

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs202-i-m6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-4: DATA MEMORY MAP FOR dsPIC33EP16/32GS202 DEVICES

4.3.5 X AND Y DATA SPACES

The dsPIC33EPXXGS202 core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.4 Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

4.4.1 KEY RESOURCES

- "dsPIC33E/PIC24E Program Memory" (DS70000613) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	—	ADCIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	—	_	—	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	—	—	INT2IF	_	—	_	_	_	_	—	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS3	0806	_	_	_	_		_	PSEMIF	_	_	-	_	_	_	_	_	_	0000
IFS4	0808	—		_	_		-	PSESIF	_	—		_		—		U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	—	—		-	—	-			-		—		_		0000
IFS6	080C	ADCAN1IF	ADCAN0IF	—	_		-	—	—	AC2IF	-	-	-	—	-	—	PWM3IF	0000
IFS7	080E	—	—	—	—	—	-	—	—	—	-	ADCAN7IF	ADCAN6IF	ADCAN5IF	ADCAN4IF	ADCAN3IF	ADCAN2IF	0000
IFS9	0812	—	—	ADCAN14IF	—	—	ADCAN11IF	ADCAN10IF	ADCAN9IF	ADCAN8IF	-	-	-	—	—	—	—	0000
IFS10	0814	—	-	I2C1BCIF	_		-	—	—	_	-	-	-	—	-	—	-	0000
IFS11	0816	_	_	_	_	_	-	_	_	—	_	_	_	ADFLOIF	ADCMP1IF	ADCMP0IF	_	0000
IEC0	0820	NVMIE	—	ADCIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	-	-	-	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	—	_	INT2IE	_	_	-	—	_	_	_	-	INT1IE	CNIE	AC1IF	MI2C1IE	SI2C1IE	0000
IEC3	0826	—	_	—	_	_	—	PSEMIE	_	—	—	—	—	—	_	—	_	0000
IEC4	0828	—	—	—	—	—	-	PSESIE	—	—	-	-	-	—	—	U1EIE	—	0000
IEC5	082A	PWM2IE	PWM1IE	—	_	_	-	—	_	_	_	-	_	—	_	_	_	0000
IEC6	082C	ADCAN1IE	ADCAN0IE	—	_	_	-	—	AC3IE	AC2IE	_	-	_	—	_	_	PWM3IE	0000
IEC7	082E	—	_	—	_	_	—	—	_	—	—	ADCAN7IE	ADCAN6IE	ADCAN5IE	ADCAN4IE	ADCAN3IE	ADCAN2IE	0000
IEC9	0832	—	_	ADCAN14IE	_	_	ADCAN11IE	ADCAN10IE	ADCAN9IE	ADCAN8IE	_	-	_	—	_	_	_	0000
IEC10	0834	—	_	I2C1BCIE	_		—	—	—		—	—	—	—	—	—	_	0000
IEC11	0836	—	_	—	_		—	—	_		—	—	_	ADFL0IE	ADCMP1IE	ADCMP0IE	_	0000
IPC0	0840	—	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	0842	—	T2IP2	T2IP1	T2IP0	_	-	—	_	_	_	-	_	—	_	_	_	4000
IPC2	0844	—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	SPI1EIP2	SPI1EIP1	SPI1EIP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	0846	—	NVMIP2	NVMIP1	NVMIP0	_	-	—	_	_	ADCIP2	ADCIP1	ADCIP0	—	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	0848	_	CNIP2	CNIP1	CNIP0	_	AC1IP2	AC1IP1	AC1IP0	-	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	084A	_	_	_	_	_	—	—	_	—	_	—	_	—	INT1IP2	INT1IP1	INT1IP0	0004
IPC7	084E	—	_	—	_	_	-	—	-	-	INT2IP2	INT2IP1	INT2IP0	—	_	_	_	0040
IPC14	085C	_	_	_	-	_	-	_	_	_	PSEMIP2	PSEMIP1	PSEMIP0	_	_	-	_	0040

