Read Page (DSRPAG) register is located in the SFR space. Construction of the PSV address is shown in Figure 4-5. When DSRPAG<9> = 1 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit PSV read address. The paged memory scheme provides access to multiple 32-Kbyte windows in the PSV memory. The Data Space Read Page register (DSRPAG), in combination with the upper half of the Data Space address, can provide up to 8 Mbytes of PSV address space. The paged data memory space is shown in Figure 4-6.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG.

FIGURE 4-5: PROGRAM SPACE VISIBILITY (PSV) READ ADDRESS GENERATION

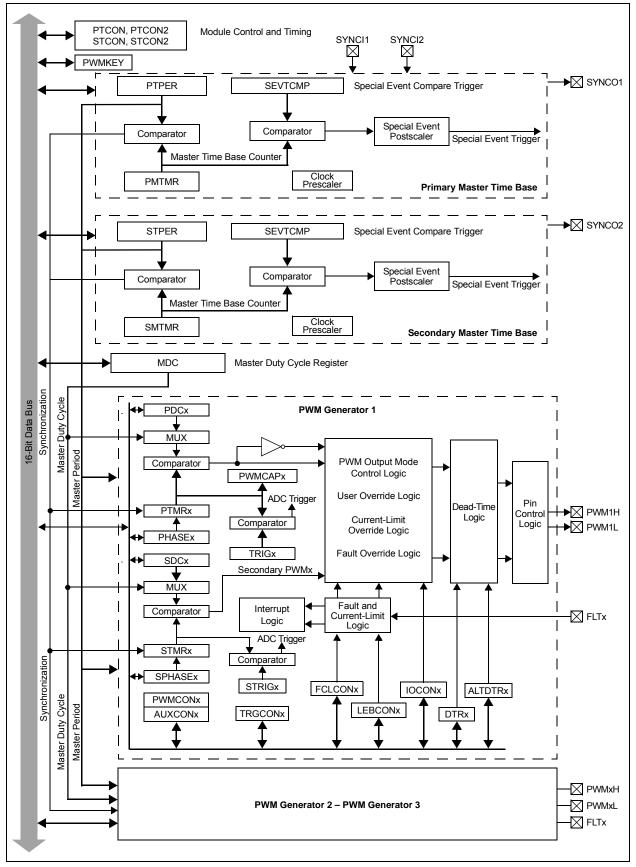
R/W-0) R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0				
TRAP	R IOPUWR	—	_	VREGSF		CM	VREGS				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1				
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR				
bit 7							bit (
Legend:											
R = Read	able bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown				
bit 15	TRAPR: Trap	Reset Flag bit									
		onflict Reset ha									
	•	onflict Reset ha									
bit 14				-	cess Reset Flag		r used as ar				
	•	1 = An illegal opcode detection, an illegal address mode or Uninitialized W register used as ar Address Pointer caused a Reset									
	0 = An illega	I opcode or Uni	nitialized W r	register Reset h	as not occurred	t					
bit 13-12	Unimplemen	ted: Read as '	כ'								
bit 11	VREGSF: Fla	VREGSF: Flash Voltage Regulator Standby During Sleep bit									
		 1 = Flash voltage regulator is active during Sleep 0 = Flash voltage regulator goes into Standby mode during Sleep 									
			-	ndby mode dur	ing Sleep						
bit 10	-	ted: Read as '									
bit 9	•	CM: Configuration Mismatch Flag bit 1 = A Configuration Mismatch Reset has occurred.									
bit 8	•	 0 = A Configuration Mismatch Reset has not occurred VREGS: Voltage Regulator Standby During Sleep bit 									
		1 = Voltage regulator is active during Sleep									
	0 = Voltage r	egulator goes i	nto Standby i	mode during SI	еер						
bit 7	EXTR: Extern	EXTR: External Reset (MCLR) Pin bit									
		Clear (pin) Res									
h:1 0		Clear (pin) Res									
bit 6		SWR: Software RESET (Instruction) Flag bit 1 = A RESET instruction has been executed									
		instruction has									
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾							
	1 = WDT is e	nabled									
	0 = WDT is d	isabled									
bit 4		hdog Timer Tin	-	it							
		e-out has occur e-out has not o									
Note 1:	All of the Reset sta	atus bits can be	set or cleare	d in software. S	Setting one of th	ese bits in soft	ware does not				
	cause a device Re										
2:	If the WDTEN<1:0	> Configuratior	n bits are '11'	(unprogramme	ed), the WDT is	always enable	d, regardless				