dsPIC33EPXXGS202 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Interrupt Source	Vector	IRQ		Inte	Interrupt Bit Location			
	#	#	IVI Address	Flag	Enable	Priority		
Reserved	126-158	118-150	0x000100-0x000140	—	—			
AN8 Conversion Done	159	151	0x000142	IFS9<7> IEC9<7>		IPC37<14:12>		
AN9 Conversion Done	160	152	0x000144	IFS9<8>	IEC9<8>	IPC38<2:0>		
AN10 Conversion Done	161	153	0x000146	IFS9<9>	IEC9<9>	IPC38<6:4>		
AN11 Conversion Done	162	154	0x000148	IFS9<10>	IEC9<10>	IPC38<10:8>		
Reserved	163-164	155-156	0x00014A-0x00014C	—				
AN14 Conversion Done	165	157	0x00014E	IFS9<13> IEC9<13		IPC39<6:4>		
Reserved	163-180	155-172	0x00014A-0x00016C			—		
I2C1 – I2C1 Bus Collision	181	173	0x00016E	IFS10<13>	IEC10<13>	IPC43<6:4>		
Reserved	182-184	174-176	0x000170-0x000174	_	_	—		
ADCMP0 – ADC Digital Comparator 0	185	177	0x000176	IFS11<1>	IEC11<1>	IPC44<6:4>		
ADCMP1 – ADC Digital Comparator 1	186	178	0x000178	IFS11<2>	IEC11<2>	IPC44<10:8>		
ADFL0 – ADC Filter 0	187	179	0x00017A	x00017A IFS11<3> IEC11<3>		IPC44<14:12>		
Reserved	188-253	180-245	0x00017C-0x0001FE	_	_	_		

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

REGISTER 7-3:	INTCON1: INTERRUPT CONTROL REGISTER 1
---------------	---------------------------------------

NSTDIS	UVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBIE	COVIE bit 9
DIL 15							DILO
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SETACERR	DIVOER	_	MATHERR	ADDRERR	STKERR	OSCEAI	_
bit 7						<u> </u>	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read a	as '0'	
-n = Value at F	POR	'1' = Bit is set	:	'0' = Bit is clea	red	x = Bit is unkr	nown
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit				
	1 = Interrupt	nesting is disa	abled				
	0 = Interrupt	nesting is ena	bled				
bit 14	OVAERR: A	ccumulator A (Jverflow I rap I	-lag bit			
	1 = Trap was 0 = Trap was	s not caused by ov	v overflow of A	ccumulator A			
bit 13	OVBERR: A	ccumulator B (Overflow Trap I	Flag bit			
	1 = Trap was	s caused by ov	verflow of Accu	mulator B			
	0 = Trap was	s not caused b	y overflow of A	ccumulator B			
bit 12	COVAERR:	Accumulator A	Catastrophic	Overflow Trap F	lag bit		
	1 = Trap was	s caused by ca	tastrophic over	flow of Accumul	lator A		
bit 11	COVBERR	Accumulator F	S Catastrophic (Overflow Tran F	lag hit		
DICTI	1 = Trap was	s caused by ca	tastrophic over	flow of Accumul	lator B		
	0 = Trap was	s not caused b	y catastrophic of	overflow of Accu	imulator B		
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit			
	1 = Trap ove	rflow of Accun	nulator A				
	0 = Trap is d	isabled					
bit 9	OVBTE: Acc	cumulator B O	/erflow Trap Er	able bit			
	\perp = Trap ove 0 = Trap is d	mow of Accun	nulator B				
bit 8	COVTE: Cat	astrophic Ove	rflow Trap Enal	ble bit			
	1 = Trap on (catastrophic ov	verflow of Accu	mulator A or B is	s enabled		
	0 = Trap is d	isabled .					
bit 7	SFTACERR	Shift Accumu	lator Error Stat	us bit			
	1 = Math err	or trap was ca	used by an inva	alid accumulator	shift		
hit C		or trap was no	t caused by an	invalio accumul	ator shift		
DILO	1 = Math err	or tran was car	error Status bit	e-by-zero			
	0 = Math err	or trap was no	t caused by a c	livide-by-zero			
bit 5	Unimpleme	nted: Read as	·0'	-			
bit 4	MATHERR:	Math Error Sta	itus bit				
	1 = Math err	or trap has occ	curred				
	0 = Math err	or trap has not	occurred				

REGISTER 10-26: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP181R5	RP181R4	RP181R3	RP181R2	RP181R1	RP181R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0
bit 7							bit 0

Legend:									
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'							
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP181R<5:0>:** Peripheral Output Function is Assigned to RP181 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP180R<5:0>:** Peripheral Output Function is Assigned to RP180 Output Pin bits (see Table 10-2 for peripheral function numbers)

FIGURE 12-1: TIMERx BLOCK DIAGRAM (x = 2,3)