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

If the WDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	 1 = Device has been in Idle mode 0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred


- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the WDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE				
bit 15							bit 8				
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
SFTACERR	DIV0ERR		MATHERR	ADDRERR	STKERR	OSCFAIL	_				
bit 7							bit				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clear	-	x = Bit is unkr	nown				
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit								
	1 = Interrupt	nesting is disa	abled								
	0 = Interrupt	nesting is ena	bled								
bit 14			Overflow Trap F	-							
			erflow of Accur								
	0 = Trap was not caused by overflow of Accumulator A										
bit 13	OVBERR: Accumulator B Overflow Trap Flag bit										
	 1 = Trap was caused by overflow of Accumulator B 0 = Trap was not caused by overflow of Accumulator B 										
bit 12											
	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit 1 = Trap was caused by catastrophic overflow of Accumulator A										
	 0 = Trap was not caused by catastrophic overflow of Accumulator A 										
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit										
	1 = Trap was caused by catastrophic overflow of Accumulator B										
	0 = Trap was	= Trap was not caused by catastrophic overflow of Accumulator B									
bit 10	OVATE: Acc	umulator A Ov	erflow Trap Ena	able bit							
	1 = Trap overflow of Accumulator A										
	0 = Trap is disabled										
bit 9			erflow Trap En	able bit							
	1 = Trap overflow of Accumulator B										
bit 8	•	0 = Trap is disabled									
DILO		-	-	COVTE: Catastrophic Overflow Trap Enable bit							
	 Trap on catastrophic overflow of Accumulator A or B is enabled Trap is disabled 										
				nulator A or B is	enabled						
bit 7	0 = Trap is d	lisabled			enabled						
bit 7	0 = Trap is d	lisabled : Shift Accumu	lator Error Statu								
bit 7	0 = Trap is d SFTACERR: 1 = Math err	lisabled : Shift Accumu or trap was ca	lator Error Statu used by an inva	ıs bit	shift						
bit 7 bit 6	0 = Trap is d SFTACERR: 1 = Math err 0 = Math err	lisabled Shift Accumu or trap was ca or trap was no	lator Error Statu used by an inva	us bit Ilid accumulator	shift						
	0 = Trap is d SFTACERR: 1 = Math erro 0 = Math erro DIV0ERR: D 1 = Math erro	lisabled : Shift Accumu or trap was ca or trap was no)ivide-by-Zero or trap was ca	lator Error Statu used by an inva t caused by an Error Status bit used by a divide	us bit Ilid accumulator invalid accumula e-by-zero	shift						
	0 = Trap is d SFTACERR: 1 = Math err 0 = Math err DIV0ERR: D 1 = Math err 0 = Math err	lisabled Shift Accumu or trap was ca or trap was no Divide-by-Zero or trap was ca or trap was no	lator Error Statu used by an inva t caused by an Error Status bit used by a divide t caused by a d	us bit Ilid accumulator invalid accumula e-by-zero	shift						
	0 = Trap is d SFTACERR: 1 = Math err 0 = Math err DIV0ERR: D 1 = Math err 0 = Math err	lisabled : Shift Accumu or trap was ca or trap was no)ivide-by-Zero or trap was ca	lator Error Statu used by an inva t caused by an Error Status bit used by a divide t caused by a d	us bit Ilid accumulator invalid accumula e-by-zero	shift						
bit 6	0 = Trap is d SFTACERR: 1 = Math erro 0 = Math erro DIV0ERR: D 1 = Math erro 0 = Math erro Unimplement MATHERR:	lisabled Shift Accumu or trap was ca or trap was no Divide-by-Zero or trap was ca or trap was no	lator Error Statu used by an inva t caused by an Error Status bit used by a divide t caused by a d '0' tus bit	us bit Ilid accumulator invalid accumula e-by-zero	shift						

REGISTER 10-13: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SYNCI	2R<7:0>			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-8	Unimplemen	ted: Read as '	כ'				
bit 7-0	SYNCI2R<7:	0>: Assign PW	M Synchroniz	ation Input 2 to	the Correspon	ding RPn Pin b	oits
	10110101 =	Input tied to RF	P181				
	10110100 =	Input tied to RF	P180				
	•						
	•						
	•						
	0000001=	Input tied to RF	P1				
	00000000 =	Input tied to Vs	S				

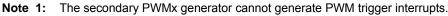

NOTES:

FIGURE 15-2: SIMPLIFIED CONCEPTUAL BLOCK DIAGRAM OF THE HIGH-SPEED PWM

R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 U-0 TRGDIV3 TRGDIV2 TRGDIV1 **TRGDIV0** bit 15 bit 8 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 DTM⁽¹⁾ TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 **TRGSTRT0** bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15-12 TRGDIV<3:0>: Trigger # Output Divider bits 1111 = Trigger output for every 16th trigger event 1110 = Trigger output for every 15th trigger event 1101 = Trigger output for every 14th trigger event 1100 = Trigger output for every 13th trigger event 1011 = Trigger output for every 12th trigger event 1010 = Trigger output for every 11th trigger event 1001 = Trigger output for every 10th trigger event 1000 = Trigger output for every 9th trigger event 0111 = Trigger output for every 8th trigger event 0110 = Trigger output for every 7th trigger event 0101 = Trigger output for every 6th trigger event 0100 = Trigger output for every 5th trigger event 0011 = Trigger output for every 4th trigger event 0010 = Trigger output for every 3rd trigger event 0001 = Trigger output for every 2nd trigger event 0000 = Trigger output for every trigger event Unimplemented: Read as '0' bit 11-8 bit 7 DTM: Dual Trigger Mode bit⁽¹⁾ 1 = Secondary trigger event is combined with the primary trigger event to create a PWM trigger 0 = Secondary trigger event is not combined with the primary trigger event to create a PWM trigger; two separate PWM triggers are generated bit 6 Unimplemented: Read as '0' bit 5-0 TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits 111111 = Wait 63 PWM cycles before generating the first trigger event after the module is enabled 000010 = Wait 2 PWM cycles before generating the first trigger event after the module is enabled 000001 = Wait 1 PWM cycle before generating the first trigger event after the module is enabled 000000 = Wait 0 PWM cycles before generating the first trigger event after the module is enabled

REGISTER 15-19: TRGCONx: PWMx TRIGGER CONTROL REGISTER

REGISTER 15-22: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

bit 7-3 **FLTSRC<4:0>:** Fault Control Signal Source Select for PWMx Generator # bits

	11111 = Reserved 10001 = Reserved 10000 = Reserved 01111 = Reserved 01110 = Analog Comparator 2 01101 = Analog Comparator 1 01100 = Reserved
	01011 = Reserved
	01010 = Reserved
	01001 = Reserved
	01000 = Fault 8 00111 = Fault 7
	00110 = Fault 6
	00101 = Fault 5
	00100 = Fault 4
	00011 = Fault 3
	00010 = Fault 2
	00001 = Fault 1
	00000 = Reserved
bit 2	FLTPOL: Fault Polarity for PWMx Generator # bit ⁽¹⁾
	1 = The selected Fault source is active-low0 = The selected Fault source is active-high
bit 1-0	FLTMOD<1:0>: Fault Mode for PWMx Generator # bits
	11 = Fault input is disabled
	10 = Reserved
	01 = The selected Fault source forces the PWMxH, PWMxL pins to the FLTDATx values (cycle) 00 = The selected Fault source forces the PWMxH, PWMxL pins to the FLTDATx values (latched condition)

Note 1: These bits should be changed only when PTEN (PTCON<15>) = 0.