FIGURE 12-2: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)

13.2 Input Capture Registers

REGISTER 13-1: IC1CON1: INPUT CAPTURE CONTROL REGISTER 1

	11.0			DAMA	D/M/ 0	11.0	11.0			
0-0	0-0					0-0	0-0			
		ICSIDE	ICISEL2	ICISELI	ICISELU		—			
DIUTS							DIL 8			
11.0	D/M/ 0				D/M/ 0		DAM 0			
0-0	R/W-U	R/W-U			R/W-0	R/W-U	R/W-U			
		1010	1000	ICDINE	ICIVIZ		ICIVIO bit 0			
Legend: HC = Hardware Clearable bit HS = Hardware Settable bit										
R = Readable	e hit	W = Writable bi			nented hit read	as '0'				
-n = Value at	POR	'1' = Rit is set	L	$0^{\circ} = \text{Bit is clear}$	ared	v = Bit is unk	nown			
	TOIN	i – Dit is set			aleu					
bit 15-14	Unimpleme	nted: Read as '0	3							
bit 13		it Canture Stop in	Idle Control bit							
Sit TO	1 = Input ca	pture will halt in (CPU Idle mode							
	0 = Input ca	pture will continu	e to operate in C	PU Idle mode						
bit 12-10	ICTSEL<2:0	Input Capture	Timer Select bits	6						
	111 = Perip	heral Clock (FP)	is the clock sour	ce of the IC1						
	110 = Rese	rved								
	101 = Rese	rved								
	100 = 11CL	K is the clock so	urce of the IC1 (o	only the synchro	onous clock is s	supported)				
	011 = Rese	rved								
	001 = T2CL	K is the clock so	urce of the IC1							
	000 = T3CL	K is the clock so	urce of the IC1							
bit 9-7	Unimpleme	nted: Read as '0	3							
bit 6-5	ICI<1:0>: Nu	Imber of Capture	s per Interrupt Se	elect bits (this fi	eld is not used i	if ICM<2:0> =	001 or 111)			
	11 = Interrup	ot on every fourth	capture event							
	10 = Interrup	ot on every third of	capture event							
	01 = Interrup	of on every secor	re event							
hit 4		Capture Overflov	v Status Flag bit i	(read-only)						
bit 4	1 = Input cal	oture buffer over	flow has occurred	d						
	0 = No input	t capture buffer o	verflow has occu	irred						
bit 3	ICBNE: Inpu	t Capture Buffer	Not Empty Statu	s bit (read-only))					
	1 = Input ca	pture buffer is no	t empty, at least	one more capti	ure value can be	e read				
	0 = Input ca	pture buffer is en	npty							
bit 2-0	ICM<2:0>: Ir	nput Capture Mo	de Select bits							
	111 = Input	capture functions	as an interrupt p	oin only in CPU	Sleep and Idle	modes (rising	edge detect			
	only, a	all other control b	its are not applic	able)						
	101 = Captu	ire mode. everv 1	l6th risina edae (Prescaler Capt	ure mode)					
	100 = Captu	ire mode, every 4	Ith rising edge (F	Prescaler Captu	re mode)					
	011 = Captu	ire mode, every r	ising edge (Simp	le Capture mod	de)					
	010 = Captu	ire mode, every f	alling edge (Sim	ole Capture mo	de)) in met				
	001 = Captu	re mode, every ris	sing and falling ed	ige (Eage Detec	t moae, (ICI<1:0	is not used	in this mode)			

000 = Input capture is turned off

15.0 HIGH-SPEED PWM

Note: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM Module" (DS70000323) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The high-speed PWM module on dsPIC33EPXXGS202 devices supports a wide variety of PWM modes and output formats. This PWM module is ideal for power conversion applications, such as:

- AC/DC Converters
- DC/DC Converters
- Power Factor Correction
- Uninterruptible Power Supply (UPS)
- Inverters
- Battery Chargers
- Digital Lighting

15.1 Features Overview

The high-speed PWM module incorporates the following features:

- Three PWM Generators with Two Outputs per Generator
- · Two Master Time Base Modules
- Individual Time Base and Duty Cycle for each
 PWM Output
- Duty Cycle, Dead Time, Phase Shift and a Frequency Resolution of 1.04 ns
- Independent Fault and Current-Limit Inputs
- · Redundant Output
- True Independent Output
- Center-Aligned PWM mode
- · Output Override Control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Dual Trigger from PWM to Analog-to-Digital Converter (ADC)
- PWMxL and PWMxH Output Pin Swapping
- Independent PWMx Frequency, Duty Cycle and Phase-Shift Changes
- Enhanced Leading-Edge Blanking (LEB) Functionality
- PWMx Capture Functionality

Note: Duty cycle, dead time, phase shift and frequency resolution is 8.32 ns in Center-Aligned PWM mode.

Figure 15-1 conceptualizes the PWM module in a simplified block diagram. Figure 15-2 illustrates how the module hardware is partitioned for each PWM output pair for the Complementary PWM mode.

The PWM module contains three PWM generators. The module has up to six PWM output pins: PWM1H/ PWM1L through PWM3H/PWM3L. For complementary outputs, these six I/O pins are grouped into high/low pairs.

15.2 Feature Description

The PWM module is designed for applications that require:

- High resolution at high PWM frequencies
- The ability to drive Standard, Edge-Aligned, Center-Aligned Complementary and Push-Pull mode outputs
- The ability to create multiphase PWM outputs

Two common, medium power converter topologies are push-pull and half-bridge. These designs require the PWM output signal to be switched between alternate pins, as provided by the Push-Pull PWM mode.

Phase-shifted PWM describes the situation where each PWM generator provides outputs, but the phase relationship between the generator outputs is specifiable and changeable.

Multiphase PWM is often used to improve DC/DC Converter load transient response, and reduce the size of output filter capacitors and inductors. Multiple DC/DC Converters are often operated in parallel, but phase shifted in time. A single PWM output operating at 250 kHz has a period of 4 μ s, but an array of four PWM channels, staggered by 1 μ s each, yields an effective switching frequency of 1 MHz. Multiphase PWM applications typically use a fixed-phase relationship.

Variable phase PWM is useful in Zero Voltage Transition (ZVT) power converters. Here, the PWM duty cycle is always 50% and the power flow is controlled by varying the relative phase shift between the two PWM generators.

REGISTER 15-12: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

- bit 7-6 DTC<1:0>: Dead-Time Control bits
- 11 = Reserved
 - 10 = Dead-time function is disabled
 - 01 = Negative dead time is actively applied for Complementary Output mode
 - 00 = Positive dead time is actively applied for all Output modes
- bit 5-4 Unimplemented: Read as '0'
- bit 3 MTBS: Master Time Base Select bit
 - 1 = PWMx generator uses the secondary master time base for synchronization and the clock source for the PWMx generation logic (if secondary time base is available)
 - 0 = PWMx generator uses the primary master time base for synchronization and the clock source for the PWMx generation logic
- bit 2 **CAM:** Center-Aligned Mode Enable bit^(2,3,4) 1 = Center-Aligned mode is enabled
 - 0 = Edge-Aligned mode is enabled
- bit 1 XPRES: External PWMx Reset Control bit⁽⁵⁾
 - 1 = Current-limit source resets the time base for this PWMx generator if it is in Independent Time Base mode
 - 0 = External pins do not affect the PWMx time base
- bit 0 IUE: Immediate Update Enable bit
 - 1 = Updates to the active Duty Cycle, Phase Offset, Dead-Time and local Time Base Period registers are immediate
 - 0 = Updates to the active Duty Cycle, Phase Offset, Dead-Time and local Time Base Period registers are synchronized to the local PWMx time base
- Note 1: Software must clear the interrupt status here and in the corresponding IFSx register in the interrupt controller.
 - 2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
 - 3: These bits should not be changed after the PWM is enabled by setting PTEN (PTCON<15>) = 1.
 - 4: Center-Aligned mode ignores the Least Significant 3 bits of the Duty Cycle, Phase and Dead-Time registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to the fastest clock.
 - 5: Configure CLMOD (FCLCONx<8>) = 0 and ITB (PWMCONx<9>) = 1 to operate in External Period Reset mode.