REGISTER 15-23: STRIGX: PWMx SECONDARY TRIGGER COMPARE VALUE REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STRGC	VIP<12:5>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		STRGCMP<4:0	>		—	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimpler	nented bit, read	as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15-3	STRGCMP<	: 12:0>: Seconda	ry Trigger Cor	npare Value bits	6		
		condary PWMx f		e local time base	e, this register c	ontains the cor	mpare values
	that can trigg	ger the ADC mod	lule.				
bit 2-0	Unimpleme	nted: Read as '0	,				

Note 1: STRIGx cannot generate the PWMx trigger interrupts.

REGISTER 18-1: U1MODE: UART1 MODE REGISTER (CONTINUED)

bit 4	URXINV: UART1 Receive Polarity Inversion bit 1 = U1RX Idle state is '0' 0 = U1RX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual" for information on enabling the UART1 module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 19-8: ADCON4H: ADC CONTROL REGISTER 4 HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—		—	—	_	_	—	—				
bit 15							bit 8				
						=					
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	—	—	C1CHS1	C1CHS0	C0CHS1	C0CHS0				
bit 7							bit 0				
Legend:											
R = Reada	able bit	W = Writable	bit	U = Unimplen	as '0'						
-n = Value	at POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-4	Unimpleme	ented: Read as	'0'								
bit 3-2	C1CHS<1:0	D>: Dedicated A	DC Core 1 Inp	ut Channel Sel	ection bits						
	11 = PGA2										
	10 = PGA1										
	01 = AN8										
	00 = AN1	00 = AN1									
	AN8 is a ne	gative input wh	en DIFF1 (ADN	/IOD0L<3>) = 1							
bit 1-0	C0CHS<1:0	D>: Dedicated A	DC Core 0 Inp	ut Channel Sel	ection bits						
	11 = PGA2										
	10 = PGA1										
	01 = AN7										
	00 = AN0										
	ANZ is a negative input when DIEEO (ADMODOL $<1>$) = 1										

AN7 is a negative input when DIFF0 (ADMOD0L<1>) = 1.

REGISTER 19-16: ADMODOL: ADC INPUT MODE CONTROL REGISTER 0 LOW

-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'	
Legend:							
bit 7				1		•	bit
	SIGN3		SIGN2	DIFF1	SIGN1	DIFF0	SIGN0
U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit
—	SIGN7	_	SIGN6	—	SIGN5	—	SIGN4
U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0

bit (odd)15-5 Unimplemented: Read as '0'

bit (3,1) **DIFF<x>:** Pseudo-Differential Mode for Corresponding Analog Inputs bits 1 = Channel is pseudo-differential 0 = Channel is single-ended

bit (even) **SIGNx:** Output Data Sign for Corresponding Analog Inputs bits

1 = Channel output data is signed

0 = Channel output data is unsigned

REGISTER 19-17: ADMOD0H: ADC INPUT MODE CONTROL REGISTER 0 HIGH

U-0	U-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0
_	—	—	SIGN14	—	SIGN13	—	SIGN12
bit 15						·	bit 8
U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0
_	SIGN11	—	SIGN10	—	SIGN9	—	SIGN8
bit 7				•		•	bit 0
Logondi							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit (odd) Unimplemented: Read as '0'

bit (even) SIGN<x>: Output Data Sign for Corresponding Analog Inputs bits

1 = Channel output data is signed

0 = Channel output data is unsigned

REGISTER 19-25: ADCMPxENL: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER LOW (x = 0,1)

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	CMPEN14	_	—	CMPEN<11:8>					
bit 15							bit 8		
R/W/0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			CN	/IPEN<7:0>					
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14 **CMPEN14:** Comparator Enable for Corresponding Input Channel bit 1 = Conversion result for corresponding channel is used by the comparator

0 = Conversion result for corresponding channel is not used by the comparator

- bit 13-12 Unimplemented: Read as '0'
- bit 11-0 **CMPEN<11:0>:** Comparator Enable for Corresponding Input Channels bits

1 = Conversion result for corresponding channel is used by the comparator

 $\ensuremath{\scriptscriptstyle 0}$ = Conversion result for corresponding channel is not used by the comparator