REGISTER 17-2: IZCICONH: IZCI CONTROL REGISTER HIGH	REGISTER 17-2:	I2C1CONH: I2C1	CONTROL	REGISTER HIGH
---	----------------	----------------	---------	----------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	_	—		_	—	—	—				
bit 15							bit 8				
11.0											
	PCIE	SCIE		SDAHT							
bit 7	TOL	GOIL	DOLIN	ODAIT	ODODL		bit 0				
Legend:											
R = Readab	le bit	W = Writable b	pit	U = Unimplem	nented bit, read	as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-7	Unimpleme	Unimplemented: Read as '0'									
bit 6	PCIE: Stop C	Condition Interru	pt Enable bit (² C Slave mode	only)						
	1 = Enables interrupt on detection of Stop condition										
6.4 <i>F</i>			are disabled	1^2 C Clave mode							
DIT 5		condition interru	pt Enable bit (I-C Slave mode	tiono						
	0 = Start det	ection interrupts	are disabled		lions						
bit 4	BOEN: Buffe	er Overwrite Ena	ble bit (I ² C Sla	ave mode only)							
	1 = I2C1RC	V is updated and	an ACK is ge	nerated for a re	ceived address	/data byte, igno	oring the state				
	of the I2	COV bit only if t	ne RBF bit = 0			,	0				
	0 = I2C1RC	V is only update	d when I2CO\	/ is clear							
bit 3	SDAHT: SDA	A1 Hold Time Se	lection bit								
	1 = Minimum	of 300 ns hold	time on SDA1	after the falling	edge of SCL1						
hit 2				Enclose the families $(l^2 C)$		(v.)					
	1 - Enables	slave bus collisi	on interrunts		Slave mode on	iy)					
	0 = Slave bu	s collision interru	upts are disabl	ed							
	If the rising e	dge of SCL1 an	d SDA1 is san	npled low when	the module is i	n a high state,	the BCL bit is				
	set and the b	us goes Idle. Th	is Detection m	ode is only vali	d during data ai	nd ACK transm	nit sequences.				
bit 1	AHEN: Addr	ess Hold Enable	bit (I ² C Slave	mode only)							
	1 = Followin	g the 8th fallin	g edge of SC	L1 for a matcl	hing received a	address byte,	the SCLREL				
	0 = Address	holding is disab	ll de cleared a lled		e neid low						
bit 0	DHEN: Data	Hold Enable bit	(I ² C Slave mo	de only)							
	1 = Followin	a the 8th falling	edge of SCL	1 for a received	d data byte. the	e slave hardwa	are clears the				
	SCLREI	_ (I2C1CONL<1	2>) bit and SC	CL1 is held low	· · · · · · · · · · · · · · · · · · ·						
	0 = Data hole	ding is disabled									

REGISTER 19-16: ADMODOL: ADC INPUT MODE CONTROL REGISTER 0 LOW

U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	
_	SIGN7	—	SIGN6	—	SIGN5	—	SIGN4	
bit 15							bit 8	
U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	SIGN3	—	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0	
bit 7 bit								
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		

bit (odd)15-5 Unimplemented: Read as '0'

bit (3,1) **DIFF<x>:** Pseudo-Differential Mode for Corresponding Analog Inputs bits 1 = Channel is pseudo-differential 0 = Channel is single-ended

bit (even) **SIGNx:** Output Data Sign for Corresponding Analog Inputs bits

1 = Channel output data is signed

0 = Channel output data is unsigned

REGISTER 19-17: ADMOD0H: ADC INPUT MODE CONTROL REGISTER 0 HIGH

U-0	U-0	U-0	R/W-0	U-0 R/W-0		U-0	R/W-0
_	—	—	SIGN14	GN14 — SIGN13		—	SIGN12
bit 15							bit 8
U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0
_	SIGN11	—	SIGN10	—	SIGN9	—	SIGN8
bit 7							bit 0
Lanandi							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit (odd) Unimplemented: Read as '0'

bit (even) SIGN<x>: Output Data Sign for Corresponding Analog Inputs bits

1 = Channel output data is signed

0 = Channel output data is unsigned

REGISTER 19-23: ADCAL1H: ADC CALIBRATION REGISTER 1 HIGH

R/W-0, HS	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CSHRRDY	—	—	—	– CSHRSKIP CSHRI		CSHREN	CSHRRUN
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CSHRRDY: Shared ADC Core Calibration Status Flag bit
	1 = Shared ADC core calibration is finished
	0 = Shared ADC core calibration is in progress
bit 14-12	Unimplemented: Read as '0'
bit 11	CSHRSKIP: Shared ADC Core Calibration Bypass bit
	 1 = After power-up, the shared ADC core will not be calibrated 0 = After power-up, the shared ADC core will be calibrated
bit 10	CSHRDIFF: Shared ADC Core Pseudo-Differential Input Mode Calibration bit
	1 = Shared ADC core will be calibrated in Pseudo-Differential Input mode
	0 = Shared ADC core will be calibrated in Single-Ended Input mode
bit 9	CSHREN: Shared ADC Core Calibration Enable bit
	1 = Shared ADC core calibration bits (CSHRRDY, CSHRSKIP, CSHRDIFF and CSHRRUN) can be accessed by software
	0 = Shared ADC core calibration bits are disabled
bit 8	CSHRRUN: Shared ADC Core Calibration Start bit
	 1 = If this bit is set by software, the shared ADC core calibration cycle is started; this bit is cleared auto- matically by hardware
	0 = Software can start the next calibration cycle
bit 7-0	Unimplemented: Read as '0'

TABLE 23-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
	ASR Wb, Wns, Wnd		Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
7	BRA	BRA	C,Expr	Branch if Carry	1	1 (4)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (4)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (4)	None
		BRA	GT,Expr	Branch if greater than	1	1 (4)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (4)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (4)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (4)	None
		BRA	LT,Expr	Branch if less than	1	1 (4)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (4)	None
		BRA	N,Expr	Branch if Negative	1	1 (4)	None
		BRA	NC, Expr	Branch if Not Carry	1	1 (4)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (4)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (4)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (4)	None
		BRA	OA,Expr	Branch if Accumulator A overflow	1	1 (4)	None
		BRA	OB,Expr	Branch if Accumulator B overflow	1	1 (4)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (4)	None
		BRA	SA, Expr	Branch if Accumulator A saturated	1	1 (4)	None
		BRA	SB,Expr	Branch if Accumulator B saturated	1	1 (4)	None
		BRA	Expr	Branch Unconditionally	1	4	None
		BRA	Z,Expr	Branch if Zero	1	1 (4)	None
		BRA	Wn	Computed Branch	1	4	None
8	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 25-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No.	Тур.	Max.	Units	Units Conditions			
Power-Down	Current (IPD) ⁽¹⁾						
DC60d	10	30	μA	-40°C			
DC60a	16	60	μA	+25°C			
DC60b 60 300		μA	+85°C	3.3V			
DC60c	300	800	μA	+125°C			

Note 1: IPD (Sleep) current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC Clock Overshoot/Undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as output and driving low.
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

TABLE 25-9: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT (\(\triangle WDT\))^{(1)}

DC CHARACTER	RISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
Parameter No.	Тур.	Max.	Units	Conditions		
DC61d	1	2	μA	-40°C		
DC61a	1	2	μA	+25°C		
DC61b	1	3	μA	+85°C 3.3V		
DC61c	2	5	μA	+125°C		

Note 1: The △IWDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

FIGURE 25-2: EXTERNAL CLOCK TIMING

AC CHA	AC CHARACTERISTICS		Standard Ope (unless other Operating tem	erating C wise stat perature	pnditions: 3.0V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symb Characteristic		Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	60	MHz	EC
		Oscillator Crystal Frequency	3.5 10		10 40	MHz MHz	XT HS
OS20	Tosc	Tosc = 1/Fosc	8.33	_	DC	ns	+125°C
		Tosc = 1/Fosc	7.14	—	DC	ns	+85°C
OS25	TCY	Instruction Cycle Time ⁽²⁾	16.67	_	DC	ns	+125°C
		Instruction Cycle Time ⁽²⁾	14.28	—	DC	ns	+85°C
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_	—	20	ns	EC
OS40	TckR	CLKO Rise Time ^(3,4)	_	5.2	—	ns	
OS41	TckF	CLKO Fall Time ^(3,4)	—	5.2	—	ns	
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	_	12	—	mA/V	HS, VDD = 3.3V, TA = +25°C
			-	6		mA/V	XT, VDD = 3.3V, TA = +25°C

TABLE 25-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- **4:** Parameters are for design guidance only and are not tested in manufacturing.

TABLE 25-20: INTERNAL FRC ACCURACY

AC CHARACTERISTICS		Standar Operating	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No. Characteristic		Min.	Тур.	Max.	Units	Conditions			
Internal	FRC Accuracy @ FRC Fre	equency =	7.37 MHz	(1,2)					
F20a	FRC	-2	0.5	+2	%	$-40^{\circ}C \leq TA \leq -10^{\circ}C$	VDD = 3.0-3.6V		
			0.5	+0.9	%	$-10^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V		
F20b FRC		-2	1	+2	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V		

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.
2: Over the lifetime of the 28-Lead 4x4 UQFN package device, the internal FRC accuracy could vary between ±4%.