DC CHARACTERISTICS			(unles	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. Symbol Characteristic				Тур.	Max.	-40°C Units	$-40^{\circ}C \le TA \le +125^{\circ}C \text{ for Extended}$ Units Conditions			
r ai airi.	Symbol	Characteristic	Min. ⁽¹⁾	тур.	WIAN.	Units	Conditions			
DO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	-	_	0.4	V				
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	_	0.4	V	$V_{DD} = 3.3V$, $I_{OL} \le 12 \text{ mA}$, $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$, $I_{OL} \le 8 \text{ mA}$, $+85^{\circ}\text{C} < \text{TA} \le +125^{\circ}\text{C}$			
DO20 Voh		Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4		—	V	IOH ≥ -10 mA, VDD = 3.3V			
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4		_	V	IOH ≥ -15 mA, VDD = 3.3V			
DO20A	VoH1	Output High Voltage	1.5	_		V	ІОН ≥ -14 mA, VDD = 3.3V			
		4x Source Driver Pins ⁽²⁾	2.0	_		V	IOH ≥ -12 mA, VDD = 3.3V			
			3.0	_		V	$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$			
		Output High Voltage	1.5	—		V	$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{V}$			
		8x Source Driver Pins ⁽³⁾	2.0	_		V	IOH ≥ -18 mA, VDD = 3.3V			
			3.0	_		V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$			

TABLE 25-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Includes RB<14:11> pins.

3: Includes all I/O pins that are not 4x driver pins (see Note 2).

TABLE 25-13: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. ⁽²⁾ Typ. Max. Units Conditions			Conditions	
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	—	2.95	V	VDD (Notes 2, 3)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, PGAs and comparators) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

TABLE 25-18: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			(unless	rd Operat otherwis	e stated) ature -4	0°C ≤ T⁄	3.0V to 3.6V $A \le +85^{\circ}C$ for Industrial $A \le +125^{\circ}C$ for Extended
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions				
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	—	8.0	MHz	ECPLL, XTPLL modes
OS51	Fvco	On-Chip VCO System Frequency	120	—	340	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms	
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

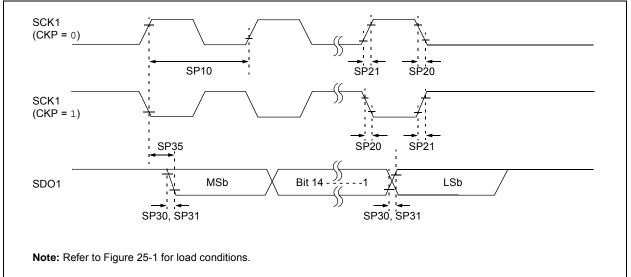
2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if FOSC = 120 MHz and the SPI1 Bit Rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 25-19: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS


АС СНА	RACTERI	Standard ((unless ot Operating	herwise	stated) ure -40°	C ≤ TA ≤ -	+85°C fo	r Industrial or Extended	
Param No.	Symbol	Characteris	tic Min Typ. ⁽¹⁾ Max Units Conditions					Conditions
OS56	Fhpout	On-Chip 16x PLL CC Frequency	0	112	118	120	MHz	
OS57	Fhpin	On-Chip 16x PLL Phase Detector Input Frequency		7.0	7.37	7.5	MHz	
OS58	Tsu	Frequency Generator Lock		_	—	10	μs	

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

TABLE 25-31: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARAC	CTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 25-31	_	—	0,1	0,1	0,1		
9 MHz	—	Table 25-32	—	1	0,1	1		
9 MHz	—	Table 25-33	—	0	0,1	1		
15 MHz	—	—	Table 25-34	1	0	0		
11 MHz	—	—	Table 25-35	1	1	0		
15 MHz	_	_	Table 25-36	0	1	0		
11 MHz	_	_	Table 25-37	0	0	0		

FIGURE 25-11: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

TABLE 25-38:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

АС СНА		Standard Op (unless othe Operating ter	erwise st	a ted) e -40°	C ≤ TA ≤	W to 3.6V +85°C for Industrial +125°C for Extended	
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	_	_	11	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid After SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1 ↑ After SCK1 Edge	1.5 Tcy + 40	—		ns	(Note 4)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.