TABLE 25-21: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS		Standard Operating	l Operatin g temperati	g Conditi ure -40° -40°	ons: 3.0V C ≤ TA ≤ + C ≤ TA ≤ +	to 3.6V (unless otherv 85°C for Industrial 125°C for Extended	vise stated)	
Param No. Characteristic		Min.	Тур.	Max.	Units	Conditions		
LPRC (@ 32.768 kHz ⁽¹⁾							
F21a	LPRC	-30	—	+30	%	$-40^\circ C \le T A \le -10^\circ C$	VDD = 3.0-3.6V	
		-20	—	+20	%	$-10^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V	
F21b LPRC		-30	_	+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: This is the change of the LPRC frequency as VDD changes.

TABLE 25-36:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	_	—	Lesser of: FP or 11	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	—	_	—	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	—	_	—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	_	—	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid After SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	—	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	_		ns	(Note 4)	
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	_	—	50	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

				Standard Operating Conditions: 3.0V to 3.6V						
AC CHA	ARACTER	ISTICS		(unless otherwise stated) Operating temperature $40^{\circ}C < T_{0} < 105^{\circ}C$ for inductrial						
				Operating temperature $-40^{\circ}C \le IA \le +85^{\circ}C$ for Industrial $-40^{\circ}C < Ta < +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽⁴⁾		Min. ⁽¹⁾ Max.		Units	Conditions			
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy (BRG + 1)		uS				
			400 kHz mode	Tcy (BRG + 1)	_	uS				
			1 MHz mode ⁽²⁾	TCY (BRG + 1)	_	μS				
IM11	THI:SCL	Clock High Time	100 kHz mode	TCY (BRG + 1)	_	μS				
			400 kHz mode	Tcy (BRG + 1)	_	μS				
			1 MHz mode ⁽²⁾	TCY (BRG + 1)	_	μS				
IM20	TF:SCL	SDA1 and SCL1 Fall Time	100 kHz mode		300	ns	CB is specified to be from 10 to 400 pF			
			400 kHz mode	20 + 0.1 Св	300	ns				
			1 MHz mode ⁽²⁾		100	ns				
IM21	TR:SCL	SDA1 and SCL1 Rise Time	100 kHz mode		1000	ns	CB is specified to be from 10 to 400 pF			
			400 kHz mode	20 + 0.1 Св	300	ns				
			1 MHz mode ⁽²⁾		300	ns				
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns				
			400 kHz mode	100	_	ns				
			1 MHz mode ⁽²⁾	40	_	ns				
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	<u> </u>	μS				
			400 kHz mode	0	0.9	μS	-			
			1 MHz mode ⁽²⁾	0.2	_	μS	1			
IM30	Tsu:sta	Start Condition Setup Time	100 kHz mode	Tcy (BRG + 1)	_	μS	Only relevant for Repeated Start condition			
			400 kHz mode	TCY (BRG + 1)	_	μs				
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	_	μS				
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy (BRG + 1)	_	μS	After this period, the first clock pulse is			
			400 kHz mode	TCY (BRG + 1)	_	μs				
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	_	μS	generated			
IM33	Τѕυ:ѕто	Stop Condition Setup Time	100 kHz mode	Tcy (BRG + 1)	_	μS				
			400 kHz mode	TCY (BRG + 1)	_	μs				
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	_	μS				
IM34	THD:STO	Stop Condition Hold Time	100 kHz mode	Tcy (BRG + 1)	_	μS				
			400 kHz mode	Tcy (BRG + 1)	—	μS				
			1 MHz mode ⁽²⁾	Tcy (BRG + 1)	—	μS				
IM40	TAA:SCL	Output Valid from Clock	100 kHz mode	—	3500	ns				
			400 kHz mode		1000	ns				
			1 MHz mode ⁽²⁾	—	400	ns				
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be			
			400 kHz mode	1.3	—	μS	free before a new transmission can start			
			1 MHz mode ⁽²⁾	0.5	—	μs				
IM50	Св	Bus Capacitive L	oading	_	400	pF				
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	(Note 3)			

TABLE 25-39: I2C1 BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I^2C Baud Rate Generator.

2: Maximum Pin Capacitance = 10 pF for all I2C1 pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

4: These parameters are characterized but not tested in manufacturing.

120